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In civil engineering and petroleum engineering, most materials are porous media with a high porosity. Elastic properties, plastic deformation and failure strength of porous materials are inherently affected by the porosity and the presence of fluid phases. Therefore, there are two main objectives in mechanics of porous media, which can be either separately or simultaneously investigated. The first one is the determination of an accurate macroscopic strength criterion or plastic yield surface for dry porous materials without fluid phases by taking into account the effect of porosity. The second one is to study the effects of fluid phases such as fluid pressures, saturation degree, etc. Different kinds of approaches can be adopted to investigate these two aspects, mainly including macroscopic phenomenological models and micro-mechanics based models. The objective of the present paper is to address the first objective by using micro-mechanics based approaches, more precisely, the determination of macroscopic strength criteria of dry porous materials by using nonlinear homogenization techniques. Around this objective, a series of studies have been performed during several decades. For pressure-independent metal porous materials, the solid phase is generally represented by the von Mises type material. The pioneer's work has been realized by [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF]. An analytical strength criterion has been obtained by considering a hollow sphere and by using a limit analysis method. In order to better fit experimental evidences and numerical results, a number of extensions of this criterion have been proposed. For example, by introducing some heuristic modifications of the Gurson's criterion [START_REF] Tvergaard | Influence of voids on shear bands instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Material failure by void coalescence in localized shear bands[END_REF], the so-called GTN (Gurson-Tvergaard-Needelman) model has been established and it is now widely used for metal materials. In some recent criteria [START_REF] Monchiet | A Gurson-type model accounting for void size effects[END_REF][START_REF] Monchiet | Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials[END_REF][START_REF] Brach | Nanoporous materials with a general isotropic plastic matrix: Exact limit state under isotropic loadings[END_REF], the effect of pore size has been taken into account. Two populations of voids at different scales have even been considered in other criteria [START_REF] Vincent | Ductile damage of porous materials with two populations of voids[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations[END_REF]. The effect of void shape has also been studied [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric oblate ellipsoidal cavities[END_REF][START_REF] Keralavarma | A constitutive model for plastically anisotropic solids with non-spherical voids[END_REF][START_REF] Monchiet | Macroscopic yield criteria for ductile materials containing spheroidal voids: An eshelby-like velocity fields approach[END_REF]. Associated with specific voids nucleation and growth criteria, analytical strength criteria have been used for the analysis of ductile failure in metal materials.

As a fundamental difference with metal materials, due to internal friction, porous geomaterials as well as some polymers are generally constituted of a pressure-dependent solid matrix. The strength under compression is significantly larger than that under tension. Therefore, it is needed to develop new criteria to describe the macroscopic strength of this class of porous materials by taking into account the pressure sensitivity of solid matrix. Some heuristic macroscopic criteria have first been formulated [START_REF] Lazzeri | Dilatational bands in rubber toughened polymers[END_REF][START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF][START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF]. Concerning the use of homogenization techniques to determine the macroscopic strength criteria, due to its simple linear function, the Drucker-Prager criterion is widely adopted to characterize the local strength of solid phase. For instance, some analytical criteria have been obtained by the limit analysis approach [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF][START_REF] Shen | Approximate macroscopic yield criteria for druckerprager type solids with spheroidal voids[END_REF], by the modified secant method [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF]. Some other methods have also been proposed, for example by expending the yield function in powers of porosity [START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF], and by adopting a stress variational method [START_REF] Cheng | Approche variationnelle en contraintes du critère macroscopique d'un milieu poreux ductile ayant une matrice de drucker-prager. 21ème Congrès Français Mécanique[END_REF]. By using these analytical criteria as yield functions and introducing suitable hardening laws, different plastic models have been established to describe full stress-strain relations of rocks and concrete materials. Further, by adopting a two-step homogenization procedure, some analytical strength criteria and plastic models have been developed for materials containing pores at a small scale and rigid inclusions at a large scale [START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF][START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF][START_REF] He | Strength properties of a drucker-prager porous medium reinforced by rigid particles[END_REF][START_REF] Bignonnet | Strength of a matrix with elliptic criterion reinforced by rigid inclusions with imperfect interfaces[END_REF]. Some authors have also studied double porous materials with small and big pores and pressure-sensitive solid phase [START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF][START_REF] Shen | An elastic-plastic model for porous rocks with two populations of voids[END_REF][START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF][START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF].

On the other hand, although not investigated in this paper, a series of interesting studies have been performed to investigate the effects of pore fluids on the macroscopic mechanical behavior of rocks and soils, for instance [START_REF] Salomoni | 3d subsidence analyses above gas reservoirs accounting for an unconventional plasticity model[END_REF][START_REF] Schrefler | Mechanics of Partially Saturated Porous Media[END_REF][START_REF] Simoni | Elastoplastic subsidence models with and without capillary effects[END_REF][START_REF] Yurtdas | Triaxial mechanical behaviour of mortar: Effects of drying[END_REF][START_REF] Xie | Experimental investigation and poroplastic modelling of saturated porous geomaterials[END_REF][START_REF] Alonso | A constitutive model for partially saturated soils[END_REF]. Those previous studies provide a sound background for the extension of strength criteria for dry porous materials to saturated or partially saturated conditions.

In spite of different existing studies around the determination of macroscopic criteria of dry porous materials by micro-mechanics based approaches, there is a need to make a detailed evaluation of representative existing criteria. Further, the accuracy of most existing criteria is not really satisfactory compared with reference results obtained from direct numerical simulations. Therefore, two main objectives are given to this work. The first one is to make an in-depth evaluation of selected existing analytical criteria by making original theoretical comparisons between them. On the other hand, new numerical results are provided in this study by making direct finite element simulations. These numerical results are used to check the accuracy of the selected criteria. In particular, the estimation of the pure shear strength Σ eq σ 0 is discussed in depth. Based on the theoretical and numerical evaluations, a new macroscopic strength criterion is determined. The new criterion significantly improves the prediction of the pure shear strength with respect to all the selected criteria. Furthermore, this new criterion is validated by new numerical results for a wide range of porosity and frictional parameter, also for the special case with a pressure-independent matrix.

