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Abstract

A large number of analytical strength criteria have been developed for porous materials

having a Drucker-Prager solid matrix by using different up-scaling methods. A number

of representative exisitng criteria are selected and summarized. These criteria are first

evaluated and compared both analytically and numerically with new FEM solutions obtained

in this work. A wide variety of new numerical results are then provided from finite element

simulations to enlarge the comparisons. In particular, the strength under the pure shear

condition is discussed and studied in depth, either numerically and theoretically. Based on

these comparisons, a new improvement of the prediction of pure shear strength is established.

With this improvement, we derive a new macroscopic strength criterion for the porous

materials with a Drucker-Prager type solid matrix. The new criterion is validated against

those numerical solutions for a wide range of porosity and frictional coefficient. The special

case of a porous material with a von Mises type solid matrix is also studied with a good

validation.
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Nomenclature

a Scalar

a Vector

a Second order tensor

1 Second order unit tensor

a′ Deviator of a second order tensor a
am Hydrostatic part of a second order tensor a: am = tra/3
f Micro porosity

α Frictional parameter of the matrix

β Dilatancy parameter of the matrix

σ Microscopic stress field

Σ Macroscopic stress field

σeq, Σeq Micro and macro equivalent stress: σeq =

√
3
2σ
′ : σ′, Σeq =

√
3
2Σ
′ : Σ′

d Microscopic strain rate

D Macroscopic strain rate

deq Equivalent strain: deq =

√
2
3d
′ : d ′

π(d ) Support function of the mtrix

λ̇ The plastic multiplier

Λ̇ The Lagrange’s multiplier

v Velocity field

σ0 The strength of matrix in pure shear loading

. Simple contraction of two tensors

: Double contraction of two tensors

⊗ Tensorial product

1. Introduction

In civil engineering and petroleum engineering, most materials are porous media with a

high porosity. Elastic properties, plastic deformation and failure strength of porous materials

are inherently affected by the porosity and the presence of fluid phases. Therefore, there

are two main objectives in mechanics of porous media, which can be either separately or

simultaneously investigated. The first one is the determination of an accurate macroscopic

strength criterion or plastic yield surface for dry porous materials without fluid phases by
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taking into account the effect of porosity. The second one is to study the effects of fluid phases

such as fluid pressures, saturation degree, etc. Different kinds of approaches can be adopted

to investigate these two aspects, mainly including macroscopic phenomenological models and

micro-mechanics based models. The objective of the present paper is to address the first

objective by using micro-mechanics based approaches, more precisely, the determination of

macroscopic strength criteria of dry porous materials by using nonlinear homogenization

techniques.

Around this objective, a series of studies have been performed during several decades. For

pressure-independent metal porous materials, the solid phase is generally represented by

the von Mises type material. The pioneer’s work has been realized by [17]. An analytical

strength criterion has been obtained by considering a hollow sphere and by using a limit

analysis method. In order to better fit experimental evidences and numerical results, a

number of extensions of this criterion have been proposed. For example, by introducing

some heuristic modifications of the Gurson’s criterion [47, 48], the so-called GTN (Gurson-

Tvergaard-Needelman) model has been established and it is now widely used for metal

materials. In some recent criteria [25, 27, 5], the effect of pore size has been taken into

account. Two populations of voids at different scales have even been considered in other

criteria [49, 50]. The effect of void shape has also been studied [14, 15, 22, 26]. Associated

with specific voids nucleation and growth criteria, analytical strength criteria have been used

for the analysis of ductile failure in metal materials.

As a fundamental difference with metal materials, due to internal friction, porous geo-

materials as well as some polymers are generally constituted of a pressure-dependent solid

matrix. The strength under compression is significantly larger than that under tension.

Therefore, it is needed to develop new criteria to describe the macroscopic strength of this

class of porous materials by taking into account the pressure sensitivity of solid matrix.

Some heuristic macroscopic criteria have first been formulated [23, 21, 20]. Concerning the

use of homogenization techniques to determine the macroscopic strength criteria, due to its

simple linear function, the Drucker-Prager criterion is widely adopted to characterize the

local strength of solid phase. For instance, some analytical criteria have been obtained by

the limit analysis approach [16, 37], by the modified secant method [3, 24]. Some other

methods have also been proposed, for example by expending the yield function in powers

of porosity [13], and by adopting a stress variational method [8]. By using these analytical

criteria as yield functions and introducing suitable hardening laws, different plastic models

have been established to describe full stress-strain relations of rocks and concrete materials.

Further, by adopting a two-step homogenization procedure, some analytical strength criteria

and plastic models have been developed for materials containing pores at a small scale and
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rigid inclusions at a large scale [41, 39, 18, 4]. Some authors have also studied double porous

materials with small and big pores and pressure-sensitive solid phase [38, 35, 34, 36].

On the other hand, although not investigated in this paper, a series of interesting studies

have been performed to investigate the effects of pore fluids on the macroscopic mechanical

behavior of rocks and soils, for instance [32, 33, 43, 52, 51, 2]. Those previous studies

provide a sound background for the extension of strength criteria for dry porous materials

to saturated or partially saturated conditions.

In spite of different existing studies around the determination of macroscopic criteria of

dry porous materials by micro-mechanics based approaches, there is a need to make a detailed

evaluation of representative existing criteria. Further, the accuracy of most existing criteria

is not really satisfactory compared with reference results obtained from direct numerical

simulations. Therefore, two main objectives are given to this work. The first one is to make

an in-depth evaluation of selected existing analytical criteria by making original theoretical

comparisons between them. On the other hand, new numerical results are provided in this

study by making direct finite element simulations. These numerical results are used to

check the accuracy of the selected criteria. In particular, the estimation of the pure shear

strength
Σeq

σ0
is discussed in depth. Based on the theoretical and numerical evaluations, a new

macroscopic strength criterion is determined. The new criterion significantly improves the

prediction of the pure shear strength with respect to all the selected criteria. Furthermore,

this new criterion is validated by new numerical results for a wide range of porosity and

frictional parameter, also for the special case with a pressure-independent matrix.

2. Theoretical evaluation of main macroscopic criteria

In the section, we present a theoretical evaluation of the main exiating representative

macroscopic criteria for porous media whose solid phase obeys to the Drucker-Prager (D-P)

model. For this purpose, we first recall some common background features for these models.

