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Introduction and main results

The primary motivation of the present paper is to solve the following uniqueness problem for discrete harmonic functions: take a lattice Λ (a linear transform of Z d ), a convex cone K in R d and a discrete Laplacian operator

L(f )(x) = x∼y p y-x (f (y) -f (x)),
where the weights {p z } z∈Λ sum to 1, have zero drift (meaning that z∈Λ zp z = 0) and satisfy some minimal moment assumptions (we will be more specific later). We prove that up to multiplicative constants, there is a unique function f : Λ → R which is positive, harmonic in Λ ∩ K, i.e., L(f ) = 0, and equal to zero outside K. In terms of potential theory for random walks, we show that the Martin boundary of killed, zeromean random walks in cones is reduced to one point. Our solution to this uniqueness problem is fully based on Martin boundary theory and requires the thorough asymptotic computation of the Green function for killed random walks in multidimensional cones. These asymptotics represent actually the main contribution of the paper.

Green functions and Martin boundary of random walks in cones. Random walks conditioned to stay in multidimensional cones are a very popular topic in probability. Indeed, they appear naturally in various situations: nonintersecting paths [START_REF] Stembridge | Nonintersecting paths, Pfaffians, and plane partitions[END_REF][START_REF] Eichelsbacher | Ordered random walks[END_REF][START_REF] Denisov | Conditional limit theorems for ordered random walks[END_REF], which can be seen as random walks in Weyl chambers, random walks in the quarter plane [START_REF] Fayolle | Random walks in the quarter plane[END_REF][START_REF] Raschel | Green functions for killed random walks in the Weyl chamber of Sp(4)[END_REF], queueing theory [START_REF] Cohen | Boundary value problems in queueing system analysis[END_REF], branching processes and random walks in random environment [START_REF] Afanasyev | Criticality for branching processes in random environment[END_REF], finance [START_REF] Cont | Price dynamics in a Markovian limit order market[END_REF], modelling of some populations in biology [START_REF] Billiard | A general stochastic model for sporophytic self-incompatibility[END_REF], etc. As these random walk models are in bijection with many other discrete models (maps, permutations, trees, Young tableaux, partitions), they are also intensively studied in combinatorics [START_REF] Bousquet-Mélou | Walks with small steps in the quarter plane[END_REF][START_REF] Bostan | On 3-dimensional lattice walks confined to the positive octant[END_REF][START_REF] Dreyfus | On the nature of the generating series of walks in the quarter plane[END_REF].

Let us now briefly review the literature regarding asymptotics of Green functions and Martin boundary for killed random walks in cones (see [START_REF] Sawyer | Martin boundaries and random walks. Harmonic functions on trees and buildings[END_REF] for a general introduction to Martin boundary theory). In the one-dimensional case, Doney [START_REF] Doney | The Martin boundary and ratio limit theorems for killed random walks[END_REF] describes the harmonic functions and the Martin boundary of a random walk {S(n)} on Z killed on the negative half-line (obviously there is essentially a unique cone in dimension 1, namely N = {0, 1, 2, . . .}). Alili and Doney [START_REF] Alili | Martin boundaries associated with a killed random walk[END_REF] extend this result to the corresponding space-time random walk {(S(n), n)}.

In the higher dimensional case, let us start by quoting the famous Ney and Spitzer result [START_REF] Ney | The Martin boundary for random walk[END_REF] on the Green function asymptotics of drifted, unconstrained random walks in Z d . As a consequence, the Martin boundary is shown to be homeomorphic to the unit sphere S d-1 . By large deviation techniques and Harnack inequalities, Ignatiouk-Robert [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on a half-space[END_REF][START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on Z d +[END_REF], then Ignatiouk-Robert and Loree [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on a quadrant[END_REF], find the Martin boundary of random walks in half-spaces N × Z d-1 and orthants N d , with non-zero drift and killing at the boundary; they also derive the asymptotics of ratios of Green functions. For small step walks in the quarter plane, Lecouvey and Raschel [START_REF] Lecouvey | t-Martin boundary of killed random walks in the quadrant[END_REF] show that generating functions of harmonic functions are strongly related to certain conformal mappings.

The results on Green functions and Martin boundaries are rarer for driftless random walks, and typically require a strong underlying structure: the random walks are Cartesian products in [START_REF] Picardello | Martin boundaries of Cartesian products of Markov chains[END_REF]; they are associated with Lie algebras in [START_REF] Biane | Quantum random walk on the dual of SU(n)[END_REF][START_REF] Biane | Équation de Choquet-Deny sur le dual d'un groupe compact[END_REF]; certain reflection groups are supposed to be finite in [START_REF] Biane | Littelmann paths and Brownian paths[END_REF]. Varopoulos [START_REF] Varopoulos | Potential theory in conical domain[END_REF][START_REF] Varopoulos | The discrete and classical Dirichlet problem[END_REF] derives upper and lower bounds for the tail of the survival probability in cones under the assumption that the increments of the random walk are bounded. He also proves various statements on the growth or harmonic functions. Raschel [START_REF] Raschel | Green functions for killed random walks in the Weyl chamber of Sp(4)[END_REF][START_REF] Raschel | Random walks in the quarter plane, discrete harmonic functions and conformal mappings[END_REF] obtains the asymptotics of the Green function and the Martin boundary in the case of small step quadrant random walks related to finite reflection groups. Bouaziz, Mustapha and Sifi [START_REF] Bouaziz | Discrete harmonic functions on an orthant in Z d[END_REF] prove the existence and uniqueness of the positive harmonic function for random walks satisfying finite range, centering and ellipticity conditions, killed at the boundary of the orthant N d . Mustapha and Sifi [START_REF] Mustapha | Discrete harmonic functions in Lipschitz domains[END_REF] extend these results to Lipshitz domains, under similar hypotheses. Ignatiouk-Robert [START_REF] Ignatiouk-Robert | Harmonic functions of random walks in a semigroup via ladder heights[END_REF] shows the uniqueness of the harmonic function in a convex cone, under the assumption that the first exit time has infinite expectation. Finally, in the paper [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF], the second and third authors derive a local limit theorem for zero-drift random walks confined to multidimensional convex cones, when the endpoint is close to the boundary.

As we will see below, our theorems unify and extend all these results in the context of convex cones, under optimal moment assumptions.

Exit time, Green functions, harmonic functions and reverse random walk. Consider a random walk {S(n)} n 1 on R d , d 1, where

S(n) = X(1) + • • • + X(n)
and {X(n)} n 1 is a family of independent and identically distributed (i.i.d) copies of a random variable X = (X 1 , . . . , X d ). The support of the increments is supposed to generate a lattice, which we denote by Λ.

Given a cone K, let τ x be the first exit time from the cone K of the random walk with starting point x ∈ K, i.e.,

τ x = inf{n 1 : x + S(n) / ∈ K}. (1) 
By definition, the Green function of S(n) killed at τ x is

G K (x, y) = ∞ n=0 P(x + S(n) = y, τ x > n). (2) 
A function h : K → R is said to be (discrete) harmonic with respect to K and {S(n)} if for every x ∈ K and n 1,

h(x) = E[h(x + S(n)), τ x > n].
Remark that the above identity for n = 1 implies all the other relations for n 2. In the sequel, a harmonic function with respect to K and {S(n)} will be simply called a harmonic function.

Denisov and Wachtel proved [START_REF] Denisov | Random walks in cones[END_REF][START_REF] Denisov | Alternative constructions of a harmonic function for a random walk in a cone[END_REF] the existence of a positive harmonic function V : K → R + defined by

V (x) = lim n→∞ E[u(x + S(n)), τ x > n]. (3) 
This harmonic function is of central importance in the present paper, since it will ultimately be identified with the Martin boundary of the random walk in K.

We denote by {S (n)} n 1 the reverse random walk, which is the sum of the increments {X (n)} n 1 , i.i.d, independent from {X(n)} n 1 and such that X (n) is distributed as -X. In the sequel, every quantity involving S will be denoted similarly as the same quantity involving S, with a prime added at the right.

Notations and assumptions on cones and random walks. Our hypotheses are of three types: some of them only concern the random walk (see (H1), (H2) and (H3)), the assumption (H4) is a convexity restriction on the cone, while the last ones, namely, (H5), (M 1) and (M 2) (moment assumptions) concern the behavior of the random walk in the cone.

(H1) E[X i ] = 0 (zero drift assumption), (H2) cov(X i , X j ) = δ i,j (identity covariance matrix assumption), (H3) the random walk is strongly aperiodic, i.e., if A = {x ∈ Λ : P(X = x) > 0}, then z + A generates Λ for all z ∈ Λ.

Notice that (H2) is not a restriction: we may always perform a linear transform so as to decorrelate the random walk (obviously this linear transform impacts on the cone in which the walk is defined). Denote by S d-1 the unit sphere of R d and by Σ an open, connected subset of S d-1 . Let K be the cone generated by the rays emanating from the origin and passing through Σ, i.e., Σ = K ∩ S d-1 ; see Figure 1 for two examples. In this paper, we shall suppose that (H4) the cone K is convex.

We further require a form of irreducibility of the random walk, which is an adaptation to unbounded random walks of the concept of reachability condition from infinity introduced in [START_REF] Bostan | On walks with large steps in an orthant[END_REF].

(H5) The random walk S is asymptotically strongly irreducible, meaning that there exists a constant R > 0 such that for any z ∈ K ∩ Λ with |z| R, there exists a path with positive probability in K ∩ B(z, R) which starts in z + K and ends at z.

There are several simple situations where the latter condition is satisfied, in particular when

P(X ∈ -K) > 0. If K is C 2 , the condition (H5) is superfluous.
When K is convex, on each point q of ∂Σ there exists a non-trivial closed ball B in S d-1 such that B ∩ Σ = q. Hence, by standard analytic results [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Thm 6.13], Σ is regular for the Dirichlet problem. In particular (see for example the introduction of [START_REF] Bañuelos | Brownian motion in cones[END_REF]), there exists a function u harmonic on K, i.e., ∆u = 0, such that u is positive in K and u ∂K = 0, ∂K denoting the boundary of K. This function is unique up to scalar multiplication, see [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains Astérisque[END_REF]Cor. 6.10 and Rem. 6.11], and is called the réduite of K. It is homogeneous (or radial) in the sense that u(tx) = t p u(x) for all t > 0 and x ∈ K. The homogeneity exponent p is called the exponent of the cone K.
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In dimension 2, Σ is an arc of circle and the cone K is a wedge of opening β. In dimension 3, any section Σ ⊂ S 2 defines a cone. The picture on the right gives the example of a spherical triangle on the sphere S 2 , corresponding to the orthant K = N 3 (after possible decorrelation of the coordinates, see (H2)).

Our next assumption (M 1) involves the quantity q = sup σ∈∂Σ q σ 1, that we now define. For each point σ ∈ ∂Σ, we define

K σ := {u ∈ R d : ∃t > 0, σ + tu ∈ K}. (4) 
By convexity of K, the set K σ is a convex cone, which represents the cone tangent to K at σ. Let q σ denote the exponent of K σ . Note that we always have 1

K σ p, since K ⊂ K σ and K σ is included in a half-space. When K is C 2 at σ, K σ is precisely a half-space, which yields q σ = 1.
We shall also assume a moment condition on the increments, which depends on the asymptotic shape of the cone K:

(M 1) E[|X| r(p) ] < ∞ for some r(p) > p + q + d -2 + (2 -p) + and E[|X| 2+δ ] < ∞
for some δ > 0. If the boundary of K is C 2 (which implies q = 1), the strict inequality for r(p) may be replaced by a weak inequality. In the case where the cone is C 2 or when considering asymptotic results inside the cone, the latter moment condition can be replaced by the following assumption of the local structure of the distribution of the increments:

(M 2) P(X = x) |x| -p-d+1 f (|x|) for some function f which is decreasing and such that u (3-p)∨1 f (u) → 0 as u → ∞. In this paper, we do not require the existence of a bigger cone K with ∂K \ {0} ⊂ int(K ), such that the réduite u can be extended to a harmonic function on K . This necessary condition in [START_REF] Denisov | Random walks in cones[END_REF] is removed in [START_REF] Denisov | Alternative constructions of a harmonic function for a random walk in a cone[END_REF] under the moment assumption (M 1).

Main results. Our first main result is the asymptotics of the Green function [START_REF] Alili | Martin boundaries associated with a killed random walk[END_REF] in the regime where the endpoint tends to infinity while staying far from the boundary.

Theorem 1. Set r 1 (p) = p + d -2 + (2 -p) + and assume that either E|X| r 1 (p) is finite or (M 2) holds.
(a) If there exists α > 0 such that |y| → ∞ with dist(y, ∂K) α|y|, then

G K (x, y) ∼ cV (x) u(y) |y| 2p+d-2 . ( 5 
)
(b) If E|X| r is finite for some r > r 1 (p), there exists ρ > 0 such that (5) holds uniformly for |y| → ∞ with dist(y, ∂K) |y| 1-ρ . We will construct an example showing that the moment assumptions of Theorem 1 are optimal (see Section 5). We now turn to the Green function asymptotics along the boundary. In the case when the cone is a half-space, we obtain the following:

Theorem 2. Assume that E|X| d+1 < ∞. Assume also that x = (0, . . . , 0, x d ) with x d = o(|y|). Then G K (x, y) ∼ c V (x)V (y) |y| d .
Here, V is the harmonic function for the killed reversed random walk {-S(n)}.