Theoretical evaluation of main macroscopic criteria

In the section, we present a theoretical evaluation of the main exiating representative macroscopic criteria for porous media whose solid phase obeys to the Drucker-Prager (D-P) model. For this purpose, we first recall some common background features for these models.

At the microscale, the matrix is described by the following D-P criterion:

Φ(σ) = σ eq + 3ασ m -σ 0 ≤ 0 (1) 
in which σ m = trσ/3 and σ eq = 3 2 σ : σ , σ is the deviatoric part of the local stress σ. α and σ 0 are material parameters, the frictional coefficient and the strength in the case of purely shear loading, respectively.

According to [START_REF] Salençon | An introduction to the yield theory and its applications to soil mechanics[END_REF], the support function π(d ) of the D-P matrix described by equation

(1) at the microscopic scale can be calculated as follows:

π(d ) =              σ 0 α d m if d m ≥ αd eq +∞ if d m < αd eq ( 2 
)
where d is the strain rate, d m = tr(d )/3 and d eq = 2 3 d : d . By considering either the normality rule or the non-associated one for the solid matrix, we shall obtain two different categories of macroscopic strength criteria, that are respectively discussed in the following sub-sections.

Porous materials with associated flow solid matrix

In the first case of an associated flow rule in matrix at the microscale, we consider here two types of void shape, respectively spherical void and spheroidal void.

Porous materials with spherical void

• Heuristic criterion proposed by [START_REF] Lazzeri | Dilatational bands in rubber toughened polymers[END_REF] The von Mises criterion is modified by adding a main stress related term: Φ(σ) = σ 2 eq -(σ 0 -3ασ m ) 2 = 0, which is the particular case of Drucker-Prager criterion [START_REF] Al-Abduljabbar | Numerical analysis of notch-tip fields in rubber-modified epoxies[END_REF]. Based on the expression of the Gurson's criterion, a heuristic extension of the Gurson's criterion is there proposed:

Σ 2 eq σ 2 0 + 3α Σ m σ 0 2 -3α Σ m σ 0 + 2 f cosh 3Σ m 2σ 0 -1 -f 2 = 0 (3) 
• Criterion proposed by [START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF] and [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] based on some special cases

In [START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF], the hydrostatic tensile strength of the studied porous material with Drucker-Prager matrix has been derived:

Σ m σ 0 = 1-f 2α 2α+1
3α . Taking into account some special conditions, f → 0 and α → 0, a macroscopic criterion was given in [START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF]:

Σ eq + 3αΣ m σ 0 2 + 2 f cosh 1 + α 2α ln 1 -3α Σ m σ 0 -1 -f 2 = 0 (4) 
This criterion was good for the positive mean stress domain but not suitable for the compressive domain. Therefore, [START_REF] Al-Abduljabbar | Numerical analysis of notch-tip fields in rubber-modified epoxies[END_REF] has proposed the following function for the compressive mean stress domain:

Σ eq + 3αΣ m σ 0 2 + 2 f -1 -f 2 = 0 (5) 
This criterion [START_REF] Brach | Nanoporous materials with a general isotropic plastic matrix: Exact limit state under isotropic loadings[END_REF] does not provide the exact hydrostatic compression strength. An amelioration was done in [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] by calculating the exact hydrostatic tensile and compression strengths as follows:

Σ m σ 0 = 1 -f 2α/(2α+sign(Σ m )) 3α (6) 
Then, another improved macroscopic criterion was established in [START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF]:

        Σ eq σ 0 1 -3α Σ m σ 0         2 + 2 f cosh 1 + sign(Σ m )2α 2α ln 1 -3α Σ m σ 0 -1 -f 2 = 0 (7) 
• Criterion derived in [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF] with the modified secant method By adopting the modified secant method, [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF] has obtained an explicit expression of macroscopic strength function for the studied porous materials. The original criterion is rewritten here by using the same variables as in other criteria:

1 + 2 3 f Σ 2 eq σ 2 0 + 9 4 f -9α 2 Σ 2 m σ 2 0 + 6α(1 -f ) Σ m σ 0 -(1 -f ) 2 = 0 (8) 
• Criterion established by limit analysis approach [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF] By choosing a hollow sphere as the representative elementary volume with a uniform strain rate boundary condition, the following implicit macroscopic function Φ(Σ eq ( ), Σ m ( )) is first derived by [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF] in the framework of limit analysis:

Σ eq σ 0 = f γ -f f γ -f + α∂ /∂C 0 ∂ ∂D e 3 Σ m σ 0 = 1 -f f γ -f + α∂ /∂C 0 ∂ ∂C 0 (9) 
where = 2C 0 sD e ranges from -∞ to ∞, s = 1 ± 2α, γ = 1s -1 . The parameters ∂F ∂D e and ∂F ∂C 0 are given as functions of Gauss hypergeometric function ( 2 F 1 (a, b; c; z)):

             ∂ ∂C 0 = s/2-1 2 F 1 ( 1 2 , 1 -s 2 ; 2 -s 2 ; -2 ) -f 1-2/s 2 F 1 ( 1 2 , 1 -s 2 ; 2 -s 2 ; - 2 f 2/s ) ∂ ∂D e = 2 F 1 ( 1 2 , -s 2 ; 1 -s 2 ; -2 ) -f 2 F 1 ( 1 2 , -s 2 ; 1 -s 2 ; - 2 f 2/s ) (10) 
This model is called "Upper bound model" (UBM) by the authors. For the purpose to establish an explicit expression of the overall yield function, the authors have considered some particular cases. An approximate function has been derived in [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF]:

        Σ eq σ 0 Θ         2 + 2 f cosh sign(Σ m ) + 2α 2α ln 1 -3α Σ m σ 0 -1 -f 2 = 0 (11)
in which two expressions of Θ are provided in [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF]:

Θ 1 = 1 -3α (1-f ) 1-s/2 Σ m σ 0 and Θ 2 = 1 - 3α 1+γ ln(1+s f ) Σ m σ 0 .
• Criterion obtained by expending yield criterion in powers of porosity f [START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF] Another approach is used in [START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF]. The derivation is based on expending the yield criterion in powers of porosity f . The local yield criterion of the matrix is found when the zero order is given. Taking the second order power expansion, a macroscopic criterion is obtained:

Σ 2 eq σ 2 0 -(1 -3α Σ m σ 0 ) 2 + 2 f (1 -3α Σ m σ 0 ) cosh 1 2α ln 1 -3α Σ m σ 0 -f 2 = 0 (12) 
• Criterion given by [START_REF] Cheng | Approche variationnelle en contraintes du critère macroscopique d'un milieu poreux ductile ayant une matrice de drucker-prager. 21ème Congrès Français Mécanique[END_REF] based on a stress variational method

In the study [START_REF] Cheng | Approche variationnelle en contraintes du critère macroscopique d'un milieu poreux ductile ayant une matrice de drucker-prager. 21ème Congrès Français Mécanique[END_REF], the macroscopic criterion is derived by using a stress-based approach called stress variational method. With a stress field which is not totally statically admissible, one gets the following effective yield function:

Σ eq σ 0 (1-f ) 2 F 1 (-1 2 , -1 2w ; 1 -1 2w , -2 ) -f 2 F 1 (-1 2 , -1 2w ; 1 -1 2w , - 2 f 2w ) + 3α Σ m σ 0 -(1 -f ) ≤ 0 (13) in which = 3w(1-f ) 2(1-f -w ) Σ m
Σ eq , w = 2α/(2α ± 1).

Porous materials with spheroidal void [37]

The above existing yield criteria are for porous material with a D-P matrix and spherical pore. Some contributions have been done to study the influence of pore shape on the plastic yield surface. The spheroidal pores (oblate or prolate) have been considered. Considering a representative volume elements made up of a spheroidal domain containing a spheroidal confocal void and a suitable velocity field, an approximate macroscopic criterion is established in the following form by the limit analysis approach:

2               Σ 2 eq σ 2 0 + τ(3α 2 -1) Σ 2 eq σ 2 0 + Σ s Θ + Σ q σ 0 2 + (ζ -1) Σ 2 q σ 2 0 1 -ζ               +2(1+g)( f +g)cosh Γ p -(1+g) 2 -( f +g) 2 = 0 (14)
where the parameters used in criterion [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric prolate ellipsoidal cavities[END_REF] are given in Appendix B.

In the case of spherical void, the function ( 14) can be simplified as:

Σ 2 eq σ 2 0 1 -3α (1-f ) Σ m σ 0 2 + 2 f cosh 2α + sgn(Σ m ) 2α ln(1 -3α Σ m σ 0 ) -1 -f 2 = 0 (15)

Porous media having a non-associated D-P matrix

On the other hand, some researchers have studied the influence of non-associated flow rule of the matrix on the overall mechanical behavior, such as macroscopic yield function and plastic potential.

• Macroscopic criterion and plastic potential proposed by [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] By adopting a non-associated flow rule for the D-P type matrix, the work in [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF] has been extended in [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] with a local plastic potential:

φ(σ) = σ eq + 3βσ m ( 16 
)
where β denotes the plastic dilatancy coefficient with 0 ≤ β ≤ α < 1 2 . However, the macroscopic yield function with a non-associated D-P matrix obtained in [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] remains identical to the one [START_REF] Cheng | Approche variationnelle en contraintes du critère macroscopique d'un milieu poreux ductile ayant une matrice de drucker-prager. 21ème Congrès Français Mécanique[END_REF] given by [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF] with an associated D-P matrix. This yield function is independent of the dilatancy coefficient β. However, it is possible to determine a macroscopic plastic potential which depends on β:

G = 1 + 2 3 f Σ 2 eq σ 2 0 + 9 4 f -9αβ Σ 2 m σ 2 0 + 6β(1 -f ) Σ m σ 0 (17) 
• Macroscopic criterion proposed by [START_REF] Cheng | A bipotential-based limit analysis and homogenization of ductile porous materials with non-associated drucker-prager matrix[END_REF] A hollow sphere having a non-associated D-P matrix has been investigated in [START_REF] Cheng | A bipotential-based limit analysis and homogenization of ductile porous materials with non-associated drucker-prager matrix[END_REF]. The bi-potential theory proposed by [START_REF] Saxcé | New inequality and functional for contact friction: the implicit standard material approach[END_REF][START_REF] Saxcé | Une généralisation de l'inégalité de fenchel et ses applications aux lois constitutives[END_REF][START_REF] Saxcé | On the extension of limit analysis theorems to the non-associated flow rules in soils and to the contact with coulomb's friction[END_REF][START_REF] Hjiaj | A complete stress update algorithm for the non-associated drucker-prager model including treatment of the apex[END_REF] has been adopted to extend the limit analysis method. Following the minimization procedure and solving the saddle point problem, a macroscopic strength criterion is derived:

                   Σ eq σ 0 = f γ -f β α Π D e + 1 -β α ΠD e + 1 -β α β Π C 0 ΠD e -Π D e ΠC 0 f γ -f + βΠ C 0 3 Σ m σ 0 = (1 -f ) β α Π C 0 + 1 -β α ΠD e f γ -f + βΠ C 0 (18)
The parameters Π C 0 , Π D e , ΠC 0 , ΠD e , P(τ) and γ are given in Appendix C.

For a general loading, the yield strength in the non associated case is slight lower than the one in associated case in the compressive loading. There is no great different in the tensile loading.

Recapitulation of the existing macroscopic criteria

For the purpose of clarity, the selected macroscopic yield functions for porous media having a D-P matrix are recapitulated in Appendix A with the corresponding derivation method used. When the pores are spherical, the exact solutions of strength for hydrostatic tension and compression can be retrieved by the criteria ( 7), ( 9), ( 11), ( 12), ( 13), ( 15) and [START_REF] He | Strength properties of a drucker-prager porous medium reinforced by rigid particles[END_REF]. Concerning the pure deviatoric loading (Σ m = 0), the value of Σ eq σ 0 given by ( 8) with the modified secant method is 1-f √

1+ 2 3 f
, which is different from the value of (1f ) obtained in all other criteria.

Evaluations and comparisons of yield criteria by new FEM numerical results

Based on the summary of the main existing macroscopic yield criteria, it is therefore interesting and important to evaluate their accuracies. To this end, a series of new numerical results are carried out in this study by FEM method. This numerical method will be firstly evaluated by comparing with numerical limit analysis results.