At the microscale, the matrix is described by the following D-P criterion:

Φ(σ) = σeq + 3ασm − σ0 ≤ 0 (1)

in which σm = trσ/3 and σeq =

√
3
2σ
′ : σ′, σ′ is the deviatoric part of the local stress σ.

α and σ0 are material parameters, the frictional coefficient and the strength in the case of

purely shear loading, respectively.

According to [31], the support function π(d ) of the D-P matrix described by equation
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(1) at the microscopic scale can be calculated as follows:

π(d ) =


σ0

α
dm if dm ≥ αdeq

+∞ if dm < αdeq

(2)

where d is the strain rate, dm = tr(d )/3 and deq =

√
2
3 d′ : d′.

By considering either the normality rule or the non-associated one for the solid matrix,

we shall obtain two different categories of macroscopic strength criteria, that are respectively

discussed in the following sub-sections.

2.1. Porous materials with associated flow solid matrix

In the first case of an associated flow rule in matrix at the microscale, we consider here

two types of void shape, respectively spherical void and spheroidal void.

2.1.1. Porous materials with spherical void

• Heuristic criterion proposed by [23] The von Mises criterion is modified by adding a

main stress related term: Φ(σ) = σ2
eq − (σ0 − 3ασm)2 = 0, which is the particular case

of Drucker-Prager criterion (1). Based on the expression of the Gurson’s criterion, a

heuristic extension of the Gurson’s criterion is there proposed:

Σ2
eq

σ2
0

+ 3α
Σm

σ0

(
2 − 3α

Σm

σ0

)
+ 2 f cosh

(
3Σm

2σ0

)
− 1 − f 2 = 0 (3)

• Criterion proposed by [21] and [20] based on some special cases

In [21], the hydrostatic tensile strength of the studied porous material with Drucker-

Prager matrix has been derived: Σm
σ0

=
1− f

2α
2α+1

3α . Taking into account some special

conditions, f → 0 and α→ 0, a macroscopic criterion was given in [21]:(
Σeq + 3αΣm

σ0

)2

+ 2 f cosh
[
1 + α

2α
ln

(
1 − 3α

Σm

σ0

)]
− 1 − f 2 = 0 (4)

This criterion was good for the positive mean stress domain but not suitable for the

compressive domain. Therefore, [1] has proposed the following function for the com-

pressive mean stress domain:(
Σeq + 3αΣm

σ0

)2

+ 2 f − 1 − f 2 = 0 (5)
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This criterion (5) does not provide the exact hydrostatic compression strength. An

amelioration was done in [20] by calculating the exact hydrostatic tensile and com-

pression strengths as follows:

Σm

σ0
=

1 − f 2α/(2α+sign(Σm))

3α
(6)

Then, another improved macroscopic criterion was established in [21]: Σeq

σ0

1 − 3αΣm
σ0


2

+ 2 f cosh
[
1 + sign(Σm)2α

2α
ln

(
1 − 3α

Σm

σ0

)]
− 1 − f 2 = 0 (7)

• Criterion derived in [3] with the modified secant method

By adopting the modified secant method, [3] has obtained an explicit expression of

macroscopic strength function for the studied porous materials. The original criterion

is rewritten here by using the same variables as in other criteria:(
1 +

2
3

f
)

Σ2
eq

σ2
0

+

(
9
4

f − 9α2
)

Σ2
m

σ2
0

+ 6α(1 − f )
Σm

σ0
− (1 − f )2 = 0 (8)

• Criterion established by limit analysis approach [16]

By choosing a hollow sphere as the representative elementary volume with a uniform

strain rate boundary condition, the following implicit macroscopic function Φ(Σeq($),Σm($))
is first derived by [16] in the framework of limit analysis:

Σeq

σ0
=

f γ − f
f γ − f + α∂z/∂C0

∂z
∂De

3
Σm

σ0
=

1 − f
f γ − f + α∂z/∂C0

∂z
∂C0

(9)

where $ = 2C0
sDe

ranges from −∞ to ∞, s = 1 ± 2α, γ = 1 − s−1. The parameters ∂F
∂De

and
∂F
∂C0

are given as functions of Gauss hypergeometric function (2F1(a, b; c; z)):
∂z
∂C0

= $
s/2−1

[
2F1( 1

2 , 1 −
s
2 ; 2 − s

2 ;−$2) − f 1−2/s
2F1( 1

2 , 1 −
s
2 ; 2 − s

2 ;− $2

f 2/s )
]

∂z
∂De

=2 F1(1
2 ,−

s
2 ; 1 − s

2 ;−$2) − f 2F1( 1
2 ,−

s
2 ; 1 − s

2 ;− $2

f 2/s )
(10)

This model is called “Upper bound model” (UBM) by the authors. For the purpose to

establish an explicit expression of the overall yield function, the authors have consid-

ered some particular cases. An approximate function has been derived in [16]: Σeq

σ0

Θ


2

+ 2 f cosh
[

sign(Σm) + 2α
2α

ln
(
1 − 3α

Σm

σ0

)]
− 1 − f 2 = 0 (11)

6



in which two expressions of Θ are provided in [16]: Θ1 = 1 − 3α
(1− f )1−s/2

Σm
σ0

and Θ2 =

1 − 3α
1+γ ln(1+s f )

Σm
σ0

.

• Criterion obtained by expending yield criterion in powers of porosity f [13]

Another approach is used in [13]. The derivation is based on expending the yield

criterion in powers of porosity f . The local yield criterion of the matrix is found

when the zero order is given. Taking the second order power expansion, a macroscopic

criterion is obtained:

Σ2
eq

σ2
0

− (1 − 3α
Σm

σ0
)2 + 2 f (1 − 3α

Σm

σ0
) cosh

[
1

2α
ln

(
1 − 3α

Σm

σ0

)]
− f 2 = 0 (12)

• Criterion given by [8] based on a stress variational method

In the study [8], the macroscopic criterion is derived by using a stress-based approach

called stress variational method. With a stress field which is not totally statically

admissible, one gets the following effective yield function:

Σeq

σ0(1− f )

[
2F1(−1

2 ,−
1

2w ; 1 − 1
2w ,−%

2) − f 2F1(−1
2 ,−

1
2w ; 1 − 1

2w ,−
%2

f 2w )
]

+ 3αΣm
σ0
− (1 − f ) ≤ 0

(13)

in which % =
3w(1− f )
2(1− f −w)

Σm
Σeq

, w = 2α/(2α ± 1).