Theorem 2 appears to be not only an extension of Uchiyama's results [START_REF] Uchiyama | Green's functions of random walks on the upper half plane[END_REF], but will be one of the crucial tools to derive the boundary asymptotics of the Green function in the general convex case (Theorem 3 below).

When K is not a half-space but a general convex cone, we first introduce

K ρ := {y ∈ K : dist(y, ∂K) R|y| 1-ρ } (6) 
as well as the stopping time

θ y = inf{n 1 : y + S (n) ∈ K ρ }, (7) 
for y ∈ K. We denote by y ρ the random element y + S (θ y ).

Theorem 3. Suppose that |y| goes to infinity with y/|y| converging to σ ∈ ∂Σ. Assume (H1)-(H5) and E|X| r(p) < ∞ for some r(p) > p

+ q σ + d -2 + (2 -p) + , then G K (x, y) ∼ V (x)E[u(y ρ ), τ y > θ y ] |y| p+q+d-2 .
If q σ = 1, then the latter asymptotics can be improved as

G K (x, y) ∼ V (x)c σ (dist(y, ∂K)) |y| p+d-1 ,
with c σ a positive function which is asymptotically linear, and the moment assumption can be replaced by E|X| p+d-1+(2-p) + < ∞ or by (M 2).

Let us comment on three different aspects of Theorem 3. First, we will construct an example showing that our hypotheses are optimal (see Section 5). Moreover, in the above result, the convergence is uniform on all σ ∈ Σ. Finally, Theorem 3 easily implies the identification of the Martin boundary of S killed when exiting K, answering the uniqueness problem of the discrete harmonic functions. Theorem 4. Assume (H1)-(H5) and (M 1). The Martin kernel of S killed on the boundary of K is reduced to one point, which corresponds to the function V in (3). In particular, there is up to a scaling constant a unique positive harmonic function killed at the boundary of K. If K is C 2 , (M 1) can be changed into the local condition (M 2).

Towards a Ney and Spitzer theorem in cones. Ney and Spitzer consider in [START_REF] Ney | The Martin boundary for random walk[END_REF] random walks with non-zero drift in Z d and prove that the Martin boundary is homeomorphic to the unit sphere S d-1 . In [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on a quadrant[END_REF][START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on Z d +[END_REF], Ignatiouk-Robert and Loree prove that for random walks in N d with a drift whose all entries are non-zero, the Martin boundary is homeomorphic to S d-1 ∩ R d + . However, the question of a general non-zero drift (i.e., with zero entries allowed) is left opened in [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on a quadrant[END_REF][START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on Z d +[END_REF]. Our results should allow to complete the picture; this will be the topic of future research.

Description of the methods used in our proofs. One of the standard approaches to the analysis of Green functions is based on local limit theorems for the process under consideration. For random walks confined to cones, one can apply local limit theorems from [START_REF] Denisov | Random walks in cones[END_REF]. Since these results are applicable for n > ε|y| 2 only, one gets an asymptotically sharp lower estimate for G K . To obtain an upper bound one needs good control over P(x + S(n) = y, τ x > n) for n |y| 2 . Caravenna and Doney [START_REF] Caravenna | Local large deviations and the strong renewal theorem[END_REF] have used this approach to obtain necessary and sufficient conditions for validity of the local renewal theorem for one-dimensional non-restricted random walks. To control local large deviation probabilities in our model, we use recent results obtained in Raschel and Tarrago [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF] by using heat kernel estimates. These results, which are improvements of the local limit theorems of [START_REF] Denisov | Random walks in cones[END_REF], lead to Theorem 1 (b) and to the first claim in Theorem 3. The analysis of local probabilities requires a slightly stronger moment assumptions than in Theorem 1 (a) and in the second half of Theorem 3 correspondingly. In order to derive these results, we use a different approach, where we control the whole sum n ε|y| 2 P(x + S(n) = y, τ x > n) instead of controlling every summand. This part is based on the functional limit theorem for walks in cones obtained in Duraj and Wachtel [START_REF] Duraj | Invariance principles for random walks in cones[END_REF]. As we have mentioned before, this approach requires less moments, but one needs to impose stronger regularity conditions on the boundary of the cone.

Structure and sketch of the results. Our paper is organized as follows:

• Section 2: proof of Theorem 1 on the Green function asymptotics in the interior domain. • Section 3: proof of Theorem 2 on the Green function asymptotics along the boundary in the case of the half-space; this result has its own interest and will also be crucially used in the next section, in the general convex case. • Section 4: proof of Theorem 3 on the Green function asymptotics along the boundary in the general case; proof of Theorem 4 on the structure of the Martin boundary (uniqueness problem). • Section 5: optimality of the moment assumptions in Theorems 1 and 3.

• Section 6: proof of various lower bounds on the survival probability, which are used when showing Theorem 3.
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Asymptotics of the Green function far from the boundary

In this section, we prove Theorem 1.

Sketch of the proof. The proof runs as follows. Fix some ε > 0 and split G K (x, y) into two parts:

G K (x, y) = n<ε|y| 2 P(x + S(n) = y, τ x > n) + n ε|y| 2 P(x + S(n) = y, τ x > n) =: S 1 (x, y, ε) + S 2 (x, y, ε).
The main idea is that the first term will be negligible, meaning that lim ε→0 lim sup

|y|→∞ |y| 2p+d-2 u(y) S 1 (x, y, ε) = 0, (8) 
while the second term S 2 (x, y, ε) will provide the main contribution in the Green function asymptotics. The asymptotic analysis (8) of S 1 (x, y, ε) is very different under the hypotheses (a) and (b) of Theorem 1; on the contrary, the study of S 2 (x, y, ε) will be done uniformly in the two cases.

Asymptotics of S 2 (x, y, ε). Let ρ > 0 small enough (to be chosen later), A = ε -1 and

K A n,ε = {z ∈ K : |z| A √ n, dist(z, ∂K) n 1-ε }.
By [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF]Prop. 9],

n p/2+d/2 u y √ n P(x + S(n) = y, τ x > n) = κH 0 V (x)e -|y| 2 /2n + o(1)
uniformly in y ∈ K A n,ε , and by [START_REF] Denisov | Random walks in cones[END_REF]Thm 5],

n p/2+d/2 P(x + S(n) = y, τ x > n) = κH 0 V (x)u y √ n e -|y| 2 /2n + o(1)
uniformly in y ∈ K. As |y| → ∞ with dist(y, ∂K) |y| 1-ρ and ρ small enough, one has y ∈ K A n,ε for all ε|y| 2 n |y| 2+ε , for some ε > 0. Hence,

S 2 (x, y, ε) = κH 0 V (x) ε|y| 2 n |y| 2+ε 1 n p/2+d/2 u y √ n e -|y| 2 /2n + o   u(y) ε|y| 2 n |y| 2+ε n -p-d/2   + o   n |y| 2+ε 1 n p/2+d/2   = κH 0 V (x)u(y) n ε|y| 2 1 n p+d/2 e -|y| 2 /2n + o (u(y)|y| -p + |y| -ε )|y| -p-d+2 = κH 0 V (x)u(y)|y| -2p-d+2 ∞ ε z -p-d/2 e -1/(2z) dz + o (u(y)|y| -p + |y| -ε )|y| -p-d+2 .
Letting here ε → 0 and recalling that u(y) c|y| p-ρ for dist(y, ∂K) |y| 1-ρ , see [START_REF] Denisov | Random walks in cones[END_REF]Lem. 19] and [START_REF] Varopoulos | Potential theory in conical domain[END_REF], we obtain that for ρ small enough,

lim ε→0 lim |y|→∞ dist(y,∂K)>|y| 1-ρ |y| 2p+d-2 u(y) S 2 (x, y, ε) = κH 0 V (x) ∞ 0 z -p-d/2 e -1/(2z) dz. ( 9 
)
Asymptotics of S 1 (x, y, ε) in case (a). Let us prove the first part of Theorem 1. It remains to show that (8) holds. Fix additionally some small δ > 0 and define

Θ y := inf{n 1 : x + S(n) ∈ B δ,y },
where B δ,y denotes the ball of radius δ|y| around the point y. Then we have

S 1 (x, y, ε) = n<ε|y| 2 P(x + S(n) = y, τ x > n Θ y ) = n<ε|y| 2 n k=1 z∈B δ,y P(x + S(k) = z, τ x > k = Θ y )P(z + S(n -k) = y, τ z > n -k) k<ε|y| 2 z∈B δ,y P(x + S(k) = z, τ x > k = Θ y ) j<ε|y| 2 -k P(z + S(j) = y) E G (ε|y| 2 ) (y -x -S(Θ y )); τ x > Θ y , Θ y ε|y| 2 , (10) 
where

G (t) (z) := n<t P(S(n) = z).
We first focus on the case d 3. Then, according to [50, Thm 2], for all z ∈ Z d , 

G(z) := G (∞) (z) C 1 + |z| d-2 , (11) 
S 1 (x, y, ε) CE 1 1 + |y -x -S(Θ y )| d-2 ; τ x > Θ y , Θ y ε|y| 2 (12) CP(|y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y ε|y| 2 ) + C(δ) |y| d-2 P(τ x > Θ y , Θ y ε|y| 2 ). Noting now that |y -x -S(Θ y )| δ 2 |y| yields |X(Θ y )| > δ(1 -δ)
|y| and using our moment assumption, we conclude that

P(|y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y < ε|y| 2 ) k<ε|y| 2 P(|X(k)| > δ(1 -δ)|y|, τ x > k = Θ y ) P(|X| > δ(1 -δ)|y|) k<ε|y| 2 P(τ x > k -1) = o |y| -r 1 (p) E[τ x ; τ x < |y| 2 ] = o |y| -d-p+2 . ( 13 
)
Recalling that V is harmonic for S(n) killed at leaving K, we obtain

P(τ x > Θ y , Θ y < ε|y| 2 ) = k<ε|y| 2 z:|z-y| δ|y| P(τ x > k, Θ y = k, x + S(k) = z) = k<ε|y| 2 z:|z-y| δ|y| V (x) V (z) P (V ) (Θ y = k, x + S(k) = z) V (x) min z∈K:|z-y| δ|y| V (z) P (V ) (Θ y < ε|y| 2 ).
It follows from the assumption dist(y, ∂K) α|y| and [START_REF] Denisov | Random walks in cones[END_REF]Lem. 13] that for sufficiently small δ > 0,

min z∈K:|z-y| δ|y| V (z) C|y| p .
As a result,

|y| p P(τ x > Θ y , Θ y < ε|y| 2 ) C(x)P (V ) max n<ε|y| 2 |x + S(n)| > (1 -δ)|y| .
Applying now the functional limit theorem for S(n) under P (V ) , see Theorem 2 and Corollary 3 in [START_REF] Duraj | Invariance principles for random walks in cones[END_REF], we conclude that lim ε→0 lim sup

|y|→∞ |y| p P(τ x > Θ y , Θ y < ε|y| 2 ) = 0. ( 14 
)
Note that the functional limit theorem from [START_REF] Duraj | Invariance principles for random walks in cones[END_REF] only requires p ∨ (2 + ε)-moments.

Combining ( 12)-( 14), we infer that ( 8) is valid under the assumption

E|X 1 | r 1 (p) < ∞ in all dimensions d 3.
Assume now that (M 2) holds. It is clear that this restriction implies E|X 1 | p < ∞. Therefore, [START_REF] Denisov | Random walks in cones[END_REF]Thm 5] is still applicable and (9) remains valid for all random walks satisfying (M 2). In order to show that (8) remains valid as well, we notice that

S 1 (x, y, ε) CE 1 1 + |y -x -S(Θ y )| d-2 ; |y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y ε|y| 2 + C(δ) |y| d-2 P(τ x > Θ y , Θ y ε|y| 2 ).
In view of ( 14), we have to estimate the first term on the right-hand side only. For any z such that |z -y| δ 2 |y| we have

P(x + S(Θ y ) = z, τ x > Θ y , Θ y ε|y| 2 ) ε|y| 2 k=1 z ∈K\B δ,y P(x + S(k -1) = z , τ x > k -1)P(X(k) = z -z ). Since |z -z | > δ(1 -δ)|y|, we infer from (M 2) that P(x + S(Θ y ) = z, τ x > Θ y , Θ y ε|y| 2 ) C(δ)|y| -p-d+1 f (δ(1 -δ)|y|) ε|y| 2 k=1 P(τ x > k -1) C(δ)|y| -p-d+1 f (δ(1 -δ)|y|)E[τ x ; τ x < |y| 2 ]. ( 15 
)
Here and in the following we use that Thm 1]. For every positive integer m, there are O(m d-1 ) lattice points z such that |z -y| ∈ (m, m + 1]. Then, using [START_REF] Denisov | Conditional limit theorems for ordered random walks[END_REF], we obtain

E[τ x ; τ x < |y| 2 ] ∼ C|y| -p+2 if p 2, as shown in [16,
E 1 1 + |y -x -S(Θ y )| d-2 ; |y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y ε|y| 2 C(δ)|y| -p-d+1 f (δ(1 -δ)|y|)E[τ x ; τ x < |y| 2 ] δ 2 |y| m=1 m d-1 1 + m d-2 C(δ)|y| -p-d+3 f (δ(1 -δ)|y|)E[τ x ; τ x < |y| 2 ]. Recalling that u (3-p)∨1 f (u) → 0, we conclude that E 1 1 + |y -x -S(Θ y )| d-2 ; |y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y ε|y| 2 = o(|y| -p-d+2 ).
This completes the proof of the theorem for d 3.

