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FINITE VOLUME SCHEME FOR ISOTROPIC KELLER-SEGEL MODEL WITH

GENERAL SCALAR DIFFUSIVE FUNCTIONS ∗

Georges Chamoun1,2, Saad Mazen1 and Talhouk Raafat2

Abstract. This paper is devoted to the numerical analysis of a modified Keller-Segel model consisting
of diffusion and chemotaxis with volume filling effect. Firstly, a finite volume scheme is generalized to
the case of a Keller-Segel model allowing heterogeneities and discontinuities in the diffusion coefficients.
For that, we start with the derivation of the discrete problem and then we establish a convergence result
of the discrete solution to a weak solution of the continuous model. Finally, numerical tests illustrate
the behavior of the solutions of this generalized numerical scheme.

Résumé. Cet article est consacré à l’analyse numérique d’un modèle généralisé de Keller-Segel
modélisant l’interaction entre la densité des cellules et la concentration d’un chimio-attractant. La
diffusion des cellules est modélisée par un opérateur dégénéré en évitant l’explosion de la densité cellu-
laire autour du chimio-attractant grâce au principe du ”volume filling effect”. D’abord, un schéma de
volumes finis est généralisé au cas de modèles dégénérés de Keller-Segel avec des coefficients diffusifs
hétérogènes discontinus. Ensuite, on montre la convergence des solutions du problème discret vers
une solution faible du problème continu. Enfin, des tests numériques illustrent le comportement des
solutions de ce schéma numérique généralisé.

1. Introduction

From microscopic bacteria through to the largest mammals, the survival of many organisms is dependent
on their ability to navigate, through the detection of internal and external signals. The ability to migrate in
response to chemical gradients, chemotaxis, has attracted significant interest due to its critical role in a wide
range of biological phenomena. Mathematical modeling of chemotaxis has developed into a large and diverse
discipline, whose aspects include its mechanistic basis and the modeling of specific systems. The Keller-Segel
model of chemotaxis, introduced in [9] and [11], has provided a cornerstone for much of this work. A scheme
recently developed in the finite volume framework (see [1]) treats the discretization of the Keller-Segel model in
homogeneous domain where the diffusion tensor is considered to be the identity matrix. In this case, the mesh
used for the discretization in space is assumed to satisfy the orthogonality condition (see [2]). In this paper, we
propose and analyze the convergence of a generalized finite volume scheme applied to a degenerate chemotaxis
model allowing heterogeneities and discontinuities in the diffusion coefficients. This generalization will help to
reach more complex applications, especially that chemotaxis phenomenon (attraction or repulsion of cells via
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a chemo-attractant or a chemo-repellent) in a heterogeneous medium can yield such discontinuities, since the
conductivities of the different components of the medium may be quite different.

2. Setting of the problem

The well-known Keller-Segel model is introduced in general with homogeneous and isotropic diffusion (see [1]).
In order to take into account the heterogeneities and the discontinuities in the diffusion coefficients, we consider
the following coupled parabolic system:

∂tu− div(s(x)a(u)∇u) + div(s(x)χ(u)∇v) = 0 in QT , (1)

∂tv − div(m(x)∇v) = g(u, v) in QT , (2)

with the no-flux boundary conditions on Σt= ∂Ω× (0, T ),

s(x)a(u)∇u · η = 0, m(x)∇v · η = 0, (3)

with initial conditions on Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x) . (4)

We have QT := (0, T )×Ω where T > 0 is a fixed time, and let Ω be a bounded domain in Rd, d = 2 or d = 3
where the boundary ∂Ω is Lipschitz and η is the unit outward normal vector.

The species u represents the cell density and v accounts for the chemical concentration. The diffusive
flux modelling undirected (random) cell migration and the cross-diffusion flux with velocity dependent on the
gradient of the signal, modelling the contribution of chemotaxis. Hillen and Painter were the first who introduced
mechanistic descriptions of volume-filling effects (see [4]). Assuming that cells carry a certain finite (nonzero)
volume and that occupation of an area limits other cells from penetrating it, a density-dependent chemotactic
sensitivity χ(u) function, describing the probability of finding space by a local cell density u, can be derived.
It models the migration of species u to location with high concentration of v. The coefficient of diffusion is
denoted by a(u). The diffusive functions in a heterogeneous medium are denoted by s(x) and m(x) which may
be discontinuous. The function g(u, v) describes the rates of production and degradation of the chemical signal
(chemoattractant); here, we assume it is of birth-death structure, i.e., a linear function,

g(u, v) = αu− βv; α, β ≥ 0 . (5)