2.1.2. Porous materials with spheroidal void [37]

The above existing yield criteria are for porous material with a D-P matrix and spherical

pore. Some contributions have been done to study the influence of pore shape on the plastic

yield surface. The spheroidal pores (oblate or prolate) have been considered. Considering a

representative volume elements made up of a spheroidal domain containing a spheroidal con-

focal void and a suitable velocity field, an approximate macroscopic criterion is established

in the following form by the limit analysis approach:

<2


Σ2

eq

σ2
0

+

(
τ(3α2 − 1)

Σ2
eq

σ2
0

+ Σs
Θ

+
Σq

σ0

)2
+ (ζ − 1)

Σ2
q

σ2
0

1 − ζ

+2(1+g)( f +g)cosh

(
Γ

p

)
−(1+g)2−( f +g)2 = 0

(14)

where the parameters used in criterion (14) are given in Appendix B.

In the case of spherical void, the function (14) can be simplified as:
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Σ2
eq

σ2
0[

1 − 3α
(1− f )

Σm
σ0

]2 + 2 f cosh

(
2α + sgn(Σm)

2α
ln(1 − 3α

Σm

σ0
)
)
− 1 − f 2 = 0 (15)

2.2. Porous media having a non-associated D-P matrix

On the other hand, some researchers have studied the influence of non-associated flow

rule of the matrix on the overall mechanical behavior, such as macroscopic yield function

and plastic potential.

• Macroscopic criterion and plastic potential proposed by [24]

By adopting a non-associated flow rule for the D-P type matrix, the work in [3] has

been extended in [24] with a local plastic potential:

φ(σ) = σeq + 3βσm (16)

where β denotes the plastic dilatancy coefficient with 0 ≤ β ≤ α < 1
2 .

However, the macroscopic yield function with a non-associated D-P matrix obtained in

[24] remains identical to the one (8) given by [3] with an associated D-P matrix. This

yield function is independent of the dilatancy coefficient β. However, it is possible to

determine a macroscopic plastic potential which depends on β:

G =

(
1 +

2
3

f
)

Σ2
eq

σ2
0

+

(
9
4

f − 9αβ
)

Σ2
m

σ2
0

+ 6β(1 − f )
Σm

σ0
(17)

• Macroscopic criterion proposed by [9]

A hollow sphere having a non-associated D-P matrix has been investigated in [9]. The

bi-potential theory proposed by [12, 10, 11, 19] has been adopted to extend the limit

analysis method. Following the minimization procedure and solving the saddle point

problem, a macroscopic strength criterion is derived:
Σeq

σ0
=

f γ̃ − f
[
β

α
ΠDe +

(
1 − β

α

)
Π̂De

]
+

(
1 − β

α

)
β
(
ΠC0Π̂De − ΠDeΠ̂C0

)
f γ̃ − f + βΠC0

3
Σm

σ0
= (1 − f )

β

α
ΠC0 +

(
1 − β

α

)
Π̂De

f γ̃ − f + βΠC0

(18)

The parameters ΠC0 , ΠDe , Π̂C0 , Π̂De , P(τ) and γ̃ are given in Appendix C.

For a general loading, the yield strength in the non associated case is slight lower than

the one in associated case in the compressive loading. There is no great different in

the tensile loading.
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2.3. Recapitulation of the existing macroscopic criteria

For the purpose of clarity, the selected macroscopic yield functions for porous media

having a D-P matrix are recapitulated in Appendix A with the corresponding derivation

method used. When the pores are spherical, the exact solutions of strength for hydrostatic

tension and compression can be retrieved by the criteria (7), (9), (11), (12), (13), (15) and

(18). Concerning the pure deviatoric loading (Σm = 0), the value of
Σeq

σ0
given by (8) with the

modified secant method is 1− f√
1+ 2

3 f
, which is different from the value of (1− f ) obtained in all

other criteria.

3. Evaluations and comparisons of yield criteria by new FEM numerical results

Based on the summary of the main existing macroscopic yield criteria, it is therefore

interesting and important to evaluate their accuracies. To this end, a series of new numerical

results are carried out in this study by FEM method. This numerical method will be firstly

evaluated by comparing with numerical limit analysis results.

3.1. Verification of finite element simulation

The representative volume element of porous material is here represented by a hollow

sphere. Due to its axi-symmetric property, only a quarter of the hollow sphere is considered

and it is meshed with 900 quadratic quadrilateral elements of type CAX8 and with 2821

nodes in Abaqus software, as illustrated in Figure 1(a) for the case f = 0.1. The solid

matrix obeys the Drucker-Prager plastic criterion (1). With the assumption of small strains,

the displacement velocity field is prescribed on the exterior boundary of the hollow sphere.

A user subroutine MPC (Multi-Points Constraints) is used in this study for the loading

condition with a constant macroscopic stress triaxiality T = Σm/Σeq, which is realized by

calculating the constant stress ratio Σρ/Σz as the one done in [7, 16].

In Figures 1(b) and 1(c), we compare the finite element results with the numerical bounds

proposed in [29], by employing the limit analysis and a second order conic programming. The

porosity selected is f = 0.1, the frictional parameter are α = 0.1/3, 0.83205/3, respectively.

The red points are the upper bounds and the green ones are the lower bounds. The asterisks

present the FEM results. The black solid ones are the hydrostatic values given by (6). In

these figures, the red points are very close to the green ones which indicates that they are

approach to the exact solution. On the other hand, the FEM results are also very close to the

numerical bounds and have a good accuracy. Figure 1(d) presents the case of a spheroidal

void (oblate a1/b1 = 1/2) for porosity f = 0.1 with different friction angles. Again, the FEM

solutions are well framed by the lower and upper bounds. According to the comparisons
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for these two different cases, the finite element simulations are well validated and these

numerical solutions will be adopted to evaluate the above selected analytical yield criterion. 

z 



v

O 

(a) Mesh, f = 0.1, spherical pore (b) α = 0.1/3, f = 0.1

(c) α = 0.83205/3, f = 0.1 (d) frictional angle: 16.7◦, 30.2◦, f = 0.1

Figure 1: Validations of the FEM results (asterisk) by the upper (red circle) and lower