We now focus on d = 2; in this case, we cannot use the full Green function. We will obtain bounds for G (t) (x) directly from the local limit theorem for unrestricted walks. More precisely, we shall use Propositions 9 and 10 from Chapter 2 in Spitzer's book [START_REF] Spitzer | Principles of Random Walk[END_REF], which assert that as n → ∞,

P(S(n) = z) = 1 2πn e -|z| 2 /2n + ρ(n, z) |z| 2 ∨ n , (16) 
where as n → ∞, sup

z∈Z 2 ρ(n, z) → 0.
This asymptotic representation implies that for all t 2, sup

z∈Z 2 G (t) (z) C log t. (17) 
Furthermore, for |z| → ∞ and t a|z| 2 , one has

G (t) (z) a|z| 2 n=1 1 2πn e -|z| 2 /2n + o(1) = 1 2π a 0 1 v e -1/2v dv + o(1).
As a result, sup

z∈Z 2 G (a|z| 2 ) (z) C(a) < ∞. (18) 
Using ( 17) and ( 18), we obtain

S 1 (x, y, ε) C log |y|P(|y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y ε|y| 2 ) + C(ε)P(τ x > Θ y , Θ y ε|y| 2 ).
According to [START_REF] Cohen | Boundary value problems in queueing system analysis[END_REF],

P(|y -x -S(Θ y )| δ 2 |y|, τ x > Θ y , Θ y ε|y| 2 ) = o(|y| -r 1 (p) E[τ x ; τ x < |y| 2 ]) = o(|y| -p / log |y|).
Combining this with ( 14), we conclude that (8) holds for d = 2. The proof of Theorem 1 (a) is completed.

Preliminary estimates for the proof of Theorem 1 (b). In this part, we give some bounds on the local probability P(x + S(n) = y, τ x > n), when |x -y| is between the order of fluctuations n 1/2 and n 1/2+κ , for some κ small enough. The main result will be given in Proposition 8; it needs three lemmas, stated as Lemmas 5, 6 and 7.

We will use the coupling of Zaitsev and Götze (see [START_REF] Götze | The accuracy of approximation in the multidimensional invariance principle for sums of independent identically distributed random vectors with finite moments[END_REF]Thm 4] and [16, Lem. 17]) for random walks having increments satisfying to (M 1). Suppose that X has moments of order r(p), with r(p) > p + d -2 + (2 -p) + and r(p) > 2 + δ. By [START_REF] Einmahl | Extensions of results of Komlós, Major, and Tusnády to the multivariate case[END_REF]Thm 4], there exists a constant K such that for γ 1/2 -1/r(p),

P sup 0 s n |S( k ) -B(k)| n 1/2-γ Kn -r , (19) 
with

r = r(p)(1/2 -γ) -1. ( 20 
)
In the proof of the following lemma, we use several estimates from [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF] on the transition probabilities of a Brownian motion in a cone. Those estimates come from general Gaussian estimates for the heat kernel in a Lipschitz domain, see [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains Astérisque[END_REF]Sec. 6] for general statements. The first inequality from [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains Astérisque[END_REF]Thm 5.11] gives an upper bound for the transition probabilities in K for the Brownian motion started at y ∈ K killed outside K:

P(y + B(1) ∈ dz, τ bm y > 1) CP(τ bm y > 1) exp(-|z -y| 2 /c)dz, (21) 
for some positive constants c and C. The survival time of the Brownian motion in K is well estimated by the réduite, as shows the following inequality from [33, Thm 5.4]:

P(τ bm y > 1) Cu(y). ( 22 
) Define K n,ε = K ∞ n,ε = {z ∈ K : dist(z, ∂K) n 1-ε }.
Lemma 5. There exist κ, ε, c, C > 0 such that for all n large enough and A

√ n t n 1/2+κ , P(|S(n)| > t, τ y > n) C u(y/ √ n) exp(-t 2 /(cn)) + n -r
and for y ∈ K n,ε such that |y| n 1/2+κ ,

P(τ y > n) Cu(y/ √ n). Proof. Choose x 0 ∈ R d and R 0 > 0 such that |x 0 | = 1, x 0 + K ⊂ K and dist(Rx 0 + K, ∂K) > 1.
Let y ∈ K A n,ε and set y + := y + Rx 0 n 1/2-γ . Using the same construction as in the proof of [START_REF] Denisov | Random walks in cones[END_REF]Lem. 20], we get

P(|S(n)| > t, τ y > n) |z-y/ √ n|>t/ √ n-2Rn -γ P(y + / √ n + B(1) ∈ dz, τ bm y + / √ n > 1) + O(n -r ).
Using [START_REF] Doney | Local behaviour of first passage probabilities[END_REF] yields

|z-y/ √ n|>t/ √ n-2Rn -γ P(y + / √ n + B(1) ∈ dz, τ bm y + / √ n > 1)
CP(τ bm

y + / √ n > 1) |z-y/ √ n|>t/ √ n-2Rn -γ C exp(-|z -y + / √ n| 2 /c)dz. ( 23 
)
By the local Hölder continuity of the survival probability P(τ bm x > 1) in x (see [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF]Prop. 18]), there exist α, χ, C α > 0 such that

P(τ bm y + / √ n > 1) P(τ bm y/ √ n > 1) + C α |y|/ √ n χ n -αγ .
Hence, using [START_REF] Dreyfus | On the nature of the generating series of walks in the quarter plane[END_REF] yields

P(τ bm y + / √ n > 1) Cu(y/ √ n) + C α n χκ-αγ .
By [START_REF] Denisov | Random walks in cones[END_REF]Lem. 19], one has u(x) cd(x, ∂K) p ,

so that u(y/ √ n) dist(y/ √ n, K) p n -pε ; choosing κ such that αγ -χκ > 0 and then ε such that ε (αγ -χκ)/p yields that for some C > 0 and y ∈ K n,ε with |y| n 1/2+κ , P(τ bm

y + / √ n > 1) Cu(y/ √ n).
Hence, integrating in [START_REF] Duraj | Invariance principles for random walks in cones[END_REF] over the angular coordinates gives

|z-y/ √ n|>t/ √ n-2Rn -γ P(y + / √ n + B(1) ∈ dz, τ bm y + / √ n > 1) Cu(y/ √ n) z>t/ √ n-4Rn -γ exp(-|z| 2 /c)dz
for some C > 0. The latter inequality for t = 0 gives the second inequality of Lemma 5.

For the first one, notice that there exists C > 0 such that

∞ x exp(-z 2 )dz C exp(-x 2 ). Choosing κ < γ yields exp((t/ √ n -4Rn -γ ) 2 /c) ∼ exp((t/ √ n) 2 /c) for t n 1/2+κ
, and finally we obtain that for some constant C > 0,

|z-y/ √ n|>t/ √ n-2n -γ P(y + / √ n + B(1) ∈ dz, τ bm y + / √ n > 1) Cu(y/ √ n) exp((t/ √ n) 2 /c).
We can extend the latter result by relaxing the condition y ∈ K n,ε . Lemma 6. Let x ∈ K. There exists C > 0 such that for all t n 1/2+κ (κ being as in Lemma 5),

P(|S(n)| t, τ x n) C V (x)n -p/2 exp(-t 2 /(cn)) + n -r .
Proof. Introduce the stopping time

t x,ε (n) = inf{n 1 : x + S(n) ∈ K n,ε } (25) 
and

x ε (n) = x + S(t x,ε (n)).
Then, applying [START_REF] Denisov | Random walks in cones[END_REF]Sec. 4] to Lemma 5, we get

P(|S(n)| t,τ x n) C n -p/2 exp(-t 2 /(cn))× E u(x ε (n)), τ x > t x,ε (n), t x,ε (n) n 1-ε + n -r + n -p/2 O E |x ε (n)| p , |x ε (n)| > θ n √ n, τ x > t x,ε (n), t x,ε (n) n 1-ε + O(exp(-Cn ε ),
where θ n = n -ε/8 and ε is small enough. Using Lemma 15 with α = p and q = r(p) gives

n -p/2 E |x ε (n)| p , |x ε (n)| > θ n √ n, τ x > t x,ε (n), t x,ε (n) n 1-ε = o(n -(p+d-2+(2-p) + )/2 ), since p + d -2 + (2 -p) + < r(p). Since (p + d -2 + (2 -p) + )/2 r, see (20) 
, Lemma 5 yields

n -p/2 E |x ε (n)| p , |x ε (n)| > θ n √ n, τ x > t x,ε (n), t x,ε (n) n 1-ε = o(n -r )
for t n 1/2+κ . Since, by [START_REF] Denisov | Random walks in cones[END_REF]Lem. 21],

lim n→∞ E u(x ε (n)), τ x > t x,ε (n), t x,ε (n) n 1-ε = V (x),
the result is deduced.

For the next lemma, we need some bounds from [START_REF] Denisov | Random walks in cones[END_REF]Lem. 27 and 29]. There exist positive constants a and C such that for all u 0, lim sup

n→∞ n d/2 sup |z-x| u √ n P(x + S(n) = z) C exp(-au 2 ). (26) 
In particular, there exists C(x) > 0 such that

sup y∈K P(x + S(n) = y, τ x n) C(x)n -p/2-d/2 . ( 27 
)
Lemma 7. There exist C and n 0 such that for n n 0 , all y ∈ K n,ε with |y| n 1/2+κ and all z ∈ K,

P(y + S(n) = z, τ y > n) Cn -d/2 u(y/ √ n).
Proof. Let m := n/2 . Then

P(y + S(n) = z, τ y > n) = z ∈K P(y + S(m) = z , τ y > m)P(z + S(n -m) = z, τ z > n -m) CP(τ y > m)m -d/2 ,
where we have used [START_REF] Eichelsbacher | Ordered random walks[END_REF] with u = 0 to bound P(z + S(m) = z, τ z > n -m). Thus, by Lemma 5, there exists n 0 such that for n n 0 and y ∈ K n,ε with |y| n 1/2+κ ,

P(y + S(n) = z, τ y > n) Cn -d/2 u(y/ √ n).
Putting the previous results together yields the following estimate on the local probability at middle range. Proposition 8. Let x ∈ K. There exists C such that

P(x + S(n) = y, τ x > n) CV (x)n -p/2-d/2 u(y)n -p/2 exp(-|x -y| 2 /(cn)) + n -r for all y ∈ K n,ε such that |y -x| n 1/2+κ .
Proof. Let m := n/2 . Then we have

P(x + S(n) = y, τ x > n) = z∈K: |z-x| |y-x|/2 P(x + S(m) = z, τ x > m)P(y + S (n -m) = y, τ y > n -m) + z∈K: |z-x|<|y-x|/2 P(x + S(m) = z, τ x > m)P(y + S (n -m) = y, τ y > n -m) = M 1 + M 2 .
By Lemma 6 and Lemma 7, the first sum is bounded from above by

M 1 Cu(y/ √ n)n -d/2 P(|S(n)| > |x -y|/2, τ x > n) CV (x)u(y/ √ n)n -d/2 n -p/2 exp(-|y -x| 2 /(cn)) + n -r ,
where we have used in the last inequality the hypothesis |y -x|/2 n 1/2+κ in order to apply Lemma 6. Similarly, by [START_REF] Einmahl | Extensions of results of Komlós, Major, and Tusnády to the multivariate case[END_REF] and Lemma 5, the second sum is bounded by

M 2 CV (x)n -d/2-p/2 P(|S (m)| > |x -y|/2, τ y > n) CV (x)n -d/2-p/2 u(y/ √ n) exp(-|y -x| 2 /(cn)) + n -r CV (x)u(y)n -d/2-p/2 n -p/2 exp(-|y -x| 2 /(cn)) + n -r ,
where we have used in the last inequality the hypothesis that |y -x|/2 n 1/2+κ in order to apply Lemma 5, as well as the fact that u(y)

1 for y ∈ K n,ε and n large enough. The result is then deduced by summing the bounds of M 1 and M 2 .