We assume that the density-dependent diffusion coefficient a(u) degenerates for u = 0 and u = um. This
means that the diffusion vanishes when u approaches values close to the threshold um and also in the absence
of cell-population. Secondly, we assume that χ(0) = 0 and there exists a maximum density of cells um such
that χ(um) = 0. The threshold condition has a clear biological interpretation; the cells stop to accumulate at
a given point of Ω after their density attains certain threshold value um, therefore the chemotactical sensitiv-
ity χ(u) vanishes when u tends to um. This interpretation is called the volume-filling effect, or prevention of
overcrowding. The positivity of χ means that the chemical attracts the cells; the repellent case is the one of
negative χ.

Upon normalization of um, we can assume that um = 1. Indeed, one can consider the following transforma-

tion: ũ = u
um

, ṽ = v, χ̃(ũ) = χ(ũum)
um

, ã(ũ) = a(ũum), g̃(ũ, ṽ) = g(ũum, ṽ) and we omit the tildas in the notation.
The main assumptions are:

a : [0, 1] 7−→ R+ is continuous, a(0) = a(1) = 0 and a(q) > 0 for 0 < q < 1 . (6)
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χ : [0, 1] 7−→ R is continuous and χ(0) = χ(1) = 0 . (7)

A standard example for χ is:

χ(u) = u(1− u) for u ∈ [0, 1] .

Next, we require general diffusive functions s and m which may be discontinuous such that:

s ∈ L∞(Ω) and there exists s̄, s ∈ R∗+ such that s ≤ s ≤ s̄ a.e . (8)

Definition 2.1. Assume that 0 ≤ u0 ≤ 1, v0 ≥ 0 and v0 ∈ L∞(Ω). A weak solution of (1)-(4) is a pair
(u, v) of functions on QT such that

0 ≤ u(x, t) ≤ 1, v(x, t) ≥ 0 a.e. in QT ,

u ∈ L∞(QT ), A(u) :=

∫ u

0

a(r) dr ∈ L2(0, T ;H1(Ω)) ,

v ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) ,

and, for all ϕ and ψ ∈ D([0, T )× Ω̄),

−
∫

Ω

u0(x)ϕ(0, x) dx−
∫∫
QT

u∂tϕ dxdt+

∫∫
QT

s(x)∇A(u) · ∇ϕ dxdt−
∫∫
QT

s(x)χ(u)∇v · ∇ϕ dxdt = 0 ,

−
∫

Ω

v0(x)ψ(0, x) dx−
∫∫
QT

v∂tψ dxdt+

∫∫
QT

m(x)∇v · ∇ψ dxdt =

∫∫
QT

g(u, v)ψ dxdt .

3. Numerical scheme

This section is devoted to the formulation and to the proof of convergence of a finite volume scheme for a
Keller-Segel model with general isotropic scalar diffusion functions. We will first describe the space and time
discretizations, then we will give the numerical scheme and the result of convergence.

3.1. Space And Time Discretizations.

The space discretization of the domain Ω is based on an admissible mesh as defined in [2] (see Figure 1). It is
a finite family Th of polygonal open convex subsets K of Ω, called the control volumes such that Ω̄ = ∪K∈ThK̄,
where h = supK∈Th(diam(K)), together with a finite family E of disjoint subsets of Ω̄ consisting in non-empty

open convex subsets σ of affine hyperplanes of Rd, called the edges, and a family P = {xK , K ∈ Th} of points
in Ω, called the centers verifying the following properties,

• For any edge σ ∈ E , either σ ⊂ ∂Ω or σ = K̄ ∩ L̄ for some K 6= L in Th. In the latter case, we denote
σ = σK,L, called the interfaces. We denote by N(K) the control volumes neighbors of K.

• For any K ∈ Th, the point xK belongs to K. For any σK,L ∈ E , the line (xK , xL) is orthogonal to σK,L.

In addition to that, for any interior edge σK,L, we denote by nK,L and dK,L, respectively, the unit vector normal
to σK,L outward of K and the distance from xK to xL. For any exterior edge σ, the distance is taken from the
center xK to the middle point of the edge σ. The measure of K is denoted by |K| and the (d− 1)-dimensional
measure of σ ∈ E is denoted by |σ|.

The time discretization is the sequence of discrete times tn = n∆t for n ∈ N, where ∆t > 0 is a given
time-step.

Let us consider Th as an admissible mesh, such that the discontinuities of s and m belongs to the interfaces
of this mesh. The numerical scheme is obtained by using the finite volume method: equations (1) and (2) of the
model are integrated on each control volume K and interval of time (tn, tn+1) and then we shall approximate
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Figure 1. A space discretization of Ω .

the normal fluxes over each edge σ of K. Note that if s(x) = 1, the approximation of the normal diffusive
flux ∇A(u) · ηK,L on the interface σ = σK,L has been detailed in [1] and the transmissibilities were defined as

τK,L =
|σK,L|
dK,L

. In the following subsections, we will construct an approximation of the normal diffusive flux

s(x)∇A(u) · ηK,L with continuous and discontinuous heterogeneous diffusive functions s(x).

3.2. Continuous Diffusion Coefficients.

In this case, the admissibility assumption on Th allows us to simply approximate this normal diffusive flux
by means of the divided differences,∫

σK,L

s(x)∇A(u) · ηK,L ≈ sK,L
|σK,L|
dK,L

(
A(uL)−A(uK)

)
, (9)

where sK,L denotes the approximation of s(x) on the interface σK,L, with sK,L := s(x̄K,L) such that x̄K,L
is the intersection between the segment [xK , xL] and the common interface σK,L. Consequently, the new
transmissiblities in this case are:

τK,L = sK,L
|σK,L|
dK,L

. (10)

3.3. Discontinuous Diffusion Coefficients.

In order to treat the case of discontinuities of the diffusion coefficients which lay over the boundaries of the
control volumes, let us introduce,

sK =
1

|K|

∫
K

s(x) dx and sK,σ = |sKηK,σ| ,

where |.| is the Euclidean norm, sK,σ be the approximation of s(x) on the edge σ = σK,L and ηK,σ is the unit
outward normal vector at σ with respect to K.

In order to obtain the local conservativity, we will introduce auxiliary unknowns uσ on the interfaces. These
auxiliary unknowns are helpful to write the scheme, but they can be eliminated locally so that the discrete
equations will only be written with respect to the primary unknowns (uK)K∈Th . Since s is continuous on the
interior of K and L, the approximation Hσ of the diffusive flux s(x)∇A(u) · ηK,L may be performed on each
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side of σ = σK,L by using the finite difference principle,

Hσ = sK,σ
A(uσ)−A(uK)

dK,σ
on K; Hσ = sL,σ

A(uL)−A(uσ)

dL,σ
on L ,

where dK,σ (resp. dL,σ) is the distance from xK (resp. xL) to the interface σK,L. Requiring the two above
approximations to be equal (the conservativity of the diffusive flux) yields the value of A(uσ),

A(uσ) =
1

sL,σ
dL,σ

+
sK,σ
dK,σ

(
A(UL)

sL,σ
dL,σ

+A(UK)
sK,σ
dK,σ

)
.

This latter allows to give the expression of the approximation Hσ,

Hσ = τσ(A(UL)−A(UK)) with τσ =
sK,σsL,σ

sL,σdK,σ + sK,σdL,σ
. (11)

Consequently, ∫
σK|L

s(x)∇A(u) · ηK,L ≈ τσ|σK,L|
(
A(uL)−A(uK)

)
, (12)

with the following new transmissibilities:
τK,L = τσ |σK,L| . (13)

The same guidelines are used to obtain an approximation Gσ of the flux m(x)∇v · ηK,L.

3.4. Numerical Scheme.

In addition to the previous subsections, we still have to approximate s(x)χ(u)∇v ·ηK,L by means of the values
UK , UL and δVK,L (where δVK,L denotes the approximation of the flux s(x)∇v ·ηK,L on σK,L) that are available
in the neighborhood of the interface σK,L. To do this, we use a numerical flux function G(UK , UL, δVK,L).
Numerical convection flux functions G of arguments (a, b, c) ∈ R3, are required as in [1] to satisfy the following
properties,

• G(., b, c) is non-decreasing for all b, c ∈ R, and G(a, ., c) is non-increasing for all a, c ∈ R ;
• G(a, b, c) = −G(b, a,−c) for all a, b, c ∈ R; hence the flux is conservative.
• G(a, a, c) = χ(a)c for all a, c ∈ R ; hence the flux is consistent.
• There exists C > 0, such that for all a, b, c ∈ R, |G(a, b, c)| ≤ C(|a|+ |b|)|c|.
• |G(a, b, c)−G(a′, b′, c)| ≤ |c|(|a− a′|+ |b− b′|) for all a, b, a′, b′, c ∈ R.

Remark 3.1. One possibility to construct the numerical flux G is to split χ in the non-decreasing part χ↑ and
the non-increasing part χ↓, such that

χ↑(z) :=

∫ z

0

(χ
′
(s))+ ds, χ↓(z) :=

∫ z

0

(χ
′
(s))− ds .

Herein s+ = max(s, 0) and s− = max(−s, 0). Then we take,

G(a, b, c) = c+(χ↑(a) + χ↓(b))− c−(χ↑(b) + χ↓(a)) . (14)

Notice that in the case χ has unique local (and global) maximum at the point ū ∈ [0, 1], such as the flux
χ(u) = u(1− u), we have

χ↑(z) = χ(min{z, ū}) and χ↓(z) = χ(max{z, ū})− χ(ū) .
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Figure 2. An admissible triangulations Th: Mesh of 1253 triangles with an empty hall (left)
and of 3584 triangles (right) .

Finally, we obtain the following scheme: ∀K ∈ Th,

U0
K =

1

|K|

∫
K

u0(x) dx, V 0
K =

1

|K|

∫
K

v0(x) dx , (15)

and ∀n ∈ [0, ..., N ],

|K|
Un+1
K − UnK

∆t
−

∑
L∈N(K)

τK|L
(
A(Un+1

L )−A(Un+1
K )

)
+

∑
L∈N(K)

G(Un+1
K , Un+1

L ; δV n+1
K,L ) = 0 , (16)

|K|
V n+1
K − V nK

∆t
−

∑
L∈N(K)

µK,L
(
V n+1
L − V n+1

K

)
= |K|g(UnK , V

n+1
K ) , (17)

where δV n+1
K,L = τK|L(V n+1

L − V n+1
K ), τK,L (resp. µK,L) are the new transmissibilities defined in (10) (or (13))

and the unknowns are U = (Un+1
K )K∈Th and V = (V n+1

K )K∈Th , n ∈ [0..N ]. The discrete solution associated to
this discrete problem is, (uh, vh) defined as constant functions on QT given by,

∀K ∈ Th, ∀n ∈ [0, ..., N ], uh

∣∣∣
]tn,tn+1]×K

= Un+1
K , vh

∣∣∣
]tn,tn+1]×K

= V n+1
K .

For this numerical scheme, we have proved the following result.

Theorem 3.1. Assume (5), (7), (6) and (8). Consider v0 ∈ L∞(Ω), v0 ≥ 0 and 0 ≤ u0 ≤ 1 a.e. on Ω.
1) There exists a solution (uh, vh) of the discrete system (16)-(17) with initial data (15).
2) Any sequence (hm)m decreasing to zero possesses a subsequence, still denoted as the sequence, such that
(uhm , vhm) converges a.e. on QT to a weak solution (u, v) of the modified Keller-Segel system (1)-(4) in the
sense of Definition 2.1 .

Outline of the Proof. The discrete maximum principle still verified due to the positivity of the new
transmissibilities defined in (10) and in (13). Consequently, one can maintain the same necessary estimates
of [1] to prove the existence of a discrete solution. Then, estimates in time and space are constructed to use the
Kolmogorov compactness criterion and to conclude the existence of a subsequence (uh, vh) of discrete solutions
that converges to a function (u, v) almost everywhere in [0, T ]×Ω. Finally, we proved that this function (u, v)
is a weak solution of the modified Keller-Segel model.
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Figure 3. Test 1- Initial conditions for the cell density u0 (left) and for the concentration of
the chemo-attractant v0 (right) .

Figure 4. Test 1- Evolution of the cell density (u), at time t = 5 with 0 ≤ u ≤ 0.3283 (left),
at time t = 12.5 with 0 ≤ u ≤ 0.2413 and at time t = 17.5 with 0 ≤ u ≤ 0.2150 (right) .

4. Numerical tests

In this section, we shall illustrate the behavior of the discrete solutions of the proposed numerical scheme for
isotropic heterogeneous and discontinuous coefficients. The computations were done with numerical handwork
Fortran 95 code, where this scheme is implemented. The algorithm used to compute numerical solution of the
discrete problem is the following: at each time step, we first calculate V n+1 solution of the linear system given
by the equation of (17) and next we compute Un+1 as the solution of the nonlinear system defined by the first
equation of (16). For this end, a Newton algorithm is implemented to approach the solution of nonlinear system
and a bigradient method to solve linear systems arising from the Newton algorithm process. We will provide
our tests on admissible meshes given in the Figure 2.
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Figure 5. Test 1- The cell density (u) at time t = 50 with 0 ≤ u ≤ 0.4973 (left), at time
t = 100 with 0 ≤ u ≤ 0.7047 (right) .

Figure 6. Test 2- Initial conditions for the cell density u0 (left) and for the concentration of
the chemo-attractant v0 (right) .

Test 1: Continuous heterogeneous case. Let us consider the following data: Lx = 3, Ly = 3 as the
length and the width of the domain given in the Figure 1 (left). In this first test, we consider the diffusion
functions as

s(x) = (x− 1.5)2 + (y − 1.5)2; m(x) = 1.

Further, dt = 0.005, α = 0.01, β = 5 × 10−5, A(u) = D(u
2

2 −
u3

3 ), with D = 10−1, χ(u) = cu(1 − u)2,

with c = 10−1. Finally, the diffusion coefficient of the chemo-attractant is d = 10−4. The initial conditions are
defined by regions. The initial density is defined as u0(x, y) = 1 in the square (x, y) ∈

(
[0.2, 0.8] × [1.2, 1.8]

)
and 0 otherwise. The initial chemoattractant is defined as v0(x, y) = 5 in the union of two squares (x, y) ∈(
[1.2, 1.8] × [0.2, 0.8]

)
∪
(
[1.2, 1.8] × [2.2, 2.8]

)
and 0 otherwise (see Figure 3). In Figures 4 and 5, we show the

evolution of the cell density. We observe during the stage of evolution the effect of the chemo-attractant, since
the cells are present in the chemoattractant regions.
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Figure 7. Test 2- The cell density (u) at time t = 2.5 with 0 ≤ u ≤ 0.1055 (left) and at time
t = 5 with 0 ≤ u ≤ 0.07963 (right) .

Figure 8. Test 2- The cell density (u) at time t = 10 with 0 ≤ u ≤ 0.1991 (left) and at time
t = 40 with 0 ≤ u ≤ 0.5570 (right) .

Test 2: Discontinuous case. In this test, our target is to prove the efficiency of our numerical scheme in
treating discontinuous diffusion. For that, let us consider

s(x) =

{
6 if y ≤ 0.5
1 if y > 0.5

, m(x) = 1 .

The space domain Ω is the unit square and the mesh is given in the Figure 1 (right). One can remark that the
discontinuities of the diffusion coefficients coincide with the interfaces of the mesh. Further, dt = 0.005, α = 0.01,

β = 0.05, A(u) = D(u
2

2 −
u3

3 ) with D = 0.03, χ(u) = cu(1−u)2 with c = 0.1. Finally, the diffusion coefficient of

the chemo-attractant is d = 10−5. The initial conditions are also defined by regions. The initial density is defined
as u0(x, y) = 1 in the square (x, y) ∈

(
[0.15, 0.25]× [0.45, 0.55]

)
and 0 otherwise. The initial chemoattractant is

defined as v0(x, y) = 10 in the union of two squares (x, y) ∈
(
[0.45, 0.55]×[0.7, 0.8]

)
∪
(
[0.45, 0.55]×[0.2, 0.3]

)
and

0 otherwise (see Figure 6). The behavior of the cell density via the chemo-attractant and the influence of the
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discontinuous diffusion coefficients are clear, as can be seen in the Figures 7 and 8. We observe during the stage
of evolution the effect of the anisotropic diffusion since the cells are more present in the down chemoattractant
region.

5. conclusion

In this article, we propose a variant of the Keller-Segel model and a finite volume numerical method to
simulate this chemotaxis model with general scalar diffusion functions. The approximate solutions remains
biologically admissible due to the confinement of the cell density as a consequence of the discrete maximum
principle. The convergence to a weak solution of the continuous model is guaranteed and the numerical exper-
iments allow the validation of the generalized numerical scheme.
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