(green circle) bounds proposed by [29] (spherical pore, -b and -c) and by [28] (spheroidal

pore -d: a1/b1 = 1/2).
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3.2. Assessment of analytical criteria by new numerical solutions

The macroscopic criteria are now assessed and evaluated through the comparison with

FEM results. For this purpose, we consider a wide range of porosity f = 0.04, 0.1, 0.15,

0.2, 0.3, 0.4 and frictional parameter α = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 (the corresponding

friction angles are φ = 0, 8.53◦, 16.70◦, 24.23◦, 30.96◦, 36.87◦, 41.99◦). The cases of f = 0.04
and 0.4 are illustrated in Figures 2 and 3, another porosities are shown in Appendix D. In

these in Figures, FEM results are presented by black points. The solid green circles denote

the hydrostatic results. Different lines are used to show the yield surfaces predicted by the

above analytical criteria: (7)-black line, (8)-sky blue line, (9)-red solid line, (11) with Θ1-red

dash dot line, (11) with Θ2-red dash line, (12)-green line, (15)-blue line.

One can see that all the criteria except (8) are very close to each other when the porosity

f and frictional parameter α are small. The exact solution when Σeq = 0 cannot be retrieved

by (8). However, the value
Σeq

σ0
predicted in (8), 1− f√

1+2 f /3
, is closer to the FEM results than

that, (1 − f ), given by the other criteria when the porosity f is small. Nevertheless, these

two analytical values of
Σeq

σ0
are all very different from the FEM results when f > 0.15. This

point about the value of
Σeq

σ0
for Σm = 0 will be especially studied in depth in the following

section.

The yield surface (black line) predicted by the criterion (7) proposed in [20] coincides

well with the one (green line) (12) given in [13] when f < 0.2. In the case of f > 0.2, there

is a good agreement between (12) (green line) and (9) (red solid line).

In the tension zone, the analytical criteria have a good prediction comparing with FEM

results. However, the prediction of the criterion (15)(blue line) is closer to FEM solutions

than other ones. In the compressive zone, the strength surfaces predicted by (15) and (11)

with Θ1 are always outside of the FEM results.

It is worth to mention that the criterion (9) (red solid line) underestimates the strength

when the frictional parameter α is big, for example, α = 0.2, 0.25, 0.3. This observation also

confirms the remarks made in some previous studies [45, 30, 44, 29]. The so-called “upper

bound model” (parametric criterion (9)) is not a rigorous upper bound, however, it is a good

approximation.

The relative errors 1 between the FEM numerical results and the predictions given by

1The relative error is calculated by the following formula:

Relative error (X) = |
X predicted by criterion − X given by Abaqus

X given by Abaqus
| · 100%

Two stress values (Σm and Σeq) are considered in each point, respectively by putting X = Σm for the relative

error of macroscopic mean stress and X = Σeq for the one of macroscopic equivalent stress. The smaller one
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these macroscopic criteria are illustrated in Figure 4 for different cases with f = 0.2, α = 0.15,

f = 0.2, α = 0.3 and f = 0.4, α = 0.15, as functions of macroscopic stress triaxiality

T = Σm/Σeq. In a general way, according to the comparisons between analytical predictions

and FEM results, it seems that the criterion (11) with Θ2 and the one (12) provide the most

accuracy estimation of material strength.

of both is then chosen to plot the relative error maps.
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(a) f = 0.04, α = 0 (b) f = 0.04, α = 0.05

(c) f = 0.04, α = 0.1 (d) f = 0.04, α = 0.15

(e) f = 0.04, α = 0.2 (f) f = 0.04, α = 0.25

Figure 2: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line and FEM solutions with different α, f = 0.04.
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(a) f = 0.4, α = 0.05 (b) f = 0.4, α = 0.1

(c) f = 0.4, α = 0.15 (d) f = 0.4, α = 0.2

(e) f = 0.4, α = 0.25 (f) f = 0.4, α = 0.3

Figure 3: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line and FEM solutions with different α, f = 0.4.
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(c) f = 0.4, α = 0.15

Figure 4: Relative errors between the numerical results and predictions of yield criteria

with different porosity and frictional parameter.
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4. Numerical investigation of the strength prediction in pure shear loading

As indicated in the previous section, two different values of shear strength
Σeq

σ0
are provided

by the selected criteria when Σm
σ0

= 0: 1− f√
1+ 2

3 f
by [3, 24] and (1 − f ) by the other ones. Both

values depend on the porosity f . However, the influence of the frictional parameter α on

the shear strength
Σeq

σ0
when Σm

σ0
= 0 is so far not explicitly studied. In this study, this issue is

investigated by direct FEM simulations. We consider then different porosity and frictional

parameter: f = 0.04, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and α = 0, 0.1, 0.2, 0.3, 0.4, 0.49.

As shown in Figure 5, the porosity affects importantly the pure shear strength. The

increase of porosity leads to a quick decrease of
Σz−Σρ

σ0
. Due to the influence of third stress

invariant, the strength of the studied parous material is not symmetric with respect to
Σz−Σρ

σ0
.

When Σz − Σρ > 0, the frictional coefficient α has a slight influence. However, this influence

can be neglected for Σz − Σρ < 0. As for all the analytical criteria selected here, the quantity
Σeq

σ0
=
|Σz−Σρ |

σ0
is independent of α. Therefore, we present here the FEM results for Σz − Σρ < 0

only.

Figure 5: FEM solutions of
Σz−Σρ

σ0
for pure deviatoric loading (Σm

σ0
= 0) with different f and α.

We compare now the numerical values of pure shear strength
Σeq

σ0
with two theoretical

predictions: (1 − f ) and 1− f√
1+ 2

3 f
. The comparisons are presented on Figure 6. One can see

that the value (1 − f ) is always over the FEM results and represents a sort of upper bound.
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For small or very big values of porosity f , the value 1− f√
1+ 2

3 f
coincides well with the numerical

results, but it is lower for intermediate values of porosity.

Figure 6: Comparisons between
Σeq

σ0
given by existing criteria and the one of FEM for pure

deviatoric loading (Σm
σ0

= 0): Dashed line: 1− f√
1+2 f /3

given by [3, 24]; Solid line : (1 − f ) given

by other criteria.

5. Theoretical improvement of the strength prediction in pure shear loading

Based on the above comparisons, some new improvements will be provided firstly to

ameliorate the performance in pure shear loading for porous media having a D-P matrix.