Asymptotics of S 1 (x, y, ε) in case (b). We now prove Theorem 1 under the hypothesis (b). Without loss of generality, we assume that d 2. We have to show that (8) holds for y satisfying dist(y, ∂K) |y| 1-ρ . Our strategy is to decompose S 1 (x, y, ε) as a sum of three terms: [START_REF] Esseen | On the concentration function of a sum of independent random variables[END_REF] with N 1 of the form |y -x| 2-ν and N 2 to be defined later. We begin by giving an estimate of the truncated Green function Σ 1 . Proposition 9. Let ν > 0 and suppose that E|X| r+(2-p) + < ∞. Then, for all a < r,

S 1 (x, y, ε) = Σ 1 + Σ 2 + Σ 3 =   N 1 n=0 + N 2 n=N 1 +1 + ε|x-y| 2 n=N 2   P(x + S(n) = y, τ x > n),
|y-x| 2-ν n=0 P(x + S(n) = y, τ x > n) = o(|x -y| a ).
Proof. Following the proof of [START_REF] Denisov | Random walks in cones[END_REF]Lem. 24], we introduce the stopping time

µ = inf{i 1 : |X(i)| |y -x| 1-ν/α },
where α is large enough and will be chosen later. Let n |y -x| 2-ν . Then

P(x + S(n) = y, τ x > n) = P(x + S(n) = y, τ x > n, µ > n) + P(x + S(n) = y, τ x > n, µ n).
On the one hand, using Fuk-Nagaev inequalities [START_REF] Fuk | Probabilistic inequalities for sums of independent random variables[END_REF] as in [START_REF] Denisov | Random walks in cones[END_REF]Cor. 23] yields

P(x + S(n) = y, τ x > n, µ > n) P(|S(n)| |x -y|/2, sup k n |X(k)| |y -x| 1-ν/α ) n √ de |x -y| 2-ν/α /2 |x -y| 2-ν √ de |x -y| 2-ν/α /2 exp(-C|x -y| ν/α )
for y large enough. On the other hand, recall that since X admits moments of order r(p) := r + (2 -p) + ,

P(x + S(n) = y, τ x > n, µ n) n k=1 P(τ x > k -1, |X(k)| |y -x| 1-ν/α , y + S (n -k) = x + S(k)) CV (x) E[|X| r(p) ] |y -x| (1-ν/α)r(p) n k=1 k -p/2 (n + 1 -k) -d/2 ,
where we have used the Markov property of the random walk, applied [START_REF] Eichelsbacher | Ordered random walks[END_REF] with u = 0 to S (n -k) and then [START_REF] Einmahl | Extensions of results of Komlós, Major, and Tusnády to the multivariate case[END_REF] in the last inequality. Hence, we get

|y-x| 2-ν n=0 P(x + S(n) = y, τ x > n) |y -x| 2-ν exp(-C|x -y| ν/α ) + CV (x) E[|X| r(p) ] |y -x| (1-ν/α)r(p) |y-x| 2-ν n=1 n k=1 k -p/2 (n + 1 -k) -d/2 C |y -x| -(1-ν/α)r(p) |y-x| 2-ν k=1 k -p/2 |y-x| 2-ν k=1 k -d/2 .
Since d 2, we have the elementary estimate, for some constant C > 0,

|y-x| 2-ν k=1 k -p/2 |y-x| 2-ν k=1 k -d/2 ∼ C log |y -x| 1 d=2 +1 p=2 |y -x| 2-ν (1-p/2)∧0 . Hence, |y-x| 2-ν n=0 P(x + S(n) = y, τ x > n) C|y -x| -(1-ν/α)r(p)+(2-ν)((1-p/2)∧0) log |y -x| 1 d=2 +1 p=2 .
Finally, since r(p) = r + (2 -p) + , for a < r and α large enough, we conclude the proof of Proposition 9.

We now conclude the proof of Theorem 1 (b).

Lemma 10. Suppose that E[|x| r(p) ] < ∞ with r(p) > p + d -2 + (2 -p) + . Then, lim ε→0 lim sup |y|→∞ dist(y,∂K)>|y| 1-ρ |y| 2p+d-2 u(y) S 1 (x, y, ε) = 0.
Proof. Our starting point is the three-term decomposition [START_REF] Esseen | On the concentration function of a sum of independent random variables[END_REF]. Since dist(y, ∂K) > |y| 1-ρ , we have u(y) |y| p-pρ by [START_REF] Durrett | Conditioned limit theorems for some null recurrent Markov processes[END_REF]. Hence, it suffices to prove that lim sup

|y|→∞ dist(y,∂K)>|y| 1-ρ |y| p+d-2+pρ (Σ 1 + Σ 2 ) = 0 ( 29 
)
and

lim ε→0 lim sup |y|→∞ dist(y,∂K)>|y| 1-ρ |y| 2p+d-2 u(y) Σ 3 = 0. (30) 
In order to prove (29), we start by the following estimate, obtained in Proposition 9, for ρ small enough:

Σ 1 = o(|x -y| -p/2-d/2-pρ ).
We now study Σ 2 . Let ν > 0 be such that (2 -ν)(1/2 + κ) > 1, with κ as in Lemma 5. Suppose that δ < ν. With c as in Lemma 5, introduce [START_REF] Doney | The Martin boundary and ratio limit theorems for killed random walks[END_REF], and that r > p/2 for d 2 and γ small enough, so that N 2 exists as soon as ρ is small enough. Furthermore, for d 2 and y large enough,

N 2 = inf{n 1 : exp -|y-x| 2 cn n -r+pρ }. Recall that r = r(p)(1/2 -γ) -1, see
N 2 N 1 , since for K large enough, exp   - |y -x| 2 c |y-x| 2 K log |y-x|   = |y -x| -K/c |y -x| 2 K log |x -y| -r+p/2
. By our choice of ν and δ < ν, |y -x| n 1/2+κ for n |y -x| 2-δ and y large enough. Applying Proposition 8 to Σ 2 then yields

Σ 2 CV (x)ε|x -y| 2 |y -x| 2-ν -r-p/2-d/2 CεV (x)u(y)|y -x| -(2r+p+d-2)+f (ν) C V (x) A 2 |y -x| -(2r+p+d-2)+f (ν)
, where f : R → R is linear. Since r > pρ , choosing ν small enough yields

Σ 2 CεV (x)|y -x| -(r+p+d-2+u) ,
with u = 2r -pρ > 0, for y large enough. Hence ( 29) is proved.

We turn to the term Σ 3 . First, by the choice of N 2 and Proposition 8,

Σ 3 CV (x)u(y) ε |y-x| 2 n=N 2 +1 n -p-d/2 exp - |y -x| 2 cn . Set g k,B (t) = t -k exp(-B/t), with B, k > 0. Then g k,B (t) = (Bt -k-2 -kt -k-1 ) exp(-B/t),
and thus g k,B is increasing on [0, B/k]. Applying the latter property to

k = p + d/2 and B = |y -x| 2 /c yields that if ε -1 > c(p + d/2
) (which we assume from now on), then Σ 3 Cε|y| -2p-d+2 u(y) exp(-ε -1 /c). This implies [START_REF] Fuk | Probabilistic inequalities for sums of independent random variables[END_REF], thereby completing the proof.

Boundary asymptotics of the Green function: the half-space case

In this section we shall consider a particular cone

K = x ∈ R d : x d > 0 .
Since the rotations of the space do not affect our moment assumptions, the results of this section remain valid for any half-space in R d . For this very particular cone, we have

• u(x) = x d ; • τ x = inf{n 1 : x d + S d (n) 0};
• V (x) depends on x d only and is proportional to the renewal function of ladder heights of the random walk {S d (n)}. In other words, the exit problem from K is actually a one-dimensional problem. This allows is to use existing results for one-dimensional walks.

The proof of Theorem 2 is based on the following simple generalization of known results for cones.

Lemma 11. Assume that E|X| 2+δ < ∞. Then, uniformly in x ∈ K with x d = o( √ n), (a) P(τ x > n) ∼ κV (x)n -1/2 ; (b) ( x+S([nt]) √ n ) t∈[0,1] conditioned on {τ x > n} converges weakly to the Brownian meander in K; (c) sup y∈K n 1/2+d/2 P(x + S(n) = y; τ x > n) -cV (x) y d √ n e -|y-x| 2 /2n → 0.
Proof. The first statement is the well-known result for one-dimensional random walks, see [START_REF] Doney | Local behaviour of first passage probabilities[END_REF]Cor. 3]. The second and third statements for fixed starting points x have been proved in [START_REF] Duraj | Invariance principles for random walks in cones[END_REF] and in [START_REF] Denisov | Random walks in cones[END_REF], respectively. To consider the case of growing x d , one has to make only one change: Lemma 24 from [START_REF] Denisov | Random walks in cones[END_REF] should be replaced by the estimate

lim n→∞ 1 V (x) E |x + S(ν n )|; τ x > ν n , |x + S(ν n )| > θ n √ n, ν n n 1-ε = 0 uniformly in x d θ n √ n/2. If x d n 1/2-
ε then ν n = 0 and the expectation equals zero. If x d n 1/2-ε then one repeats the proof of [START_REF] Denisov | Random walks in cones[END_REF]Lem. 24] with p replaced by 1 and uses the part (a) of the lemma to obtain an estimate for the sum j n 1-ε P(τ x > j -1) uniform in x d . (In [START_REF] Denisov | Random walks in cones[END_REF], the Markov inequality has been used, since one does not have the statement (a) in general cones.)

Lemma 12. Uniformly in y with y d = o( √ n), P(x + S(n) = y, τ x > n) ∼ c V (x)V (y) n 1+d/2 e -|y| 2 /2n . Proof. Set m = n 2 and write P(x+S(n) = y, τ x > n) = z∈K P(x + S(n -m) = z, τ x > n -m)P(z + S(m) = y, τ z > m) = z∈K P(x + S(n -m) = z, τ x > n -m)P(y + S (m) = z, τ y > m),
where we recall that S = -S is the reverse random walk and

τ y := inf{n 1 : y + S (n) / ∈ K}.
Applying part (c) of Lemma 11 to the random walk {S (n)}, we obtain

P(x+S(n) = y, τ x > n) = cV (y) m 1+d/2 z∈K z d e -|z-y| 2 /2m P(x + S(n -m) = z, τ x > n -m) + o V (y)m -1/2-d/2 P(τ x > n -m) .
Using now Lemma 11 (a), we get

P(x+S(n) = y, τ x > n) = cV (y)V (x) m 1/2+d/2 (n -m) 1/2 E x S d (n -m) √ m e -|S(n-m)-y| 2 /2m τ x > n -m + o V (x)V (y) m -1/2-d/2 (n -m) 1/2 .
It follows from part (b) of the previous lemma that

E x S d (n -m) √ m e -|S(n-m)-y| 2 /2m τ x > n -m ∼ E (M K,d (1)) e -|M K -y/ √ m| 2 /2 ,
where M K (t) = (M K,1 (t), M K,2 (t), . . . , M K,d (t)) is the meander in K.

Since K = R d-1 × R + , all coordinates of M K are independent. Furthermore, M K,1 (t), . . . , M K,d-1 (t) are Brownian motions and M K,d (t) is the one-dimensional Brownian meander. Combining these observations with y d = o( √ n), we conclude that

E (M K,d (1)) e -|M K -y/ √ m| 2 /2 ∼ E M K,d (1)e -M 2 K,d /2 d-1 i=1 E e -(M K,i (1)-y i / √ m) 2 /2 = C d-1 i=1 e -y 2 i /4m ∼ Ce -|y| 2 /2n .
This completes the proof.