Verification of finite element simulation

The representative volume element of porous material is here represented by a hollow sphere. Due to its axi-symmetric property, only a quarter of the hollow sphere is considered and it is meshed with 900 quadratic quadrilateral elements of type CAX8 and with 2821 nodes in Abaqus software, as illustrated in Figure 1(a) for the case f = 0.1. The solid matrix obeys the Drucker-Prager plastic criterion [START_REF] Al-Abduljabbar | Numerical analysis of notch-tip fields in rubber-modified epoxies[END_REF]. With the assumption of small strains, the displacement velocity field is prescribed on the exterior boundary of the hollow sphere. A user subroutine MPC (Multi-Points Constraints) is used in this study for the loading condition with a constant macroscopic stress triaxiality T = Σ m /Σ eq , which is realized by calculating the constant stress ratio Σ ρ /Σ z as the one done in [START_REF] Cheng | Void interaction and coalescence in polymeric materials[END_REF][START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF].

In Figures 1(b) and 1(c), we compare the finite element results with the numerical bounds proposed in [START_REF] Pastor | 3d-fem formulations of limit analysis methods for porous pressuresensitive materials[END_REF], by employing the limit analysis and a second order conic programming. The porosity selected is f = 0.1, the frictional parameter are α = 0.1/3, 0.83205/3, respectively. The red points are the upper bounds and the green ones are the lower bounds. The asterisks present the FEM results. The black solid ones are the hydrostatic values given by [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF]. In these figures, the red points are very close to the green ones which indicates that they are approach to the exact solution. On the other hand, the FEM results are also very close to the numerical bounds and have a good accuracy. Figure 1(d) presents the case of a spheroidal void (oblate a 1 /b 1 = 1/2) for porosity f = 0.1 with different friction angles. Again, the FEM solutions are well framed by the lower and upper bounds. According to the comparisons for these two different cases, the finite element simulations are well validated and these numerical solutions will be adopted to evaluate the above selected analytical yield criterion. [START_REF] Pastor | 3d-fem formulations of limit analysis methods for porous pressuresensitive materials[END_REF] (spherical pore, -b and -c) and by [START_REF] Pastor | Limit analysis and lower/upper bounds to the macroscopic criterion of drucker-prager materials with spheroidal voids[END_REF] (spheroidal pore -d: a 1 /b 1 = 1/2).

Assessment of analytical criteria by new numerical solutions

The macroscopic criteria are now assessed and evaluated through the comparison with FEM results. For this purpose, we consider a wide range of porosity f = 0.04, 0.1, 0.15, 0.2, 0.3, 0. One can see that all the criteria except ( 8) are very close to each other when the porosity f and frictional parameter α are small. The exact solution when Σ eq = 0 cannot be retrieved by [START_REF] Cheng | Approche variationnelle en contraintes du critère macroscopique d'un milieu poreux ductile ayant une matrice de drucker-prager. 21ème Congrès Français Mécanique[END_REF]. However, the value

Σ eq σ 0 predicted in (8), 1-f √ 1+2 f /3
, is closer to the FEM results than that, (1f ), given by the other criteria when the porosity f is small. Nevertheless, these two analytical values of

Σ eq
σ 0 are all very different from the FEM results when f > 0.15. This point about the value of Σ eq σ 0 for Σ m = 0 will be especially studied in depth in the following section.

The yield surface (black line) predicted by the criterion [START_REF] Cheng | Void interaction and coalescence in polymeric materials[END_REF] proposed in [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] coincides well with the one (green line) [START_REF] Saxcé | New inequality and functional for contact friction: the implicit standard material approach[END_REF] given in [START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF] when f < 0.2. In the case of f > 0.2, there is a good agreement between (12) (green line) and (9) (red solid line).

In the tension zone, the analytical criteria have a good prediction comparing with FEM results. However, the prediction of the criterion (15)(blue line) is closer to FEM solutions than other ones. In the compressive zone, the strength surfaces predicted by [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric oblate ellipsoidal cavities[END_REF] and [START_REF] Saxcé | On the extension of limit analysis theorems to the non-associated flow rules in soils and to the contact with coulomb's friction[END_REF] with Θ 1 are always outside of the FEM results.

It is worth to mention that the criterion (9) (red solid line) underestimates the strength when the frictional parameter α is big, for example, α = 0.2, 0.25, 0.3. This observation also confirms the remarks made in some previous studies [START_REF] Thoré | Closed-form solutions for the hollow sphere model with coulomb and drucker-prager materials under isotropic loadings[END_REF][START_REF] Pastor | Limit analysis and numerical modeling of spherically porous solids with coulomb and drucker-prager matrices[END_REF][START_REF] Thoré | Hollow sphere models, conic programming and third stress invariant[END_REF][START_REF] Pastor | 3d-fem formulations of limit analysis methods for porous pressuresensitive materials[END_REF]. The so-called "upper bound model" (parametric criterion (9)) is not a rigorous upper bound, however, it is a good approximation.

The relative errors 1 between the FEM numerical results and the predictions given by 1 The relative error is calculated by the following formula:

Relative error (X) = | X predicted by criterion -X given by Abaqus X given by Abaqus | • 100%

Two stress values (Σ m and Σ eq ) are considered in each point, respectively by putting X = Σ m for the relative error of macroscopic mean stress and X = Σ eq for the one of macroscopic equivalent stress. The smaller one these macroscopic criteria are illustrated in Figure 4 for different cases with f = 0.2, α = 0.15, f = 0.2, α = 0.3 and f = 0.4, α = 0.15, as functions of macroscopic stress triaxiality T = Σ m /Σ eq . In a general way, according to the comparisons between analytical predictions and FEM results, it seems that the criterion (11) with Θ 2 and the one (12) provide the most accuracy estimation of material strength.

of both is then chosen to plot the relative error maps. 
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Numerical investigation of the strength prediction in pure shear loading

As indicated in the previous section, two different values of shear strength Σ eq σ 0 are provided by the selected criteria when

Σ m σ 0 = 0: 1-f √ 1+ 2 3 f
by [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] and (1f ) by the other ones. Both values depend on the porosity f . However, the influence of the frictional parameter α on the shear strength Σ eq σ 0 when Σ m σ 0 = 0 is so far not explicitly studied. In this study, this issue is investigated by direct FEM simulations. We consider then different porosity and frictional parameter: f = 0.04, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and α = 0, 0.1, 0.2, 0.3, 0.4, 0.49.