For this purpose, the stress variational homogenization method will be used with a statically

admissible stress field which will be constructed in this work.

5.1. Brief recall of stress variational approach

The stress variational approach was proposed in [6, 40, 42], and its main lines are here

briefly recalled. In this study, the matrix is pressure-sensitive and obeys to the local yield

critetion (1), a statically admissible stress field will be constructed for this material to derive

a macroscopic yield criterion with the effect of porosity.

According to the normality law, the strain rate tensor d is given as:

d = λ̇
∂Φ

∂σ
(σ) (19)

in which λ̇ is the plastic multiplier.
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Then the Hill’s inequality can be expressed as:

∀σ′ ∈ P, (σ′ − σ) : d ≤ 0 , (20)

where P is the plastic bound defined by the local yield criterion (1).

According to the local stress and strain (σ and d), the macroscopic ones (Σ and D) can

be computed by the homogenisation approach:

Σ =
1
| Ω |

∫
Ω

σ dV , D =
1
| Ω |

∫
Ω

d dV . (21)

Based on the conception on convex analysis, a semi-continuous function ϕ(σ) is intro-

duced as follows: which is 0 if σ ∈ P and +∞ otherwise.

Then, the condition (20) can be rewritten as: d ∈ ∂ϕ(σ).
According to the Hill’s variational principle, the true stress field minimizes the following

functional among all the statically admissible stress fields ga:∫
ΩM

ϕ(σ) dV −
∫

S u

(σ.n).v dS (22)

ga = {σ : div σ = 0, x ∈ Ω; σ · n = 0, x ∈ ∂ω; σ = 0, x ∈ ω} (23)

in which n is the unit outward normal vector, v is the imposed velocity on the boundary

S u of ΩM. For the studied homogenization problem of a hollow sphere with a boundary

condition v(x) = D .x, the set of kinematically admissible velocity fields classically reads:

Ka = {v s.t. v(x) = D · x on ∂Ω} (24)

Then one gets the following average functional:

min
σ∈ga

(
1
| Ω |

∫
ΩM

ϕ(σ) dV − D : Σ
)

(25)

When the stress σ is licit, the functional ϕ(σ) is vanishes. Then, the following minimiza-

tion problem can be derived from (25) for the studied materials with condition Φ(σ) = 0:

min
σ∈gl

(−D : Σ) (26)

where gl = {σ ∈ ga : Φ(σ) ≤ 0, x ∈ ΩM}; ga is the group of statically admissible which is

given in (23).
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With the help of the Lagrangian method and the approximation of the condition Φ(σ) = 0
by its average value, the above minimization problem can be rewritten as:

max
Υ̇≥0

min
σ∈ga

(
L(σ, Λ̇) =

1
| Ω |

∫
ΩM

Λ̇Φ(σ) dV − D : Σ
)

(27)

in which Λ̇ is the Lagrange’s multiplier.

By adopting the same value of Λ̇ in the matrix, the searched overall yield criterion can

be calculated as follows:

F(Σ) =
1
| Ω |

∫
ΩM

Φ(σ) dV = 0 (28)

5.2. Construction of a strict statically admissible field for a D-P type matrix

Based on the general expression of the macroscopic yield criterion (28), the following

important step is the construction of a strict statically admissible field σ as a function of

macroscopic stress. According to [40], a suitable trial stress field could be established and

given with three parts: σ = σ1 + σ2 + σ3, which improves the one used in [8] to derive the

criterion (13).

• The exact solution in hydrostatic loading σ1

σ1 =
A1

3α

[(
1 −

(a
r

)3w
)

1 +
3
2

w
(a

r

)3w
(eθ ⊗ eθ + eφ ⊗ eφ)

]
(29)

where w = 2α/(2α + ε) and ε = ±1 for A1 ≷ 0.

• The deviatoric approximation σ2 in cylindrical coordinates {eρ, eϕ, ez}

σ2 = A2

(
eρ ⊗ eρ + eϕ ⊗ eϕ − 2ez ⊗ ez

)
(30)

The stress σ1 satisfies the void boundary condition (σ · n = 0), but the one σ2 does

not. In order to overcome this imperfection, a new term σ3 is added to ensure that:

σ · n = (σ1 + σ2 + σ3) · n = 0.

• The additional local stress field σ3

σ3 = S (r) A2 [1 + 3 cos(2θ)] 1 + K(r) A2 sin(2θ)(er ⊗ eθ + eθ ⊗ er) (31)

where S (r) =
√

15
30

a3/2

r3/2

(
−9 sin

(
22

√
15

2 ln(a
r )
)

+
√

15 cos
( √

15
2 ln( a

r )
))

,

K(r) = 1
10

a3/2

r3/2

(
−15 cos

( √
15
2 ln(a

r )
)
− 7
√

15 sin
( √

15
2 ln( a

r )
))

. A1 and A2 are constant param-

eters which need to be determined.
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Finally the local terms σeq and σm used in the equation (1) can be calculated from σ:

σm = A1
3α

[
1 −

(
a
r

)3 w
(1 − w)

]
+ S (r) [1 + 3 cos (2 θ)] A2 (32)

σeq =

√(
w
2α

)2 (
a
r

)6w
A2

1 + 3A1A2w
4α [1 + 3 cos(2θ)]

(
a
r

)3w
+ Z2(r, θ)A2

2
(33)

where Z2(r, θ) =
[
9 + 3K(r) sin2(2θ)(K(r) + 3)

]
.

5.3. Macroscopic yield criteria based on the SVH mathod with the stress field σ = σ1+σ2+σ3

With the relationship between σ and Σ: Σ = 1
Ω

∫
Ω
σdV, the macroscopic stress tensor

takes the following form:

Σ =

(
1 − f w

3α

)
A11 + Z1A2(e1 ⊗ e1 + e2 ⊗ e2 − 2e3 ⊗ e3) (34)

where Z1 = 1 −
√

15 f
25 sin

( √
15
6 ln( f )

)
−

√
f cos

( √
15
6 ln( f )

)
.