Proof of Theorem 2. If y is such that y d α|y| for some α > 0 then it suffices to repeat the proof of Theorem 1. We thus consider the boundary case y d = o(|y|). Using Lemma 12, one easily obtains

lim ε→0 lim |y|→∞ |y| d V (x)v (y) S 2 (x, y, ε) = c. It follows that lim ε→0 lim |y|→∞ |y| d V (x)v (y) S 2 (x, y, ε) = c lim ε→0 lim |y|→∞ n ε|y| 2 |y| d n -1-d 2 e -|y| 2 2n = c ∞ 0 v -1-d/2 e -1 2v dv,
and the last integral is finite. It follows that the theorem will be proven if we show that lim

ε→0 lim |y|→∞ |y| d V (x)V (y) S 1 (x, y, ε) = 0. ( 31 
)
Using an appropriate rotation, we can reduce everything to the case y k = o(|y|) for any k = 2, . . . , d -1 and y 1 ∼ |y|. This also implies y d = o(|y|). We first split the probability P(x + S(n) = y, τ x > n) into two parts:

P(x+S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 )+P(x+S(n) = y, τ x > n, max k n |X 1 (k)| > γy 1 ),
where γ ∈ (0, 1). Introduce the stopping time

σ γ := inf{k 1 : |X 1 (k)| > γy 1 }.
Then, by the Markov property,

P(x + S(n) = y, τ x > n, max k n |X 1 (k)| > γy 1 ) = n k=1 P(x + S(n) = y, τ x > n, σ γ = k) n k=1 P(τ x > k -1)P(|X 1 | > γy 1 ) max z P(S(n -k) = z).
Using now the bounds P(τ x > k) CV (x)k -1/2 and max z P(S(k) = z) Ck -d/2 , we obtain

P(x + S(n) = y, τ x > n, max k n |X 1 (k)| > γy 1 ) CV (x)P(|X 1 | > γy 1 ) n k=1 1 √ k 1 (n -k + 1) d/2 CV (x)P(|X 1 | > γy 1 ) (log n) 1 d=2 √ n .
Here, in the last step we have splited the sum n k=1

1 √ k 1 (n-k+1) d/2 into n 2
k=1 and n k= n 2 and used elementary inequalities. This implies that

ε|y| 2 n=1 P(x+S(n) = y, τ x > n, max k n |X 1 (k)| > γy 1 ) C √ εV (x)P(|X 1 | > γy 1 )|y| (log |y|) 1 d=2 .
As a result, for all random walks satisfying

E |X| d+1 (log |X|) 1 d=2 < ∞,
we have

ε|y| 2 n=1 P(x + S(n) = y, τ x > n, max k n |X 1 (k)| > γy 1 ) = o V (x) |y| d . (32) 
In order to estimate P(x + S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 ) we shall perform the following change of measure:

P(X(k) ∈ dz) = e hz 1 ϕ(h) P(X(k) ∈ dz; |X 1 (k)| γy 1 ), where ϕ(h) = E e hX 1 ; |X 1 | γy 1 .
Therefore,

P(x + S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 ) = e -hy 1 ϕ n (h)P(x + S(n) = y, τ x > n).
(33) According to [30, Eq. ( 21)],

e -hy 1 ϕ n (h) exp -hy 1 + hnE[X 1 ; |X 1 | γy 1 ] + e hγy 1 -1 -hγy 1 γ 2 y 2 1 nE[X 2 1 ; |X 1 | γy 1 ] . Choosing h = 1 γy 1 log 1 + γy 2 1 nE[X 2 1 ; |X 1 | γy 1 ] (34) 
and noting that

|E[X 1 ; |X 1 | γy 1 ]| = |E[X 1 ; |X 1 | > γy 1 ]| 1 γy 1 E[X 2 1 ] = 1 γy 1 ,
we conclude that uniformly for n γ|y| 2 , it holds

e -hy 1 ϕ n (h) en γy 2 1 1/γ .
Plugging this into [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains Astérisque[END_REF], we obtain that uniformly for n γ|y| 2 ,

P x + S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 C(γ) n |y| 2 1/γ P(x + S(n) = y, τ x > n). (35)
According to [28, Thm 6.2], there exists an absolute constant C such that

sup z P(S(n) = z) C n d/2 χ -d/2 ,
where

χ := sup u 1 1 u 2 inf |t|=1 E [(t, X(1) -X(2)); |X(1) -X(2)| u] .
Since h defined in [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on a half-space[END_REF] converges to zero as |y| → ∞ uniformly in n γ|y| for all large values u. As a result, there exists χ 0 > 0 such that χ χ 0 for all |y| large enough and all n γ|y| 2 . Consequently,

sup z P(S(n) = z) Cχ -d/2 0 n d/2 . ( 36 
)
Combining this bound with [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on Z d +[END_REF], we obtain for all r ∈ (0, 1) and γ < 2/d,

|y| 2-r n=1 P x + S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 C(γ)χ -d/2 0 |y| -2/γ |y| 2-r n=1 n 1/γ-d/2 C(γ)χ -d/2 0 |y| -2/γ |y| (2-r)(1/γ-d/2+1) ,
for all n γ|y| 2 . If we choose γ so small that r(1/γ -d/2 + 1) > 2, then

|y| 2-r n=1 P x + S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 = o 1 |y| d . (37) 
In the case n |y| 2-r , we cannot ignore the condition τ x > n. By the Markov property at times n/3 and 2n/3 and by [START_REF] Ignatiouk-Robert | Harmonic functions of random walks in a semigroup via ladder heights[END_REF],

P(x + S(n) = y, τ x > n)
z,z P(x + S(n/3) = z, τ x > n/3)P(z + S(n/3) = z )P(z + S(n/3) = y, τ z > n/3) = z,z P(x + S(n/3) = z, τ x > n/3)P(z + S(n/3) = z )P(y + S (n/3) = z , τ y > n/3) C n d/2 P(τ x > n/3)P(τ y > n/3).

Therefore, it remains to show that, uniformly in n ∈ [|y| 2-r , |y| 2 ],

P(τ x > n/3) C 1 + x d √ n . (38) 
Indeed, from this estimate and from the corresponding estimate for the reverse walk we get

P(x + S(n) = y, τ x > n) C (x d + 1)(y d + 1) n d/2+1 .
With the help of [START_REF] Ignatiouk-Robert | Martin boundary of a killed random walk on Z d +[END_REF], this implies that

ε|y| 2 n=|y| 2-r P x + S(n) = y, τ x > n, max k n |X 1 (k)| γy 1 Cε 1/γ-d/2 (x d +1)(y d +1)|y| -d .
Combining this with (32) and (37), we obtain [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

To derive [START_REF] Lecouvey | t-Martin boundary of killed random walks in the quadrant[END_REF], we first estimate some moments of the random walk S d (n) under P. By definition of this probability measure,

E[X d ] = 1 ϕ(h) E X d e hX 1 ; |X 1 | γy 1 .
For the expectation on the right-hand side, we have the representation

E X d e hX 1 ; |X 1 | γy 1 = E [X d ; |X 1 | γy 1 ] + hE [X d X 1 ; |X 1 | γy 1 ] + E X d (e hX 1 -1 -hX 1 ); |X 1 | γy 1 = -E [X d ; |X 1 | > γy 1 ] -hE [X d X 1 ; |X 1 | > γy 1 ] + E X d (e hX 1 -1 -hX 1 ); |X 1 | γy 1 .
In the last step, we have used the equalities

E[X d ] = E[X d X 1 ] = 0. If E|X| 3+δ < ∞, (39) 
then by the Markov inequality,

E [X d ; |X 1 | > γy 1 ] + hE [X d X 1 ; |X 1 | > γy 1 ] = o(y -2 1 ) = o(n -1 ).
Therefore,

E X d e hX 1 ; |X 1 | γy 1 = o(n -1 ) + E X d (e hX 1 -1 -hX 1 ); |X 1 | γy 1 .
It is obvious that |e x -1 -x| x 2 2 e |x| . Therefore,

E X d (e hX 1 -1 -hX 1 ); |X 1 | γy 1 h 2 2 E |X d |X 2 1 e h|X 1 | ; |X 1 | γy 1 e 2 h 2 E|X d |X 2 1 + h 2 e hγy 1 E |X d |X 2 1 ; |X 1 | > 1 h e 2 h 2 E|X d |X 2 1 + h 2+δ e hγy 1 E|X d ||X 1 | 2+δ e 2 h 2 E|X| 3 + h 2+δ e hγy 1 E|X| 3+δ .
In the last step, we have used Hölder's inequality. It is immediate from the definition of h that h 2 cn -1 . Further, if n |y| 2-r with some r < δ 2 , then h 2+δ e hγy 1 = o(n -1 ). From these estimates and from [START_REF] Mogul'skii | Absolute estimates for moments of certain boundary functionals[END_REF], we obtain that uniformly in n ∈

[|y| 2-r , |y| 2 ], E X d e hX 1 ; |X 1 | γy 1 c n . (40) 
By the same arguments,

ϕ(h) = E e hX 1 ; |X 1 | γy 1 = P(|X 1 | γy 1 ) + hE [X 1 ; |X 1 | γy 1 ] + E e hX 1 -1 -hX 1 ; |X 1 | γy 1 = 1 -P(|X 1 | > γy 1 ) -hE [X 1 ; |X 1 | > γy 1 ] + E e hX 1 -1 -hX 1 ; |X 1 | γy 1 = 1 + o(n -1 ). (41) 
Combining this with (40), we finally obtain

EX d c 1 n . (42) 
We now turn to the second and third moments of X d under P. Using (41) and the moment assumption, we have

EX 2 d = 1 ϕ(h) E[X 2 d e hX 1 ; |X 1 | γy 1 ] = (1 + o(1))E[X 2 d e hX 1 ; |X 1 | γy 1 ] = E[X 2 d ; |X 1 | γy 1 ] + o(1) + O E X 2 d (e hX 1 -1); |X 1 | γy 1 = 1 + o(1) + O he hγy 1 .
Noting that he hγy 1 = o(1) for all n |y| 2-r , we get

EX 2 d = 1 + o(1). (43) 
Similarly,

E|X d | 3 = (1 + o(1))E[|X d | 3 e hX 1 ; |X 1 | γy 1 ] c E[|X d | 3 ; |X 1 | 1/h] + e hγy 1 E[|X d | 3 ; |X 1 | > 1/h] c E|X d | 3 + h δ e hγy 1 E|X d | 3+γ .
Using once again the fact that h δ e hγy 1 = o(1) for n |y| 2-r , we arrive at

E|X d | 3 c 3 . ( 44 
)
Now we can derive [START_REF] Lecouvey | t-Martin boundary of killed random walks in the quadrant[END_REF]. First, it follows from (42) that

P(τ x > n/3) P(τ 0 x+c 1 > n/3), where τ 0 y := inf{k 1 : y + S 0 d (k) 0} and S 0 d (k) = S d (k) -kEX d .
Applying [START_REF] Denisov | First-passage times for random walks with nonidentically distributed increments[END_REF]Lem. 25] to the random walk S 0 d , we have

P(τ 0 y > k) E[y + S 0 d (k); τ 0 y > k] E[(y + S 0 d (k)) + ]
.

Relations ( 43) and ( 44) allow the application of the central limit theorem to the walk

S 0 d (k), which gives E[(y + S 0 d (k)) + ] c √ k. Consequently, P(τ 0 y > k) C √ k E[y + S 0 d (k); τ 0 y > k].
Further, by the optional stopping theorem,

E[y + S 0 d (k); τ 0 y > k] = y -E[y + S 0 d (τ 0 y ); τ 0 y k] y -E[y + S 0 d (τ 0 y )]
. We now use inequality [39, Eq. ( 7)], which states that there exists an absolute constant A such that

-E[y + S 0 d (τ 0 y )] A E|X d | 3 EX 2 d .
Combining this with ( 43) and ( 44), we finally get

P(τ 0 y > k) C(y + 1) √ k ,
which implies [START_REF] Lecouvey | t-Martin boundary of killed random walks in the quadrant[END_REF].

Boundary asymptotics of the Green function: the general case

The proof of Theorem 3 consists in splitting the Green function G K (x, y) in ( 2) as a sum of two terms, the first (resp. second) one being given by the contribution in the large deviation (resp. asymptotic) regime.

The main difficulty is to prove that the first term is actually dominated by the second one; in order to achieve this, we use a coupling of the random walk with a Brownian motion, with stronger bounds than the ones initially used in [START_REF] Denisov | Random walks in cones[END_REF]. The drawback is the need of stronger moment assumptions on the increments, which is the main reason why the assumption (M 1) is used instead of the classical moment condition of [START_REF] Denisov | Random walks in cones[END_REF], namely E|X| r(p) < ∞ with r(p) = p if p > 2 and r(p) = 2 + δ for some δ > 0 if p 2.

The arguments to show Theorem 3 are very different in the C 2 regular case, and two proofs are provided in this section.

Exact asymptotics with C 2 -regularity. In this part, we will assume that the cone is C 2 . Before starting the proof of Theorem 3, we need to introduce some notation. Let |y| → ∞ in such a way that dist(y, ∂K) = o(|y|). Let y ⊥ ∈ ∂K be defined by the relation dist(y, ∂K) = |y -y ⊥ |. Set σ(y) := y ⊥ /|y| ∈ ∂Σ and assume that σ(y) converges as |y| → ∞ to some σ ∈ ∂Σ. Let H y denote a tangent hyperplane at point y ⊥ . Let P n be the distribution of the linear interpolation of t → (y + S(nt))/ √ n conditioned to stay in the half-space K y containing the cone K and having boundary H y . Then P n → P weakly on C([0, 1]). Denote

A n := {f ∈ C([0, 1]) : f (k/n) ∈ K for all 1 k n}. Then lim inf A n ⊇ {f ∈ C([0, 1]) : f (t) ∈ K for all t ∈ (0, 1]} and lim sup A n ⊆ {f ∈ C([0, 1]) : f (t) ∈ K for all t ∈ (0, 1]}, where A denote the closure of A.
Denote for every fixed n by [0, 1] t → S(nt) the linear interpolation of {S(k)} k n . The conditions to apply [START_REF] Durrett | Conditioned limit theorems for some null recurrent Markov processes[END_REF]Thm 2.3] are met. This leads to an invariance principle: [0, 1] r → y+S(nr) √ n converges weakly as n |y| 2 → t to the Brownian meander (B r ) r 1 inside the cone K started at σ √ t . In particular, with T y := inf{n 1 : y + S(n) / ∈ K y },

P y + S(n) √ n ∈ B T y > n ∼ Q σ,t (B) = B q σ,t (z)dz, n |y| 2 → t, (45) 
where q σ,t (z) is the density of the Brownian meander in K, started at σ √ t and evaluated at time 1. Theorem 2.3 in [START_REF] Durrett | Conditioned limit theorems for some null recurrent Markov processes[END_REF] also leads to

P(τ y > n|T y > n) → c σ,t . (46) 
The relations [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF] and [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] imply that

V (y) c|y| p-1 (1 + dist(y, ∂K)). (47) 
Indeed, by the harmonicity of V , one has for all n 1,

V (y) = E[V (y + S(n)); τ y > n].
Fix now some ε > 0 and note that choosing n = |y| 2 , it follows that V (z) ∼ u(z) uniformly as z → ∞ as long as the distance of z to ∂K is at least ε|z|, see [START_REF] Denisov | Random walks in cones[END_REF]Lem. 13].