As shown in Figure 5, the porosity affects importantly the pure shear strength. The increase of porosity leads to a quick decrease of Σ z -Σ ρ σ 0 . Due to the influence of third stress invariant, the strength of the studied parous material is not symmetric with respect to

Σ z -Σ ρ σ 0 .
When Σ z -Σ ρ > 0, the frictional coefficient α has a slight influence. However, this influence can be neglected for Σ z -Σ ρ < 0. As for all the analytical criteria selected here, the quantity

Σ eq σ 0 = |Σ z -Σ ρ | σ 0
is independent of α. Therefore, we present here the FEM results for Σ z -Σ ρ < 0 only. We compare now the numerical values of pure shear strength Σ eq σ 0 with two theoretical predictions:

(1 -f ) and 1-f √ 1+ 2 3 f
. The comparisons are presented on Figure 6. One can see that the value (1f ) is always over the FEM results and represents a sort of upper bound.

For small or very big values of porosity f , the value σ 0 given by existing criteria and the one of FEM for pure deviatoric loading ( Σ m σ 0 = 0): Dashed line:

1-f √ 1+2 f /3
given by [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF]; Solid line : (1f ) given by other criteria.

Theoretical improvement of the strength prediction in pure shear loading

Based on the above comparisons, some new improvements will be provided firstly to ameliorate the performance in pure shear loading for porous media having a D-P matrix. For this purpose, the stress variational homogenization method will be used with a statically admissible stress field which will be constructed in this work.

Brief recall of stress variational approach

The stress variational approach was proposed in [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF][START_REF] Shen | Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field[END_REF][START_REF] Shen | An approximate strength criterion of porous materials with a pressure sensitive and tension-compression asymmetry matrix[END_REF], and its main lines are here briefly recalled. In this study, the matrix is pressure-sensitive and obeys to the local yield critetion (1), a statically admissible stress field will be constructed for this material to derive a macroscopic yield criterion with the effect of porosity.

According to the normality law, the strain rate tensor d is given as:

d = λ ∂Φ ∂σ (σ) (19) 
in which λ is the plastic multiplier.

Then the Hill's inequality can be expressed as:

∀σ ∈ P, (σ -σ) : d ≤ 0 , ( 20 
)
where P is the plastic bound defined by the local yield criterion [START_REF] Al-Abduljabbar | Numerical analysis of notch-tip fields in rubber-modified epoxies[END_REF].

According to the local stress and strain (σ and d), the macroscopic ones (Σ and D) can be computed by the homogenisation approach:

Σ = 1 | Ω | Ω σ dV , D = 1 | Ω | Ω d dV . ( 21 
)
Based on the conception on convex analysis, a semi-continuous function ϕ(σ) is introduced as follows: which is 0 if σ ∈ P and +∞ otherwise.

Then, the condition ( 20) can be rewritten as: d ∈ ∂ϕ(σ).

According to the Hill's variational principle, the true stress field minimizes the following functional among all the statically admissible stress fields g a :

Ω M ϕ(σ) dV - S u (σ.n).v dS (22) 
g a = {σ : div σ = 0, x ∈ Ω; σ • n = 0, x ∈ ∂ω; σ = 0, x ∈ ω} (23)
in which n is the unit outward normal vector, v is the imposed velocity on the boundary S u of Ω M . For the studied homogenization problem of a hollow sphere with a boundary condition v(x) = D.x, the set of kinematically admissible velocity fields classically reads:

K a = {v s.t. v(x) = D • x on ∂Ω} (24) 
Then one gets the following average functional:

min σ∈g a 1 | Ω | Ω M ϕ(σ) dV -D : Σ (25)
When the stress σ is licit, the functional ϕ(σ) is vanishes. Then, the following minimization problem can be derived from [START_REF] Monchiet | A Gurson-type model accounting for void size effects[END_REF] for the studied materials with condition Φ(σ) = 0:

min σ∈g l (-D : Σ) ( 26 
)
where g l = {σ ∈ g a : Φ(σ) ≤ 0, x ∈ Ω M }; g a is the group of statically admissible which is given in [START_REF] Lazzeri | Dilatational bands in rubber toughened polymers[END_REF].

With the help of the Lagrangian method and the approximation of the condition Φ(σ) = 0 by its average value, the above minimization problem can be rewritten as:

max Υ≥0 min σ∈g a L(σ, Λ) = 1 | Ω | Ω M ΛΦ(σ) dV -D : Σ (27)
in which Λ is the Lagrange's multiplier. By adopting the same value of Λ in the matrix, the searched overall yield criterion can be calculated as follows:

F(Σ) = 1 | Ω | Ω M Φ(σ) dV = 0 (28)

Construction of a strict statically admissible field for a D-P type matrix

Based on the general expression of the macroscopic yield criterion ( 28), the following important step is the construction of a strict statically admissible field σ as a function of macroscopic stress. According to [START_REF] Shen | Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field[END_REF], a suitable trial stress field could be established and given with three parts: σ = σ 1 + σ 2 + σ 3 , which improves the one used in [START_REF] Cheng | Approche variationnelle en contraintes du critère macroscopique d'un milieu poreux ductile ayant une matrice de drucker-prager. 21ème Congrès Français Mécanique[END_REF] to derive the criterion [START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF].

• The exact solution in hydrostatic loading σ 1

σ 1 = A 1 3α 1 - a r 3w 1 + 3 2 w a r 3w (e θ ⊗ e θ + e φ ⊗ e φ ) (29) 
where w = 2α/(2α + ) and = ±1 for A 1 ≷ 0.