The macroscopic mean stress Σm and the equivalent stress Σeq can be easily obtained

from (34):

Σm =
1 − f w

3α
A1, Σeq = 3Z1|A2| (35)

By combining the expressions of (32), (33) and (34), the searched yield function can be

computed as:

1
| Ω |

∫
ΩM

f (σ)dV =
3

4πb3

∫ b

a

∫ π

0

∫ 2π

0

[
σeq(Σ) + 3ασm(Σ) − σ0

]
r2 sin(θ)dϕdθdr ≤ 0 (36)

With the expression in (34), one can get:

3
4πb3

∫ b

a

∫ π

0

∫ 2π

0
[3ασm(Σ) − σ0] r2 sin(θ)dϕdθdr = 3αΣm − (1 − f )σ0 (37)

Due to the complex of the parameter Z2(r, θ) in the term σeq, it is not easy to get an

explicit solution for the part 1
|Ω|

∫
ΩM
σeq(Σ)dV in the equation (36).

For the purpose to facilitate the integral calculation and to get an closed form expression,

the parameter Z2(r, θ) here is approximated by a constant Z2( f ). To do this, the studied

Drucker-Prager criterion of the solid phase will be relaxed as: F(σ) = σ2
e − σ̃

2
0 = 0, with σ̃0 =

3ασm −σ0. Then, equation (36) reduces to: 3
4πb3

∫ b

a

∫ π

0

∫ 2π

0
(σ2

e − σ̃
2
0)r2 sin(θ)dϕdθdr ≤ 0 which
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can be solved analytically. According to the coefficient of parameter A2, the approximated

parameter Z2( f ) can be calculated:

Z2(r, θ) ' Z2( f ) = 9
1 + 11

25 f − 64
75 f ln( f ) − 2

√
f T + 34

375 f U

1 − f

U =
√

15 sin
( √

15
3 ln( f )

)
+ 5 cos

( √
15
3 ln( f )

)
,T =

√
15

25 sin
( √

15
6 ln( f )

)
+ cos

( √
15
6 ln( f )

) (38)

By adopting this simplification, the macroscopic yield function for the studied material

can be derived:

√
Z2

3Z1

Σeq

σ0

[
2F1(−1

2 ,−
1

2w ; 1 − 1
2w ,−i

2) − f 2F1(−1
2 ,−

1
2w ; 1 − 1

2w ,−
i2

f 2w )
]

+ 3αΣm
σ0
− (1 − f ) ≤ 0 (39)

in which i =
[

9wZ1
2
√

Z2( f −w−1)
Σm
Σeq

]
, the parameters Z1 and Z2 are given in Equations (34) and (38).

As given in Figure 7, the strength surface predicted by (39) (orange dashed line) is

below that given by (13). It is not very precise in the compression zone when the frictional

parameter α is high. But its accuracy is good for low values of α.

(a) f = 0.2, α = 0.05 (b) f = 0.2, α = 0.25

Figure 7: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line, (13)-orange line, (39)-orange dashed line and FEM solutions

with different α, f = 0.2.

5.4. New prediction of
Σeq

σ0
in pure shear loading (Σm

σ0
= 0)

As shown in Figure 7(a) with f = 0.2, the prediction of
Σeq

σ0
given by the criterion (39) is

between (1 − f ) and 1− f√
1+ 2

3 f
and coincides well with FEM results. It is then worth to study
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in depth the value of
Σeq

σ0
= 3Z1√

Z2
provided by (39) with different f . Figure 8 illustrates the

comparisons of 3Z1√
Z2

, (1 − f ), 1− f√
1+ 2

3 f
and FEM results for the full range of porosity 0 < f < 1.

One can see a good agreement between the prediction
Σeq

σ0
= 3Z1√

Z2
provided by the new criterion

and the FEM results.

Figure 8: Comparisons between
Σeq

σ0
given by existing criteria and the one of FEM for pure

deviatoric loading (Σm
σ0

= 0): Dashed line: 1− f√
1+2 f /3

; Red line : 1 − f ; Blue line: 3Z1√
Z2

.

6. A new macroscopic yield criterion and its validation by FEM results

Based on the comparisons between the main existing yield criteria and the new FEM nu-

merical results in section 3 and the new value of
Σeq

σ0
for pure shear loading, a new macroscopic

yield criterion will be derived in this section by adopting the strategy used in the [21, 20]

and [16] to derive an explicit expression of yield criterion by considering some special cases.

In the hydrostatic loading (Σeq = 0), the exact solution can be derived (6), which can be

expressed in the following general form:

2 f cosh

[
2α + sgn(Σm)

2α
ln(1 − 3α

Σm

σ0
)
]
− 1 − f 2 = 0 (40)
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According to (40), the searched macroscopic yield criterion can be expressed in the

following form: (
Σeq/σ0

B

)2

+ 2 f cosh

[
2α + sgn(Σm)

2α
ln(1 − 3α

Σm

σ0
)
]
− 1 − f 2 = 0 (41)

When the porosity is vanished, the searched macroscopic criterion should be reduced to

the local one (1):
Σeq

σ0
+ 3αΣm

σ0
− 1 = 0. With these conditions, one can get

lim
f→0

B = 1 − 3α
Σm

σ0
(42)

In the pure shear loading (Σm = 0), the new value of
Σeq

σ0
= 3Z1√

Z2
will be adopted in the new

searched criterion. This leads to:

B =
3Z1

√
Z2(1 − f )

, when Σm = 0 (43)

As considered in [16], the searched yield criterion should satisfy the following condition

when α = 1
2 and Σm ≤ 0 with the new value of

Σeq

σ0
:

Σ2
eq/σ

2
0[

3Z1√
Z2(1− f )

−
3Σm

2σ0(1− f )

]2 + 2 f − (1 + f 2) = 0 (44)

which means limα→ 1
2 ,Σm≤0 B = 3Z1√

Z2(1− f )
−

3Σm
2σ0(1− f ) .

Based on the comparisons of the existing yield criterion and satisfying the above require-

ments, a new heuristic macroscopic criterion is proposed in the following form for porous

materials with a Drucker-Prager solid matrix and spherical void:: Σeq

σ0

3Z1√
Z2(1− f )

− 3α
1+γ ln(1+s f )

Σm
σ0


2

+ 2 f cosh
[

sign(Σm) + 2α
2α

ln
(
1 − 3α

Σm

σ0

)]
− 1 − f 2 = 0 (45)

This criterion satisfies all the special conditions considered in [20] and [16].