We obtain, as |y| → ∞ and ε → 0,

V (y) P(T y > |y| 2 )c σ,1 |y| p K u(z)q σ,1 (z)dz.
Due to results for the one-dimensional random walks, we arrive at

P(T y > |y| 2 ) c 1 + dist(y, ∂K) |y| ,
which establishes [START_REF] Spitzer | Principles of Random Walk[END_REF].

Before proving Theorem 3, we record an auxiliary estimate needed in its proof.

Lemma 13. Define

φ σ (t) = c σ,t K u(z)e -|z| 2 2 q σ,t (z)dz.
Then there exists some c > 0 such that as t → 0, φ σ (t) = o(e -c/t ).

Proof. First, due to the invariance principle for the half-space, it holds

c σ,t = P σ (τ me > t) = P σ/ √ t (τ me > 1)
, where τ me := inf{t > 0 : M σ (t) ∈ K y }. Here M σ (t) is a Brownian meander in K y , whereas we will denote the Brownian meander in K by M σ K (t). Since |σ| = 1 and K is contained in K y , it is clear that c σ,t → 1 as t → 0.

Then we have

φ σ (t) CE σ/ √ t u(M σ K (1))e -|M σ K (1)| 2 2 CE σ/ √ t u(M σ (1))e -|M σ (1)| 2 2 .
The second inequality can be easily justified using the invariance principles for meanders in K and K y as well as the fact that c σ,t → 1 is bounded away from zero. It follows that

φ σ (t) CE σ/ √ t e -|M σ (1)| 2 4 .
Due to rotational invariance of Brownian motion, the expectation above doesn't depend on σ, so that we can choose σ = (1, 0, . . . , 0) and

K y = R d-1 × R + .
The first d -1 coordinates become independent Brownian motions, whereas the last one is a 1-dimensional Brownian meander (see [START_REF] Durrett | Weak convergence to Brownian meander and Brownian excursion[END_REF] for its density). This finishes the proof.

Proof of Theorem 3 when K is C 2 . To estimate the contribution coming from large values of n, one does not need the limit theorems from the previous paragraph: quite rough estimates turn out to be sufficient. Set m = n/2 . Then, applying the Markov property at time m and inverting the time in the second part of the path, we obtain

P(x + S(n) = y, τ x > n) = z∈K P(x + S(m) = z, τ x > m)P(y + S (n -m) = z, τ y > n -m) max z∈K P(x + S(m) = z, τ x > m)P(τ y > n -m).
By [START_REF] Denisov | Random walks in cones[END_REF]Thm 5],

max z∈K P(x + S(m) = z, τ x > m) C V (x) m p/2+d/2
. Furthermore, due to results for the one-dimensional walks (see for example [START_REF] Denisov | An exact asymptotics for the moment of crossing a curved boundary by an asymptotically stable random walk[END_REF]Lem. 3]),

P(τ y > n -m) P(T y > n -m) C 1 + dist(y, ∂K) √ n -m . ( 48 
)
Combining these estimates, we obtain

P(x + S(n) = y) CV (x)(1 + dist(y, ∂K))n -(p+d+1)/2 .
Consequently, for A 2 and |y| 1,

n A|y| 2 P(x + S(n) = y) CV (x)(1 + dist(y, ∂K)) n A|y| 2 n -(p+d+1)/2 CV (x)A -(p+d-1)/2 1 + dist(y, ∂K) |y| p+d-1 . (49) 
We turn now to the middle part, namely, n ∈ (ε|y| 2 , A|y| 2 ). Using again the Markov property at time m = n/2 and applying [16, Thm 5], we obtain

P(x + S(n) = y, τ x > n) = z∈K P(x + S(m) = z, τ x > m)P(y + S (n -m) = z, τ y > n -m) = κH 0 V (x) m p/2+d/2 z∈K u z √ m e -|z| 2 2m + o(1) P(y + S (n -m) = z, τ y > n -m) = κH 0 V (x) m p/2+d/2 E u S (n -m) √ m e -|S (n-m)| 2 2m ; τ y > n -m + o P(τ y > n -m) m p/2+d/2 .
Taking into account (48), we have

P(x + S(n) = y, τ x > n) = κH 0 V (x) m p/2+d/2 E u S (n -m) √ m e -|S (n-m)| 2 2m ; τ y > n -m + o 1 + dist(y, ∂K) n (p+d+1)/2 .
Next, it follows from ( 45) and ( 46)

that if n |y 2 | ∼ t, then E u S (n -m) √ m e -|S (n-m)| 2 2m ; τ y > n -m ∼ P(T y > n -m)φ σ (t/2).
Since T y is an exit time from a half-space,

P(T y > k) ∼ v (y)k -1/2 ,
where v (y) is the positive harmonic function for S killed at leaving the half-space K σ . As a result,

P(x + S(n) = y, τ x > n) = C 0 V (x)v (y) n (p+d+1)/2 φ σ n |y| 2 + o 1 + dist(y, ∂K) n (p+d+1)/2 ,
where

C 0 := κH 0 2 (p+d+1)/2 .

This representation implies that

A|y| 2

ε|y| 2 P(x + S(n) = y, τ x > n) = C 0 V (x)v (y) A|y| 2 ε|y| 2 n -(p+d+1)/2 φ σ n 2|y| 2 + o 1 + dist(y, ∂K) n (p+d-1)/2 = C 0 V (x)v (y) |y| p+d-1 A ε φ σ (t/2)t -(p+d+1)/2 dt + o 1 + dist(y, ∂K) n (p+d-1)/2 .
Combining this with (49) and letting A → ∞, one can easily obtain

lim |y|→∞ |y| p+d-1 V (x)v (y) S 2 (x, y, ε) = C 0 ∞ ε φ σ (t/2)t -(p+d+1)/2 dt.
From Lemma 13 it follows

lim ε→0 lim |y|→∞ |y| p+d-1 V (x)v (y) S 2 (x, y, ε) = C 0 ∞ 0 φ σ (t/2)t -(p+d+1)/2 dt. (50) 
It remains to estimate S 1 (x, y, ε). We shall use the same strategy as in the proof of Theorem 1, but instead of the Green function for the whole space we shall use the Green function for the half-space K y . More precisely,

S 1 (x, y, ε) = n<ε|y 2 | P(x + S(n) = y, τ x > n θ y ) = n<ε|y 2 | n k=1 z∈B δ,y P(x + S(n) = z, τ x > k = θ y )P(z + S(n -k) = y, τ z > n -k) = k<ε|y| 2 z∈B δ,y P(x + S(n) = z, τ x > k = θ y ) j<ε|y| 2 -k P(z + S(j) = y, τ z > j) k<ε|y| 2 z∈B δ,y P(x + S(n) = z, τ x > k = θ y ) j<ε|y| 2 P(y + S (j) = z, T y > j) = E G ε,y (x + S(θ y )); τ x > θ y , θ y ε|y| 2 , where G ε,y (z) = j<ε|y| 2 P(y + S (j) = z, T y > j).
Applying Theorem 2 and (18) to the random walk S (n), we obtain

G ε,y (z) C v (y)(1 + dist(z, H y )) 1 + |z -y| d ∧ 1.
Therefore,

S 1 (x, y, ε) CP(|y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 ) + C(δ) v (y) |y| d E (1 + dist(x + S(θ y ), H y ); τ x > θ y , θ y ε|y| 2 . ( 51 
)
The first term has been estimated in [START_REF] Cohen | Boundary value problems in queueing system analysis[END_REF] for random walks having finite moments of order r 2 (p) := p + d -1 + (2 -p) + :

P(|y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 ) = o(|y| -p-d+1 ). (52) 
In order to estimate the second term in (51), we shall perform again the change of measure with the harmonic function V :

E (1 + dist(x + S(θ y ), H y ); τ x > θ y , θ y ε|y| 2 = V (x)E (V ) 1 + dist(x + S(θ y ), H y ) V (x + S(θ y )) ; θ y ε|y| 2 .
Applying now [START_REF] Spitzer | Principles of Random Walk[END_REF], we obtain

E (1 + dist(x + S(θ y ), H y ); τ x > θ y , θ y ε|y| 2 CV (x)|y| -p+1 P (V ) (θ y ε|y| 2 ).
From this estimate and ( 14), we conclude that lim

ε→0 lim |y|→∞ |y| p-1 E (1 + dist(x + S(θ y ), H y ); τ x > θ y , θ y ε|y| 2 = 0.
Combining this estimate with ( 51) and ( 52) as well as [16, Lem. 13], we get

lim ε→0 lim |y|→∞ |y| p+d-1 S 1 (x, y, ε) = 0. (53) 
Since v (y) is bounded from below by a positive number, ( 53) and ( 50) yield the desired result for the case E[|X| r 2 (p) ] < ∞ due to classical results for the one-dimensional random walk. Assume now that (M 2) holds. It is easy to see that the above proof that lim

ε→0 lim |y|→∞ |y| p+d-1 V (x)v (y) S 2 (x, y, ε) = C 0 ∞ 0 φ σ (t)t -(p+d+1)/2 dt, (54) 
goes through again word for word. Therefore we focus on the asymptotics of S 1 (x, y, ε) in the following. With similar steps as above it holds

S 1 (x, y, ε) C(δ)v (y)E 1 + dist(x + S(θ y ), H y ) 1 + |x + S(θ y ) -y| d , |y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 + C(δ) v (y) |y| d E (1 + dist(x + S(θ y ), H y ); τ x > θ y , θ y ε|y| 2 .
The second summand can be treated just as above with help of ( 47) so that we need to show

E 1 + dist(x + S(θ y ), H y ) 1 + |x + S(θ y ) -y| d , |y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 = O(|y| -p-d+1 ).
It holds

1 + dist(x + S(θ y ), H y ) 1 + |S(θ y ) -y| + |y -y ⊥ | = o(|y|) + |S(θ y ) -y|.
To complete the proof we now show for r = d -1 and r = d, S 2,r (x, y, ε)

:= E 1 1 + |x + S(θ y ) -y| r , |y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 = o(|y| -p-d+1 ).
With a similar calculation as in the proof of Theorem 1 (using ( 15)), we obtain

E 1 1 + |y -x -S(θ y )| d-1 ; |y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 C(δ)|y| -p-d+1 f (δ(1 -δ)|y|)E[τ x ; τ x < |y| 2 ] δ 2 |y| m=1 m d-1 m d-1 C(δ)|y| -p-d+2 f (δ(1 -δ)|y|)|y| (2-p) + .
Finally,

E 1 1 + |y -x -S(θ y )| d ; |y -x -S(θ y )| δ 2 |y|, τ x > θ y , θ y ε|y| 2 C(δ)|y| -p-d+1 f (δ(1 -δ)|y|)E[τ x ; τ x < |y| 2 ] δ 2 |y| m=1 m d-1 m d C(δ) log(|y|)|y| -p-d+2 f (δ(1 -δ)|y|)|y| (2-p) + .
This finishes the proof of Theorem 3 when K is C 2 .

Exact asymptotics in the general case. We now turn to the general convex case, without assuming that the boundary is C 2 . Recall from (6) the definition of

K ρ := {y ∈ K : dist(y, ∂K) |y| 1-ρ },
where ρ is given in Theorem 1. Further, for y ∈ K, θ y = inf{n 0 : y + S (n) ∈ K ρ } was introduced in (7).

Proof of Theorem 3 in the general case. Split the Green function as

G K (x, y) = |y-x| 2-2ε -1 n=1 P(y + S (n) = x, τ y > n) + ∞ n=|y-x| 2-2ε P(y + S (n) = x, τ y > n, θ y |y -x| 2-2ε ) + ∞ n=|y-x| 2-2ε P(y + S (n) = x, τ y > n, θ y |y -x| 2-3ε , |S θy | |y -x| 1-ε/α ) + ∞ n=|y-x| 2-2ε P(y + S (n) = x, τ y > n, θ y |y -x| 2-3ε ∧ τ y , |S θy | |y -x| 1-ε/α ) := T 1 + T 2 + T 3 + T 4 ,
and we shall study successively the terms T 1 , T 2 , T 3 and T 4 .

Study of T 1 and T 2 . It follows from Proposition 8 that T 1

C|y -x| -a , for some parameter a > p + q + d -2 + (2 -p) + . In order to analyse T 2 , we need the preliminary estimates (55) and (56) below. To that purpose, remark that θ y = t y,ρ (|y| 2-2ρ ), see [START_REF] Durrett | Weak convergence to Brownian meander and Brownian excursion[END_REF]. Hence, noting that t y,ε (n) is increasing in n, we get with [START_REF] Denisov | Random walks in cones[END_REF]Lem. 14]

P(θ y > n 1-ε , τ y > n) P(t y,ε (n) > n 1-ε , τ y > n) C exp(n -ε ) (55)
for n |y| 2-2ε . Applying Lemma 15 to the stopping time θ y and using the moment condition E|X| r(p) < ∞, we obtain that there exist C > 0 and α > 0 such that

P |S θy | |y -x| 1-ε/α , θ y |y -x| 2-ε , τ y > |y -x| 2-ε C|y -x| -s , (56) 
with s > (2 -2ε)(p + q + d -4 + (2 -p) + )/2.
Let us now write C|y| -2p-d+2 |y| p-q +q +O(ε) P(τ y > θ y , θ y |y -

T 2 = n |y-x| 2-2ε P(x + S(n) = y, τ x > n, θ y n 1-ε ) + n |y-x| 2-2ε P(x + S(n) = y, τ x > n, |y -x| 2-3ε θ y n 1-ε ).
x| 2-3ε , |S(θ y )| |y -x| 1-ε/α ),
for some q > q > q small enough, where we have used the fact that y + S (θ y ) ∈ K ε , |S(θ y )| |y -x| 1-ε/α and Lemma 19 to give a lower bound on u(y + S (θ y )). Hence,

T 4 |y| -p-q +q -d+2+O(ε) (P(τ y > |y -x| 2-3ε ) -C exp(-|y| ε ) -K|y -x| s ).
By Lemma 18, P(τ y > |y -x| 2-3ε ) C|y -x| -q /2(2-3ε) and s > q /2 for ε and q small enough, which yields T 4 c|y| -p-q -d+2+O(ε) . Hence, for ε and q small enough, for the same reasons as before, the result is deduced.

T 1 + T 2 + T 3 = o(T 4 ).
The uniqueness of the harmonic function is then a straightforward deduction of the latter theorem together with Martin boundary theory.

Corollary 14. The Martin boundary of S killed on the boundary of K is reduced to a singleton, and there exists a unique harmonic function (up to multiplication by a constant).

Proof. Let x 0 , x ∈ K and let (y n ) be a sequence in K going to infinity. Then, by Theorems 1 and 3, as n → ∞,

G K (x, y n ) G K (x 0 , y n ) → V (x) V (x 0 ) .
The Martin boundary is thus reduced to a singleton.

Optimality of the moment conditions

In this section, we prove that the assumptions of Theorems 1 and 3 are optimal. Uchiyama [START_REF] Uchiyama | Green's functions for random walks on Z N[END_REF] has shown, see Theorem 2 there, that if d 5 and

E|X| d-2 < ∞, then G R d (0, z) ∼ c |z| d-2
as |z| → ∞. The same asymptotics is valid when d = 4 or d = 3, provided that respectively E|X| 2 log |X| < ∞ or E|X| 2 < ∞.

Uchiyama mentions also that this moment condition is optimal: for any ε > 0, there exists a random walk satisfying E|X| d-2-ε < ∞ and lim sup

|z|→∞ |z| d-2 G R d (0, z) = ∞.
Uchiyama considers dimensions 4 and 5 only, but it is quite simple to show that this statement holds in every dimension d 5. We now give an example in our setting of a random walk which shows the optimality of Uchiyama's condition and of the moment condition in Theorem 1. Our example is just a multidimensional variation of the classical Williamson example, see [START_REF] Williamson | Random walks and Riesz kernels[END_REF].

Let d be greater than 4 and consider X with the following distribution. For every n 1 and for every basis vector e k put

P(X = ±2 n e k ) = q n 2d ,
where the sequence q n is such that

∞ n=1 q n = 1 and q n ∼ c log n 2 n(d-2) .
Clearly,

E|X| d-2 = ∞ and E |X| d-2 log 1+ε |X| < ∞.
Using now the obvious inequality G R d (0, x) P(X = x), we conclude that for every j = 1, . . . , d,

lim n→∞ 2 (d-2)n G R d (0, ±2 n e j ) = ∞.
If we have a cone K such that p 2 and e j ∈ Σ for some j, then, choosing q n ∼ c log n 2 n(p+d-2) , we also have lim n→∞

2 (p+d-2)n G K (e j , (1 + 2 n )e j ) = ∞.
Therefore, the finiteness of E|X(1)| r 1 (p) cannot be replaced by a weaker moment assumption.

But Uchiyama shows that the moment assumption E|X| d-2 is not necessary, as it can be replaced by P(X = x) = o(|x| -d-2 ), which implies the existence of the second moment only. In Theorem 1 we have a similar situation: the moment condition E|X| r 1 (p) < ∞ is not necessary and can be replaced by the assumption (M 2), which yields the finiteness of E|X| p∨2 only. It has been shown in [START_REF] Denisov | Random walks in cones[END_REF] that if p > 2, the condition E|X| p < ∞ is an optimal moment condition for the existence of the harmonic function V (x).

Clearly, one can adapt the random walk from the example above to show that the moment assumption in the second statement of Theorem 3 is minimal as well. Indeed, it suffices to take q n ∼ c log n 2 n(p+d-1) and to assume that one of the vectors ±e j belongs to the boundary of the cone K.

In order to show that the moment conditions in the first claim of Theorem 3 are nearly minimal we consider the cone K = R d + , d 3. Clearly, p = d for this cone. Set σ = (1, 0, 0, . . . , 0). Then one has K σ = R × R d-1 + and q σ = d -1. We assume again that P(X = ±2 n e k ) = q n 2d .

This time we choose q n ∼ c log n 2 3(d-1)n . Denoting by 1 the vector e

1 + • • • + e d , we obtain that as n → ∞, G K (1, 1 + 2 n e 1 ) 2 -3(d-1)n .
Moreover, it is rather simple to see that E[u(y ρ ), τ y > θ y ] converges to a positive constant for 1 + 2 n e 1 . As a result, the first statement may fail for a random walk with E|X| 3d-3 = ∞. Remark that the first statement requires not only finiteness of moment of order p + q σ + d -2 + (2 -p) + , but also finiteness of some moment strictly greater than p + q σ + d -2 + (2 -p) + . We conjecture that this condition is actually sharp when d 3.

Boundary asymptotics of the survival probability

The goal of this section is to collect lower bounds on the survival probability at time n 1 of the random walk starting at x when n = o(|x| 2 ) and x → ∞ while Lemma 15. Let 0 r p and A > 0, and suppose that the increment X admits moments of order κ > r. Set

S(x, n)

+ = sup 1 n 1-ε |S( )|1 τx> .
Then, for each s < (κ -r)/2 and β ∈ ((p/2 -1) ∧ 0, p/2), there exists C > 0 such that

E (S(x, n) + ) r ; S(x, n) + n 1/2-ε/8 Cn -s n 1-(p/2-β) (1 + |x|) p-2β
for all x ∈ K. In particular, uniformly on

x ∈ K, |x| A √ n, E (S(x, n) + ) r ; S(x, n) + n 1/2-ε/8 Cn -s+1 .
Recall from (H5) that a random walk S is strongly irreducible in a cone K if there exists a constant R > diam Λ such that for any z ∈ C ∩ Λ, there exists a path with positive probability in K ∩ B(z, R) which starts in z + K and ends at z. If K is a cone with exponent q such that S is strongly irreducible in K, then there exists c > 0 such that for all z ∈ K and all n 1,

P(τ z > n) cn -q/2 . ( 57 
)
See [START_REF] Raschel | Boundary behavior of random walks in cones[END_REF]Lem. 13] for a proof of this fact.

We now prove that a tangent cone can be well approximated by a smaller cone included in the original cone. We recall that K σ denotes the tangent cone to K at σ, see (4), and for α > 0 we set

K σ,α = {x ∈ K σ : α|x -σ| dist(x, ∂K σ )}.
Notice that for α small enough, K σ,α is a non-empty cone. For ε > 0, let

V ε (σ) = B(σ, ε) ∩ K and ∂V ε (σ) = B(σ, ε) ∩ ∂K.
Hereafter, (z -σ) + K σ,α denotes the translated version of K σ,α with origin at z. Lemma 16. For all α > 0 sufficiently small, there exist ε, α > 0 such that for all y ∈ ∂V ε (σ) and all z ∈ (y -σ) + K σ,α ∩ B(σ, ε), one has z ∈ K and dist(z, ∂K) α |z -y|.

The proof of the above lemma uses a few basic facts from convex analysis. Recall that for a convex function φ :

C → R defined on an open convex set C ⊂ R d-1 , we define the subgradient ∂φ(x) of φ at x ∈ C by ∂φ(x) = {v ∈ R d-1 : ∀u ∈ C, φ(u) -φ(x) v, u -x }.
The subgradient is upper-semicontinuous in the following sense: if

x n → x and v n → v with v n ∈ ∂φ(x n ) for any n, then v ∈ ∂φ(x).
For s ∈ R d-1 , the convex function φ admits a directional derivative φ s (x) at any point x ∈ C, and we have φ s (x) = max v∈∂φ(x) v, s .

Note that the upper-semicontinuity of the subgradient implies a uniform uppersemicontinuity of the directional derivatives.

Lemma 17. Let x ∈ C and ε > 0. There exists a neighborhood V of x such that φ s (u) φ s (x) + ε for all u ∈ V and s ∈ S d-2 .

Proof. Let us prove the statement by contradiction. Assume the existence of a sequence (x n , s n ) in C × S d-2 such that x n → x and φ sn (x n ) > φ sn (x) + ε. Up to taking a subsequence, we can assume that s n → s ∈ S d-2 . For each n, let v n be the maximizer of v, s n for v ∈ ∂φ xn . Since ∂φ is uniformly bounded on a neighborhood of x, we can assume by compactness that v n converges to a vector v 0 . By upper-semicontinuity of ∂φ, one has v 0 ∈ ∂φ(x). Then we have

φ sn (x n ) = v n , s n → v 0 , s max v∈∂φ(x) v, s φ s (x), (58) 
and on the other hand v n , s n = φ sn (x n ) φ sn (x) + ε.

Since s → φ s (x) is continuous and s n → s, φ sn (x n ) φ s (x) + ε/2 for n large enough, and by (58) we get a contradiction.

Proof of Lemma 16. Up to an isometry of R d , we can assume σ = 0 and that (0, . . . , 0, 1) is a vector pointing inside K. Let V be a neighborhood of 0 in H d := {x ∈ R d : x d = 0} such that there exists a convex function φ : V → R with Lipschitz constant M whose graph is locally the boundary of K around σ. We further assume that there exists ε > 0 such that {(y, t) ∈ V × R : φ(y) < t < φ(y) + ε} ⊂ K.

Such ε always exists if we assume V small enough. Note that the tangent cone of K at σ is exactly the set

K σ = {(y, x d ) ∈ R d-1 × R : x d φ y (0)}.
Let α be small enough so that K σ,α is non-empty. For β > 0, set

Kβ := {(y, x d ) ∈ R d-1 × R : x d φ y (0) + β|y|}.
Then, ( Kβ ) β>0 is a decreasing sequence of cones and β>0 Kβ = K σ , hence there exists α > 0 such that K σ,α ⊂ Kα . By Lemma 17, let ε < ε be such that B R d-1 (0, ε ) ⊂ V is a neighborhood of 0, with the property that for each y ∈ B R d-1 (0, ε ) and s ∈ S d-2 , we have

φ s (y) φ s (0) + α /2. ( 59 
) Let z ∈ y + Kα ∩B(y, ε /2) with y = (y 1 , φ(y 1 )) ∈ ∂K and y 1 ∈ B R d-1 (0, ε /2). Writing z = (z 1 , z 2 ) ∈ R d-1 × R, we have on the first hand z 2 -φ(y 1 ) φ z 1 -y 1 (0) + α |z 1 -y 1 |.
On the other hand, integrating (59) on the segment [y

1 , z 1 ] ⊂ B R d-1 (0, ε ) yields φ(z 1 ) -φ(y 1 ) = 1 0 φ z 1 -y 1 (y 1 + t(z 1 -y 1 ))dt φ z 1 -y 1 (0) + α /2|z 1 -y 1 | z 2 -φ(y 1 ).
Hence, z 2 φ(z 1 ) + α /2|z 1 -y 1 |, which yields

φ(z 1 ) + α /2|z 1 -y 1 | < z 2 < φ(z 1 ) + ε/2 (60) 
by the choice of ε . Since z 1 ∈ V , (z 1 , u) ∈ K for all u ∈ (φ(z 1 ), φ(z 1 )+ε), which implies that (z 1 , z 2 ) ∈ K. Therefore, for y ∈ ∂V ε /2 (σ) we have (y -σ) Proposition 18. Suppose (H5) that S is strongly irreducible in K. Let σ ∈ ∂K and q σ the exponent associated to the corresponding tangent cone K σ . Then, for all q > q σ and ε > 0 small enough, there exists c > 0 such that for all x large enough with x |x| → σ and for all n |x| 2-ε , P(τ x > n) > cn -q /2 .