• The deviatoric approximation σ 2 in cylindrical coordinates {e ρ , e ϕ , e z }

σ 2 = A 2 e ρ ⊗ e ρ + e ϕ ⊗ e ϕ -2e z ⊗ e z (30) 
The stress σ 1 satisfies the void boundary condition (σ • n = 0), but the one σ 2 does not. In order to overcome this imperfection, a new term σ 3 is added to ensure that:

σ • n = (σ 1 + σ 2 + σ 3 ) • n = 0.
• The additional local stress field σ 3

σ 3 = S (r) A 2 [1 + 3 cos(2θ)] 1 + K(r) A 2 sin(2θ)(e r ⊗ e θ + e θ ⊗ e r ) (31) 
where S (r) = 

σ m = A 1 3α 1 -a r 3 w (1 -w) + S (r) [1 + 3 cos (2 θ)] A 2 (32) 
σ eq = w 2α 2 a r 6w A 2 1 + 3A 1 A 2 w 4α [1 + 3 cos(2θ)] a r 3w + Z 2 (r, θ)A 2 2 ( 33 
)
where Z 2 (r, θ) = 9 + 3K(r) sin 2 (2θ)(K(r) + 3) . With the relationship between σ and Σ: Σ = 1 Ω Ω σdV, the macroscopic stress tensor takes the following form:

Σ = 1 -f w 3α A 1 1 + Z 1 A 2 (e 1 ⊗ e 1 + e 2 ⊗ e 2 -2e 3 ⊗ e 3 ) (34) 
where

Z 1 = 1 - √ 15 f 25 sin √ 15 6 ln( f ) -f cos √ 15 
6 ln( f ) . The macroscopic mean stress Σ m and the equivalent stress Σ eq can be easily obtained from [START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF]:

Σ m = 1 -f w 3α A 1 , Σ eq = 3Z 1 |A 2 | (35) 
By combining the expressions of ( 32), ( 33) and [START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF], the searched yield function can be computed as:

1 | Ω | Ω M f (σ)dV = 3 4πb 3 b a π 0 2π 0 σ eq (Σ) + 3ασ m (Σ) -σ 0 r 2 sin(θ)dϕdθdr ≤ 0 (36) 
With the expression in [START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF], one can get:

3 4πb 3 b a π 0 2π 0 [3ασ m (Σ) -σ 0 ] r 2 sin(θ)dϕdθdr = 3αΣ m -(1 -f )σ 0 (37) 
Due to the complex of the parameter Z 2 (r, θ) in the term σ eq , it is not easy to get an explicit solution for the part 1

|Ω| Ω M σ eq (Σ)dV in the equation [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF].

For the purpose to facilitate the integral calculation and to get an closed form expression, the parameter Z 2 (r, θ) here is approximated by a constant Z 2 ( f ). To do this, the studied Drucker-Prager criterion of the solid phase will be relaxed as: F(σ) = σ 2 e -σ2 0 = 0, with σ0 = 3ασ m -σ 0 . Then, equation [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF] reduces to: e -σ2 0 )r 2 sin(θ)dϕdθdr ≤ 0 which 20 can be solved analytically. According to the coefficient of parameter A 2 , the approximated parameter Z 2 ( f ) can be calculated:

Z 2 (r, θ) Z 2 ( f ) = 9 1 + 11 25 f -64 75 f ln( f ) -2 f T + 34 375 f U 1 -f U = √ 15 sin √ 15 
3 ln( f ) + 5 cos 

By adopting this simplification, the macroscopic yield function for the studied material can be derived:

√ Z 2 3Z 1 Σ eq σ 0 2 F 1 (-1 2 , -1 2w ; 1 -1 2w , -2 ) -f 2 F 1 (-1 2 , -1 2w ; 1 -1 2w , - 2 f 2w ) + 3α Σ m σ 0 -(1 -f ) ≤ 0 (39) in which = 9wZ 1 2 √ Z 2 ( f -w -1) Σ m
Σ eq , the parameters Z 1 and Z 2 are given in Equations ( 34) and [START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF]. As given in Figure 7, the strength surface predicted by (39) (orange dashed line) is below that given by [START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF]. It is not very precise in the compression zone when the frictional parameter α is high. But its accuracy is good for low values of α. 

New prediction of

Σ eq σ 0 in pure shear loading ( Σ m σ 0 = 0) As shown in Figure 7(a) with f = 0.2, the prediction of Σ eq σ 0 given by the criterion [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF] is between (1f ) and 1-f √

1+ 2 3 f
and coincides well with FEM results. It is then worth to study in depth the value of

Σ eq σ 0 = 3Z 1 √ Z 2
provided by [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF] with different f . Figure 8 illustrates the

comparisons of 3Z 1 √ Z 2 , (1 -f ), 1-f √ 1+ 2 3 f
and FEM results for the full range of porosity 0 < f < 1.

One can see a good agreement between the prediction

Σ eq σ 0 = 3Z 1 √ Z 2
provided by the new criterion and the FEM results. ; Red line : 1f ; Blue line: 3Z 1 √ Z 2 .

A new macroscopic yield criterion and its validation by FEM results

Based on the comparisons between the main existing yield criteria and the new FEM numerical results in section 3 and the new value of Σ eq σ 0 for pure shear loading, a new macroscopic yield criterion will be derived in this section by adopting the strategy used in the [START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF][START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] and [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF] to derive an explicit expression of yield criterion by considering some special cases.

In the hydrostatic loading (Σ eq = 0), the exact solution can be derived [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF], which can be expressed in the following general form:

2 f cosh 2α + sgn(Σ m ) 2α ln(1 -3α Σ m σ 0 ) -1 -f 2 = 0 (40) 
According to [START_REF] Shen | Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field[END_REF], the searched macroscopic yield criterion can be expressed in the following form:

Σ eq /σ 0 B 2 + 2 f cosh 2α + sgn(Σ m ) 2α ln(1 -3α Σ m σ 0 ) -1 -f 2 = 0 (41) 
When the porosity is vanished, the searched macroscopic criterion should be reduced to the local one (1):

Σ eq σ 0 + 3α Σ m σ 0 -1 = 0.
With these conditions, one can get

lim f →0 B = 1 -3α Σ m σ 0 (42) 
In the pure shear loading (Σ m = 0), the new value of

Σ eq σ 0 = 3Z 1 √ Z 2
will be adopted in the new searched criterion. This leads to:

B = 3Z 1 √ Z 2 (1 -f ) , when Σ m = 0 (43) 
As considered in [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF], the searched yield criterion should satisfy the following condition when α = 1 2 and Σ ≤ 0 with the new value of (1-f ) . Based on the comparisons of the existing yield criterion and satisfying the above requirements, a new heuristic macroscopic criterion is proposed in the following form for porous materials with a Drucker-Prager solid matrix and spherical void::

Σ eq σ 0 : Σ 2 eq /σ 2 0 3Z 1 √ Z 2 (1-f ) -3Σ m 2σ 0 (1-f ) 2 + 2 f -(1 + f 2 ) = 0 (44) which means lim α→ 1 2 ,Σ m ≤0 B = 3Z 1 √ Z 2 (1-f ) -3Σ m 2σ 0
        Σ eq σ 0 3Z 1 √ Z 2 (1-f ) - 3α 1+γ ln(1+s f ) Σ m σ 0         2 + 2 f cosh sign(Σ m ) + 2α 2α ln 1 -3α Σ m σ 0 -1 -f 2 = 0 (45) 
This criterion satisfies all the special conditions considered in [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] and [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF].

The new criterion [START_REF] Thoré | Closed-form solutions for the hollow sphere model with coulomb and drucker-prager materials under isotropic loadings[END_REF] is evaluated in The relative errors between the FEM numerical results and yield surfaces predicted by the new macroscopic yield criterion [START_REF] Thoré | Closed-form solutions for the hollow sphere model with coulomb and drucker-prager materials under isotropic loadings[END_REF] are illustrated in Figure 11 and 12 as a function of macroscopic stress triaxiality T , for different porosity with α = 0.15 and different frictional parameter with f = 0.15. When -1.33 < T < -4.33 for the compressive loading and 1.83 < T < 0.58 for the tensile loading, one finds the maximal errors. -Special case for a porous material with a von Mises type marix

It is interesting to consider the special case of the macroscopic yield criterion (45) for a porous material with a pressure-independent (von Mises type) matrix, α = 0. The yield function [START_REF] Thoré | Closed-form solutions for the hollow sphere model with coulomb and drucker-prager materials under isotropic loadings[END_REF] reduces to the following form:

Σ 2 eq /σ 2 0 9Z 2 1 Z 2 (1-f ) 2 + 2 f cosh 3Σ m 2σ 0 -1 -f 2 = 0 (46) 
For the purpose of validation, the yield surfaces predicted by ( 46) is assessed by the numerical upper and lower bounds [START_REF] Trillat | Limit analysis and Gurson's model[END_REF][START_REF] Thoré | Hollow sphere models, conic programming and third stress invariant[END_REF] and FEM results [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF] in Figures 131415for different porosity f = 0.01, 0.064 and 0.1. The theoretical coinsides well with the numerical results, especially for the hydrostatic and deviatoric loadings. There is a good agrement. The yield criterion [START_REF] Trillat | Limit analysis and Gurson's model[END_REF] improves the Gurson's one in deviatoric loading.

Figure 13: Comparisons between the yield surface predicted by 46, numerical bounds [START_REF] Trillat | Limit analysis and Gurson's model[END_REF](red point: upper bound; green point: lower bound) and FEM numerical results (cross point) [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF], f = 0.01. 

Conclusions

This study has focused on the macroscopic strength function of porous geomaterials having a D-P matrix. We have provided in depth theoretical and numerical assessments of main existing criteria derived by different approach. A series of new numerical FEM solutions with a wide range of porosity and frictional parameter has been carried out in this work and treated as references for the validations. In particular, the influences of porosity and frictional parameters on the macroscopic strength have been investigated with the help of these numerical results. It is found that the macroscopic strength of the existing criteria for high loads with low triaxiality need to be improved. Especially, the prediction of deviatoric strength Σ eq σ 0 in pure shear loading are fully studied. Based on the theoretical and numerical assessments, a new value is derived in this work for the studied materials by using the SVH approach with strict statically admissible stress fields. Taking advantage of these comparisons, a new approximated yield criterion is established. It demonstrates that this yield criterion clearly improves the analytical predictions of previous criteria, and also for the special case for the porous material with von Mises type matrix. ; -τ 2 f 2/ s (C.3) 
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1 Figure 1 :

 11 Figure1: Validations of the FEM results (asterisk) by the upper (red circle) and lower (green circle) bounds proposed by[START_REF] Pastor | 3d-fem formulations of limit analysis methods for porous pressuresensitive materials[END_REF] (spherical pore, -b and -c) and by[START_REF] Pastor | Limit analysis and lower/upper bounds to the macroscopic criterion of drucker-prager materials with spheroidal voids[END_REF] (spheroidal pore -d: a 1 /b 1 = 1/2).

4

 4 and frictional parameter α = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 (the corresponding friction angles are φ = 0, 8.53 • , 16.70 • , 24.23 • , 30.96 • , 36.87 • , 41.99 • ). The cases of f = 0.04 and 0.4 are illustrated in Figures 2 and 3, another porosities are shown in Appendix D. In these in Figures, FEM results are presented by black points. The solid green circles denote the hydrostatic results. Different lines are used to show the yield surfaces predicted by the above analytical criteria: (7)-black line, (8)-sky blue line, (9)-red solid line, (11) with Θ 1 -red dash dot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line.

  (a) f = 0.04, α = 0 (b) f = 0.04, α = 0.05 (c) f = 0.04, α = 0.1 (d) f = 0.04, α = 0.15 (e) f = 0.04, α = 0.2 (f) f = 0.04, α = 0.25

Figure 2 :

 2 Figure 2: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line and FEM solutions with different α, f = 0.04.

3 Figure 3 :

 33 Figure 3: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line and FEM solutions with different α, f = 0.4.

Figure 4 :

 4 Figure 4: Relative errors between the numerical results and predictions of yield criteria with different porosity and frictional parameter.

Figure 5 :

 5 Figure 5: FEM solutions of Σ z -Σ ρ σ 0 for pure deviatoric loading ( Σ m σ 0 = 0) with different f and α.
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 6 Figure 6: Comparisons between Σ eq
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 232 -15 cos √ Finally the local terms σ eq and σ m used in the equation (1) can be calculated from σ:

5. 3 .