The new criterion (45) is evaluated in Figures 9 and 10 by the new finite element solutions

carried out in this work. Different porosity f = 0.04, 0.1, 0.15, 0.2, 0.3, 0.4 and frictional

parameter α = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 (the corresponding friction angles are φ = 0,

8.53◦, 16.70◦, 24.23◦, 30.96◦, 36.87◦, 41.99◦) are considered for a wide validation. The

criterion (45) find well the hydrostatic analytical solutions (green points). The values of pure

shear strength
Σeq

σ0
are well predicted for all values of porosity. The influences of porosity and

frictional parameter on the overall strength behavior are better predicted by (45) than the

previous ones.
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(a) f = 0.04, α = 0.15, 0.2, 0.25 (b) f = 0.04, α = 0.0, 0.05, 0.1

(c) f = 0.1, α = 0.15, 0.25, 0.3 (d) f = 0.1, α = 0.0, 0.05, 0.1, 0.2

(e) f = 0.15, α = 0.05, 0.15, 0.25, 0.3 (f) f = 0.15, α = 0.0, 0.1, 0.2

Figure 9: Comparisons between yield surfaces predicted by new criterions (blue line) and

FEM solutions (circles) with different α and f , green points: exact solution in pure

hydrostatic loading.
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(a) f = 0.2, α = 0.05, 0.15, 0.25, 0.3 (b) f = 0.2, α = 0.0, 0.1, 0.2

(c) f = 0.3, α = 0.05, 0.15, 0.25, 0.3 (d) f = 0.3, α = 0.0, 0.1, 0.2

(e) f = 0.4, α = 0.05, 0.15, 0.25, 0.3 (f) f = 0.4, α = 0.0, 0.1, 0.2

Figure 10: Comparisons between yield surfaces predicted by new criterions (blue line) and

FEM solutions (circles) with different α and f , green points: exact solution in pure

hydrostatic loading.
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The relative errors between the FEM numerical results and yield surfaces predicted by

the new macroscopic yield criterion (45) are illustrated in Figure 11 and 12 as a function of

macroscopic stress triaxiality T , for different porosity with α = 0.15 and different frictional

parameter with f = 0.15. When −1.33 < T < −4.33 for the compressive loading and

1.83 < T < 0.58 for the tensile loading, one finds the maximal errors.
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Figure 11: Relative errors between the numerical results and yield surfaces given by (45)

with different frictional parameter α, f = 0.15.
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Figure 12: Relative errors between the numerical results and yield surfaces given by (45)

with different porosity f , α = 0.15.
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- Special case for a porous material with a von Mises type marix

It is interesting to consider the special case of the macroscopic yield criterion (45) for

a porous material with a pressure-independent (von Mises type) matrix, α = 0. The yield

function (45) reduces to the following form:

Σ2
eq/σ

2
0

9Z2
1

Z2(1− f )2

+ 2 f cosh

(
3Σm

2σ0

)
− 1 − f 2 = 0 (46)

For the purpose of validation, the yield surfaces predicted by (46) is assessed by the nu-

merical upper and lower bounds [46, 44] and FEM results [6] in Figures 13-15 for different

porosity f = 0.01, 0.064 and 0.1. The theoretical coinsides well with the numerical results,

especially for the hydrostatic and deviatoric loadings. There is a good agrement. The yield

criterion (46) improves the Gurson’s one in deviatoric loading.

Figure 13: Comparisons between the yield surface predicted by 46, numerical bounds

[46](red point: upper bound; green point: lower bound) and FEM numerical results (cross

point) [6], f = 0.01.
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Figure 14: Comparisons between the yield surface predicted by 46, numerical bounds

[46](red point: upper bound; green point: lower bound) and FEM numerical results (cross

point) [6], f = 0.064.

Figure 15: Comparisons between the yield surface predicted by 46, numerical bounds

[44](red point: upper bound; green point: lower bound) and FEM numerical results (cross

point) [6], f = 0.1.
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7. Conclusions

This study has focused on the macroscopic strength function of porous geomaterials

having a D-P matrix. We have provided in depth theoretical and numerical assessments

of main existing criteria derived by different approach. A series of new numerical FEM

solutions with a wide range of porosity and frictional parameter has been carried out in

this work and treated as references for the validations. In particular, the influences of

porosity and frictional parameters on the macroscopic strength have been investigated with

the help of these numerical results. It is found that the macroscopic strength of the existing

criteria for high loads with low triaxiality need to be improved. Especially, the prediction

of deviatoric strength
Σeq

σ0
in pure shear loading are fully studied. Based on the theoretical

and numerical assessments, a new value is derived in this work for the studied materials by

using the SVH approach with strict statically admissible stress fields. Taking advantage of

these comparisons, a new approximated yield criterion is established. It demonstrates that

this yield criterion clearly improves the analytical predictions of previous criteria, and also

for the special case for the porous material with von Mises type matrix.
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Appendix A. Recapitulation of the existing macroscopic criteria of porous ma-

terial with Drucker-Prager matrix
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Recapitulation of the existing macroscopic criteria of porous material with Drucker-Prager matrix

Reference Criterion Method E. S.(Σeq = 0)
Σeq

σ0
(Σm = 0) Pore Flow rule

Lazzeri and Bucknall(1993)[23] Eq. (3) Modification of Gurson’s criterion × 1 − f Sphere Associated

Jeong and Pan(1995) [21] Eq. (4) Based on some special cases T-
√

, C-× 1 − f Sphere Associated

Al-Abduljabbar and Pan (1999)[1] Eq. (5) Modification based on Eq.(4) T-
√

, C-× 1 − f Sphere Associated

Jeong (2002)[20] Eq. (7) Based on some special cases
√

1 − f Sphere Associated

Barthélémy and Dormieux(2003)[3] Eq. (8) Modified secant method ×
1− f√
1+ 2

3 f
Sphere Associated

Guo et al.(2008) [16] Eq. (9) Limit analysis approach
√

1 − f Sphere Associated

Guo et al.(2008) [16] Eq. (11) Based on some special cases
√

1 − f Sphere Associated

Durban et al.(2010)[13] Eq. (12) Expanding yield function in powers of f
√

1 − f Sphere Associated

Cheng et al.(2013)[8] Eq. (13) Stress variational method
√

1 − f Sphere Associated

Shen et al.(2017) [37] Eq. (14) Limit analysis approach × 1 − f Spheroid Associated

Shen et al.(2017) [37] Eq. (15) Special case of Eq. (14)
√

1 − f Sphere Associated

Maghous et al.(2009)[24] Eq. (8) Modified secant method ×
1− f√
1+ 2

3 f
Sphere Non-Associated

Cheng et al.(2015)[9] Eq. (18) Bipotential based limit analysis
√

1 − f Sphere Non-Associated
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Appendix B. Parameters used in the macroscopic criterion (14)

The parameters used in the equation (14):



Υ =
α

(1 − f )
, τ =

Υ

1 − Υ(3α2 − 1) Σq

σ0

Ψ =

(3α2 − 1) Σq

σ0
+ τ(3α2 − 1)2 Σ2

eq

σ2
0
−

3(1− f ) Σm
σ0

(1− f )−3α Σm
σ0

τ(3α2 − 1)
(
Υ(3α2 − 1)( η(3α2−1)

3 − 1)(Σ2
eq

σ2
0
−

Σ2
q

σ2
0
) − Σq

σ0

)
− 1

< = 1 − ΨΥ(
η(3α2 − 1)

3
− 1), Σs =

Ψη

3 − 3Υ(3α2 − 1) Σq

σ0

Σq = Σ : Q

Γ =
(3α2 − 1) Σq

σ0
+ τ(3α2 − 1)2 Σ2

eq

σ2
0

+
2α+sgn(Σm)

2α ln
[
1 − 3αΣm

σ0
∆
]

sgn(Σm)

τ(3α2 − 1)
(
Υ(3α2 − 1)( η(3α2−1)

3 − 1)(Σ2
eq

σ2
0
−

Σ2
q

σ2
0
) − Σq

σ0

)
− 1

∆ =
1+sgn(Σm)

2 +
(

1
1−ζ − η

)
1−sgn(Σm)

2

(B.1)

p2 =
3
2

(1 + g)( f + g)
f (1 − f )

{
6
[
α1(1 − α1) − fα2(1 − α2)

]
+ 2

[
(1 − α1) − f (1 − α2)

]}
(B.2)

η =
9(1 + g)( f + g)(α2 − α1)

p2(1 − f )
(B.3)

ζ =
9(1 + g)( f + g)(α2 − α1)2

p2(1 − f )2 (B.4)

χ =
4

3α1 − 1
(B.5)

w =
2(1 + g)( f + g)(α2 − α1)

χg(1 − f )
(B.6)

α(e) =


1 − e2

e3 arctanh {e} −
1 − e2

e2

−

√
1 − e2

e3 arctan
{

e
√

1−e2

}
+

1
e2

β(e) =


(1 − 3α) 1

e2 (prolate)

−(1 − 3α) 1−e2

e2 (oblate)

(B.7)

where α1 = α(e1), α2 = α(e2) and β1 = β(e1), β2 = β(e2).
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Appendix C. Parameter used in the macroscopic criterion (18)

The parameters ΠC0 , ΠDe , Π̂C0 , Π̂De and γ̃ are given as:

P =2 F1

(
−

1
2
,−

s̃
2

; 1 −
s̃
2

;−τ2
)
− f 2F1

(
−

1
2
,−

s̃
2

; 1 −
s̃
2

;−
τ2

f 2/s̃

)
(C.1)

ΠC0 =
τ

s̃/2 − 1

[
2F1

(
1
2
, 1 −

s̃
2

; 2 −
s̃
2

;−τ2
)
− f 1−2/s̃

2F1

(
1
2
, 1 −

s̃
2

; 2 −
s̃
2

;−
τ2

f 2/s̃

)]
(C.2)

ΠDe =2 F1

(
1
2
,−

s̃
2

; 1 −
s̃
2

;−τ2
)
− f 2F1

(
1
2
,−

s̃
2

; 1 −
s̃
2

;−
τ2

f 2/s̃

)
(C.3)

Π̂C0 = ΠC0 +
3αΣm

σ0

1 − f γ

(
f γ

s
IC0 − ΠC0

)
(C.4)

Π̂De = ΠDe +
3αΣm

σ0

1 − f γ

(
f γ

s
IDe − ΠDe

)
(C.5)

IC0 =
2τ

s̃/s − 2

[
2F1

(
1
2
, 1 −

s̃
2s

; 2 −
s̃

2s
;−τ2

)
− f 1/s−2/s̃

2F1

(
1
2
, 1 −

s̃
2s

; 2 −
s̃

2s
;−

τ2

f 2/s̃

)]
(C.6)

IDe = s
[

2F1

(
1
2
,−

s̃
2s

; 1 −
s̃
2

;−τ2
)
− f

1
s 2F1

(
1
2
,−

s̃
2s

; 1 −
s̃

2s
;−

τ2

f 2/s̃

)]
(C.7)

τ =
2C0

s̃De
, s̃ = 1 + 2εβ, γ̃ =

2εβ
1 + 2εβ

(C.8)

Appendix D. Evaluations of the existing yield criteria by FEM results with dif-

ferent f and α
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(a) f = 0.1, α = 0.05 (b) f = 0.1, α = 0.1

(c) f = 0.1, α = 0.15 (d) f = 0.1, α = 0.2

(e) f = 0.1, α = 0.25 (f) f = 0.1, α = 0.3

Figure D.16: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line and FEM solutions with different α, f = 0.1.
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(a) f = 0.15, α = 0.05 (b) f = 0.15, α = 0.1

(c) f = 0.15, α = 0.15 (d) f = 0.15, α = 0.2

(e) f = 0.15, α = 0.25 (f) f = 0.15, α = 0.3

Figure D.17: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line and FEM solutions with different α, f = 0.15.
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(a) f = 0.2, α = 0.05 (b) f = 0.2, α = 0.1

(c) f = 0.2, α = 0.15 (d) f = 0.2, α = 0.2

(e) f = 0.2, α = 0.25 (f) f = 0.2, α = 0.3

Figure D.18: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line, (13)-orange line and FEM solutions with different α, f = 0.2.
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(a) f = 0.3, α = 0.05 (b) f = 0.3, α = 0.1

(c) f = 0.3, α = 0.15 (d) f = 0.3, α = 0.2

(e) f = 0.3, α = 0.25 (f) f = 0.3, α = 0.3

Figure D.19: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue

line, (9)-red solid line, (11) with Θ1- red dashdot line, (11) with Θ2-red dash line,

(12)-green line, (15)-blue line and FEM solutions with different α, f = 0.3.
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Français de Mécanique, Bordeaux, 2013.
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