+ Kα ∩ B(σ, ε /2) ⊂ K. Since K σ,α ⊂ Kα , we also have (y -σ) + K σ,α ∩ B(σ, ε /2) ⊂ K for all y ∈ ∂V ε /2 (σ). Since φ is Lipschitz with Lipschitz constant M > 0 on B R d-1 (0, ε ), standard geometric arguments yield that for c = sin(arctan(1/M )), d(z, ∂K) c(z 2 -φ(z 1 )), when z = (z 1 , z 2 ) ∈ K with z 1 ∈ B R d-1 (0, ε /2) and z 2 ε /2. Thus, (60) yields that d(z, ∂K) cα 2 |z 1 -y 1 |. ( 61 
Proof. Let q > q σ be small enough, and let α > 0 be such that q Kσ,α = q . Such α exists, since K σ,α ∩ S d-1 converges in Hausdorff distance to K σ as α goes to zero. Similarly to the proof of Lemma 16, assume without loss of generality that K ⊂ R d-1 × R + , σ = (1, 0, . . . , 0) and v = (0, . . . , 0, 1) is a vector pointing towards the interior of K. For x ∈ K, let x be the projection of x on ∂K along (0, . . . , 0, 1). As x goes to infinity while x/|x| → σ, x /|x| converges to σ and |x/|x| -x | → 0. By Lemma 16, there exist η, α > 0 such that for all z ∈ ∂V η (σ) and all u ∈ (z -σ) + K σ,α ∩ B(z, η), dist(u, ∂K) α |u -z|. For α small enough and |x| large enough, x/|x| ∈ (x /|x| -σ) + K σ,α , with x /|x| ∈ ∂V η (σ), which yields then that dist(x, ∂K) α |x -x |.

(63)

For α small enough so that v + σ points towards the interior of K σ,α , let t > 0 be such that the harmonic function V Kσ,α (σ + tv) is positive. The existence of t is guaranteed by [START_REF] Denisov | Random walks in cones[END_REF]Thm 1], which gives also c > 0 such that P(τ tv,Kσ,α-σ > n) cn -q /2 for all n 1. Hence, for x such that |x -x | > t, x -tv ∈ x -σ + K σ,α and P(τ x,x -σ+Kσ,α > n) P(τ x,x-tv+Kσ,α > n) cn -q /2 .

(64)

Let us assume from now on that |x -x | t. Suppose first that n |x -x | 2-ε . Thanks to the moments assumption (M 1), we can apply the first part of Lemma 15 to the random walk in K := x -σ + K σ,α with r = 0, κ > q + 2 small enough and ε small enough to get P( sup

1 l n |S(l)| n 1/2+ε , τ x,K n) Cn -s ,
with s > q /2, for n |x -x | 2-ε . Hence, the latter inequality together with (64) yields P( sup

1 l n |S(l)| n 1/2+ε , τ x,K n) cn -q /2 ,
for n |x -x | 2-ε and some c > 0. Since n |x| 2-ε , choosing ε small enough implies that P( sup

1 l n |S(l)| |x| 1-ε , τ x,K n) cn -q .
Since, by Lemma 16, (x -σ) + K σ,α ∩ B(x , η|x|) ⊂ K, the latter inequality implies that P(τ x,K n) P( sup

1 l n |S(l)| |x| 1-ε , τ x,K n) c n -q .
for all n |x -x | 2-ε and x large enough. Suppose now that n |x -x | 2-ε . Applying Doob and Rosenthal inequalities together with (63) gives P(τ x n) P( sup

1 k n |S k | dist(x, ∂K)) P( sup 1 k n |S k | α |x -x |) 2nE[|X| 2 ] α 2 |x -x | 2
Cn -ε/(2-ε) .

Hence, there exist c, N > 0 such that P(τ x > n) c for n > N with n |x -x | 2-ε .

Suppose finally that |x -x | t. By the proof of [START_REF] Denisov | Random walks in cones[END_REF]Lem. 14] and the strong irreducibility of S in K, there exist c, ρ, n 0 > 0 such that for x large enough, we have This gives the result for n large enough.

We also give an asymptotic lower bound of the réduite u along the boundary, which are sharper than [START_REF] Durrett | Conditioned limit theorems for some null recurrent Markov processes[END_REF]. Lemma 19. Let σ ∈ ∂Σ and q > q > q σ . Then there exists c > 0 such that uniformly on x going to infinity while x/|x| → σ and dist(x, ∂K) = o(|x|), u(x) c|x| p-q dist(x, ∂K) q .

Proof. We use the same notations as in the previous proof and take α > 0 such that q Kσ,α = q . Let x going to infinity with x/|x| → σ. By Lemma 16, there exists ε > 0 such that for t > 0 and x large enough, P(τ bm We denote by B (θ) the process B θ+u -B θ , which is a Brownian meander independent of (B(u)) 0 u θ , see for example [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]. Denote by K + (resp. K -) the intersection of K with the set {v ∈ R d : v, B θ > B θ , B θ } (resp. {v ∈ R d : v, B θ < B θ , B θ }), and let s denote the symmetry with respect to the hyperplane B θ + B ⊥ θ . Since we have s(K -) ⊂ K + , (B(θ) + B θ u ) 0 u t-θ ⊂ K -implies that s (B(θ) + B θ u ) 0 u t-θ ⊂ K + . Moreover, s turns a negative meander into a positive one, and is thus measure preserving. Therefore, P(s({(B(θ) + B θ u ) 0 u t-θ ⊂ K -})) = P({(B(θ) + B θ u ) 0 u t-θ ⊂ K -}). This implies that P(θ < t < τ, B t -B θ , B θ < 0) P(θ < t < τ, B t -B θ , B θ > 0). and u Kσ,α (x -x ) c dist(x -x , ∂K σ,α ) q by (24), we have

P(τ bm x > t)
c dist(x -x , ∂K σ,α ) q t q /2 .

Usual Gaussian estimates in K (see for example [45, App. A]) yields therefore u(x) t p/2 cP(τ bm x > t) c dist(x -x , ∂K σ,α ) q t q /2 for x going to infinity with x/|x| → σ, dist(x -x , ∂K σ,α ) = o(|x|) and x -x = o( √ t). Hence, evaluating the above inequality at t = |x| 2(p-q )/(p-q ) for q > q small enough gives for any q > q the existence of c > 0 such that u(x) c|x| p-q dist(x -x , ∂K σ,α ) q .

provided that E|X 1 |

 1 s d < ∞, where s d = 2 + ε for d = 3, 4 and s d = d -2 for d 5. Since r 1 (p) = p + d -2 + (2 -p) + > s d , (11) yields

2 ,E

 2 [(t, X(1) -X(2)); |X(1) -X(2)| u] → E [(t, X(1) -X(2)); |X(1) -X(2)| u]for every fixed u. Since S(n) is truly d-dimensional under the original measure, inf |t|=1 E [(t, X(1) -X(2)); |X(1) -X(2)| u] > 0

By ( 55 )( 2 -

 552 , the first term is bounded by n |y-x| 2-2ε C exp(-n ε ) C exp(-|y -x| ε ) for some C > 0 and some 0 < ε < ε. Moreover, by (27) and (55),n |y-x| 2-2ε P(x + S(n) = y, τ x > n, |y -x| 2-3ε θ y n 1-ε ) = n |y-x| 2-2ε E[x + S(n -θ y ) = y + S (θ y ); τ x > n -θ y , τ y > θ y , |y -x| 2-3ε θ y n 1-ε ] n |y-x| 2-2ε C(n -n 1-ε ) -d/2-p/2 P(θ y > |y -x| 2-3ε , τ y |y -x| 2-3ε ) C exp(-|y -x| ε(2-3ε) ), so that, finally, T 2 C exp(-|y -x| ε ),for some constant C > 0 and 0 < ε < ε.Study of T 3 . By (27), we have for n |x -y| 2-2ε and y large enoughP(y + S (n) = x, τ y > n, θ y |y -x| 2-3ε , |S θy | |y -x| 1-ε/α ) E[(n -θ y ) -p/2-d/2 ; τ y > θ y , θ y |y -x| 2-3ε , |S θy | |y -x| 1-ε/α ] Cn -p/2-d/2 P(τ y > θ y , θ y |y -x| 2-3ε , |S θy | |y -x| 1-ε/α ) Cn -p/2-d/2 |y -x| s .Hence,T 3 C ∞ n=|x-y| 2-2ε n -p/2-d/2 |y -x| s |y -x| -(2-2ε)(p/2+d/2-1)-s .By the definition of s given in (56), 2ε)(p/2 + d/2 -1) + s > (p + d -2) + (p + q + d -4 + 2(1 -p/2) + ) + f (ε) = p + q + d -2 + (p + d -4 + 2(1 -p/2) + ) + g(ε),with g linear. Since p + d -4 + 2(1 -p/2) + 0 for all p 1 and d 2, T 3 = o(|x -y| -b ), with b > p + q + d -2 for ε small enough. Study of T 4 . By Theorem 1, we have T 4 E[G |x-y| 2-2ε (x, y + S (θ y )); τ y > θ y , θ y |y -x| 2-3ε , |S(θ y )| |y -x| 1-ε/α ] CE[u(y + S (θ y ))|y + S (θ y )| -2p-d+2 ; τ y > θ y , θ y |y -x| 2-3ε , |S(θ y )| |y -x| 1-ε/α ]

Moreover, by Theorem 1 ,

 1 E[G K (x, y + S (θ y )); τ y > θ y , θ y |y -x| 2-3ε , |S(θ y )| |y -x| 1-ε/α ] ∼ V (x)|y| -2p-q+2 E[u(y + S (θ y )), τ y > θ y , θ y |y -x| 2-3ε , |S(θ y )| |y -x| 1-ε/α ],as y goes to infinity. Since we also haveE[u(y + S (θ y )); τ y > θ y , (θ y |y -x| 2-3ε ) ∪ (|S(θ y )| |y -x| 1-ε/α )] = o(E[u(y + S (θ y )); τ y > θ y , θ y |y -x| 2-3ε , |S(θ y )| |y -x| 1-ε/α ])

x

  |x| → σ ∈ ∂K. Those bounds are used in the proof of our main results. The strategy of the proof is to compare the tangent cone at σ with some smaller cones included in K. Let us give a first recall a useful result from[START_REF] Raschel | Boundary behavior of random walks in cones[END_REF] Lem. 21].

)

  Since the Lipschitz property also yields |z 1 -y 1 | |φ(z 1 ) -φ(y 1 )|/M , we deduce thatd(z, ∂K) cα 2M |φ(z 1 ) -φ(y 1 )|. Hence, for c = min{c, cα 2M }, d(z, ∂K) c 2 (z 2 -φ(z 1 ) + φ(z 1 ) -φ(y 1 )) c 2 |z 2 -φ(y 1 )|. (62)Let t be such that |y -z| t max{|y 1 -z 1 |, |z 2 -y 2 |}. Then, since y 2 = φ(y 1 ), d(z, ∂K) c 2t |y -z|. This concludes the proof of the second statement.

P

  (|x + S(n 0 ) -(x + S(n 0 )) | t, |S(n 0 )| n 0 R) ρ.Hence, for n n 0 , by the Markov property and the first part of the proof,P(τ x > n) E[τ x+S(n 0 ) n -n 0 ; |x + S(n 0 ) -(x + S(n 0 )) | t, |S(n 0 )| n 0 R] cρ(n -n 0 ) -q .

  x t) P(τ > t, sup0 u t |B(u)| ε|x -x |),where we have set τ := τ bm x,x -σ+Kσ,α . Let us show that P(τ > t, sup0 u t |B(u)| > ε|x -x |) is negligible in comparison with P(τ > t), by adapting the reflection principle to a Brownian motion in a cone. By conditioning on the last time θ when B reaches the sphere of radius ε|x -x |, we getP(τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| ε|x -x |) P(θ < t < τ, B t -B θ , B θ < 0).

  Since B t -B θ , B θ > 0 implies that |B t | > |B θ |, we get finallyP τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| ε|x -x | P τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| > ε|x -x | . Since P(τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| > ε|x -x |) = P(τ > t, |B(t)| > ε|x -x |),we haveP(τ > t, sup 0 u t |B(u)| > ε|x -x |) = P(τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| ε|x -x |) + P(τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| > ε|x -x |) 2P(τ > t, sup 0 u t |B(u)| > ε|x -x |, |B(t)| > ε|x -x |) 2P(τ > t, |B(t)| > ε|x -x |).Therefore, using[START_REF] Denisov | Random walks in cones[END_REF] Lem. 18] yields for t = o(|x -x | 2 ), P(τ > t, sup 0 u t |B(u)| > ε|x -x |) = o(P(τ > t)),and finallyP(τ > t, sup 0 u t |B(u)| ε|x -x |) ∼ u Kσ,α (x -x ) t q /2 ,uniformly for t and x such that x -x = o( √ t). Since by Lemma 16, P(τ > t, sup 0 u t |B(u)| ε|x -x |) P(τ bm x > t),

|x-y| ν/α /(2 √ d)

2|x-y| ν/α /(2 √ d)
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