 3 Macroscopic yield criteria based on the SVH mathod with the stress field σ = σ 1 +σ 2 +σ 3
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  (a) f = 0.2, α = 0.05 (b) f = 0.2, α = 0.25

Figure 7 :

 7 Figure 7: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line, (13)-orange line, (39)-orange dashed line and FEM solutions with different α, f = 0.2.

Figure 8 :

 8 Figure 8: Comparisons between Σ eq σ 0 given by existing criteria and the one of FEM for pure deviatoric loading ( Σ m σ 0 = 0): Dashed line: 1-f √ 1+2 f /3

  Figures 9 and 10 by the new finite element solutions carried out in this work. Different porosity f = 0.04, 0.1, 0.15, 0.2, 0.3, 0.4 and frictional parameter α = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 (the corresponding friction angles are φ = 0, 8.53 • , 16.70 • , 24.23 • , 30.96 • , 36.87 • , 41.99 • ) are considered for a wide validation. The criterion (45) find well the hydrostatic analytical solutions (green points). The values of pure shear strength Σ eqσ 0 are well predicted for all values of porosity. The influences of porosity and frictional parameter on the overall strength behavior are better predicted by[START_REF] Thoré | Closed-form solutions for the hollow sphere model with coulomb and drucker-prager materials under isotropic loadings[END_REF] than the previous ones.

  (a) f = 0.04, α = 0.15, 0.2, 0.25 (b) f = 0.04, α = 0.0, 0.05, 0.1 f = 0.1, α = 0.15, 0.25, 0.3 (d) f = 0.1, α = 0.0, 0.05, 0.1, 0.2 (e) f = 0.15, α = 0.05, 0.15, 0.25, 0.3 (f) f = 0.15, α = 0.0, 0.1, 0.2

Figure 9 :

 9 Figure 9: Comparisons between yield surfaces predicted by new criterions (blue line) and FEM solutions (circles) with different α and f , green points: exact solution in pure hydrostatic loading.

  (a) f 0.2, α = 0.05, 0.15, 0.25, 0.3 (b) f = 0.2, α = 0.0, 0.1, 0.2 (c) f = 0.3, α 0.05, 0.15, 0.25, 0.3 (d) f = 0.3, α = 0.0, 0.1, 0.2 (e) f = 0.4, α = 0.05, 0.15, 0.25, 0.3 (f) f = 0.4, α = 0.0, 0.1, 0.2

Figure 10 :

 10 Figure 10: Comparisons between yield surfaces predicted by new criterions (blue line) and FEM solutions (circles) with different α and f , green points: exact solution in pure hydrostatic loading.

Figure 11 :Figure 12 :

 1112 Figure11: Relative errors between the numerical and yield surfaces given by[START_REF] Thoré | Closed-form solutions for the hollow sphere model with coulomb and drucker-prager materials under isotropic loadings[END_REF] with different frictional parameter α, f = 0.15.

Figure 14 :

 14 Figure 14: Comparisons between the yield surface predicted by 46, numerical bounds[START_REF] Trillat | Limit analysis and Gurson's model[END_REF](red point: upper bound; green point: lower bound) and FEM numerical results (cross point)[START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF], f = 0.064.

Figure 15 :

 15 Figure 15: Comparisons between the yield surface predicted by 46, numerical bounds[START_REF] Thoré | Hollow sphere models, conic programming and third stress invariant[END_REF](red point: upper bound; green point: lower bound) and FEM numerical results (cross point)[START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF], f = 0.1.
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3 Figure D. 16 :

 316 Figure D.16: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line and FEM solutions with different α, f = 0.1.

3 Figure D. 17 :

 317 Figure D.17: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line and FEM solutions with different α, f = 0.15.

3 Figure D. 18 :

 318 Figure D.18: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line, (13)-orange line and FEM solutions with different α, f = 0.2.

3 Figure D. 19 :

 319 Figure D.19: Comparisons of yield surfaces predicted by criteria (7)-black line, (8)-skyblue line, (9)-red solid line, (11) with Θ 1 -red dashdot line, (11) with Θ 2 -red dash line, (12)-green line, (15)-blue line and FEM solutions with different α, f = 0.3.

  Appendix D. Evaluations of the existing yield criteria by FEM results with different f and α

	1 -	s 2s	; 2 -	s 2s	; -τ 2 -f 1/s-2/	s 2 F 1	1 2	, 1 -	s 2s	; 2 -	s 2s	; -	τ 2 f 2/ s	(C.6)
	I D e = s 2 F 1	1 2	, -	s 2s	; 1 -	s 2	; -τ 2 -f	1 s 2 F 1	1 2	, -	s 2s	; 1 -	s 2s	; -	τ 2 f 2/ s	(C.7)
			τ =	2C 0 sD e	, s = 1 + 2 β, γ =	2 β 1 + 2 β	(C.8)

ln( a r ) -7

ln( a r ) . A 1 and A 2 are constant parameters which need to be determined.
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Appendix A. Recapitulation of the existing macroscopic criteria of porous material with Drucker-Prager matrix

Reference

Criterion Method E. S.(Σ eq = 0)

Σ eq σ 0 (Σ m = 0) Pore Flow rule [START_REF] Lazzeri | Dilatational bands in rubber toughened polymers[END_REF] [START_REF] Lazzeri | Dilatational bands in rubber toughened polymers[END_REF] Eq. ( 3) Modification of Gurson's criterion × 1f Sphere Associated

Jeong and Pan(1995) [START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF] Eq. ( 4) Based on some special cases T-

Al-Abduljabbar and Pan (1999) [START_REF] Al-Abduljabbar | Numerical analysis of notch-tip fields in rubber-modified epoxies[END_REF] Eq. ( 5) Modification based on Eq.( 4)

Jeong (2002) [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] Eq. ( 7) Based on some special cases √ 1f Sphere Associated [START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][3] Eq. ( 8)

Sphere Associated The parameters used in the equation ( 14): Appendix C. Parameter used in the macroscopic criterion [START_REF] He | Strength properties of a drucker-prager porous medium reinforced by rigid particles[END_REF] The parameters Π C 0 , Π D e , ΠC 0 , ΠD e and γ are given as: