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Abstract: Enhanced understanding and control of electrophysiology mechanisms are increasingly
being hailed as key knowledge in the fields of modern biology and medicine. As more and more
excitable cell mechanics are being investigated and exploited, the need for flexible electrophysiology
setups becomes apparent. With that aim, we designed Multimed, which is a versatile hardware
platform for the real-time recording and processing of biosignals. Digital processing in Multimed is
an arrangement of generic processing units from a custom library. These can freely be rearranged to
match the needs of the application. Embedded onto a Field Programmable Gate Array (FPGA),
these modules utilize full-hardware signal processing to lower processing latency. It achieves
constant latency, and sub-millisecond processing and decision-making on 64 channels. The FPGA
core processing unit makes Multimed suitable as either a reconfigurable electrophysiology system
or a prototyping platform for VLSI implantable medical devices. It is specifically designed
for open- and closed-loop experiments and provides consistent feedback rules, well within
biological microseconds timeframes. This paper presents the specifications and architecture of the
Multimed system, then details the biosignal processing algorithms and their digital implementation.
Finally, three applications utilizing Multimed in neuroscience and diabetes research are described.
They demonstrate the system’s configurability, its multi-channel, real-time processing, and its
feedback control capabilities.

Keywords: biosignal processing; electrophysiology; FPGA; multi-application; multi-channel;
neural recording; pancreatic islet recording; real-time

1. Introduction

The growing number of technological advances in electronics and materials has enabled many
innovative approaches in biology and medicine to interact with excitable cells and tissues. Information
communicated by organs, tissues, and cells about their activity are recorded through biophysical
sensors and produce information regarding body health. Electronics captures this information,
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either invasively or non-invasively, measuring the electrophysiological properties and responses
of biological tissue. This ability to observe and analyze electrical signals emitted by networks of
excitable cells has created new perspectives in fundamental research, expanding our knowledge
of communication between cells and physiological responses to drugs. Likewise, in medical
research, this knowledge provides new solutions to restore body functions using neuroprosthetics or
artificial organs, which rely on the ability of electrical signals to also stimulate excitable tissues via
physiological pathways.

The ability to interact with living tissues relies on electronic devices, ranging from recording
electrodes and recording front-ends to signal processing systems and stimulators. While medical
studies demand more emphasis on system power cost, safety, and ergonomics, there is a strong need for
versatility in fundamental research. The variety in measurement paradigms calls for multi-application
electrophysiology platforms with easy-to-change configurations and algorithms, as well as real-time
processing and feedback control features. These platforms need to adapt to various tissues, as measured
on different scales: signals may vary with either the material’s origin (human, primate, rodent, etc.),
type of excitable tissue (brain, muscle, cardiac, or pancreatic cells), and the recording paradigm
(in vitro, ex vivo, or in vivo) [1].

This paper presents Multimed, which is a versatile embeddable full-hardware platform for
real-time recording, processing, and control of biosignals. Multimed, designed over the course
of successive projects and in close collaboration with biologists and clinicians, is suitable for
multiple applications.

As depicted on Figure 1, Multimed is a system that is capable of acquiring and processing signals
from various source materials, with a reconfigurable processing architecture taking advantage of an
FPGA (Field Programmable Gate Array) chip. Recorded signals can then be displayed in real-time,
stored, or utilized to generate feedback stimulation triggers. Overall, it may be used as a standalone
analysis station for fundamental research or as a prototyping architecture for implantable prosthetics.

Figure 1. Multimed and its interfaces. From left to right: User parameters are fed into the system,
which is connected to the measured and/or stimulated cell culture. The board then processes the data
using a Field Programmable Gate Array (FPGA), which displays measurements on an external screen
and records unprocessed and processed data to SD cards.

Signals from biological material are electrical readings of ionic fluxes at the plasma membrane
captured by micro- or macro-electrodes. Signals include electrical signatures that are generated by the
electrophysiology of a cell or clusters of cells, including the widely-described Action Potentials [2],
a fast-pulsing activity where spectral components range above approximately 200 Hz, generated by
a single cell. Some cells also show bursting activity, characterized by sequences of fast AP firing
(>10 Hz) and silent periods. In a cell network, these signatures propagate via junctions (synapses or
gap junctions) and trigger synchronized activity, known as network bursting. Clusters of depolarizing
cells also generate Local Field Potentials (LFPs) [3], a biphasic oscillation with spectral components
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ranging below 100 Hz. On a larger scale, micro-organs, such as the pancreatic islets, also called
islets of Langerhans, which are composed of many (hundreds to thousands of) excitable cells, display
continuous oscillations, reflecting its syncytial behavior and constituting a biomarker of cell coupling.
These Slow Potentials (SPs) have spectral components below 1 Hz [4].

Decoding information from these signals requires various forms of analog signal conditioning
(amplification and filtering). Then, digital processing with statistical, frequency, or temporal analysis
is necessary to extract features and produce relevant metrics. For the latter, adaptive information
decoding is essential to take into account variations in signal and electrode properties, particularly for
chronic recordings [5].

2. System Specifications

In this section, a description of our hardware platform is given. It includes a description of the
Multimed board itself, as well as the external equipment that is required to use it. To ensure a precise
definition of the compatibility between Multimed and other material, both the equipment used in
the study and the connectivity requirements are described. By defining the contents and interfaces,
this part also sets the boundaries of Multimed’s functionalities.

2.1. Position to the State of Practice

The democratization of electrophysiology techniques has motivated the design of many
electrophysiology platforms, notably commercial products proposed by National Instruments (NI) [6],
Intan [7], Multi Channel Systems (MCS) [8], or open-source alternatives [9], like Neurorighter [10]
or Open Ephys [11]. They propose bench-ready, high-performance material and processing software
that is capable of real-time processing and feedback. Moreover, the availability of generic acquisition
systems, especially from NI, MCS, or Intan gave birth to open-source analysis software [9], including
MEABench [12], ArtE [13], Nspike [14], and RTXI [15]. These also provide real-time processing tools
and promote always-expanding analysis tools with limited hardware investment.

However, applied research, and particularly, closed-loop research cannot always rely on software
processing solutions. Indeed, computation speed is bound by general-purpose operating system
performance: processing latencies slower than biological delays limit decision making within
physiological windows (e.g., Spike Timing Dependent Plasticity) [16]. Only RTXI claims to achieve
consistent sub-millisecond processing, relying on a real-time Linux kernel. On that note, the presence
of a workstation in the computation flow disqualifies these setups for implant-scaled miniaturization,
and the proposed processing software is too complex for on-chip integration. Some products answer
these issues with a hybrid approach, and they take advantage of both software and hardware
processing: Intan proposes acquisition devices with a mounted FPGA board that can host low-latency
material computing, alongside its standard processing software. A hybrid solution was also proposed
in [16], using an FPGA to host a reconfigurable low-latency event engine. It is capable of recognizing
spatio-temporal spike patterns and delivering sub-millisecond feedback. Further processing is
performed in real-time on computer software, with higher processing latencies. To our knowledge,
existing full hardware platforms are dedicated to spike-based [17] or LFP [18] processing and lack
versatility to handle wide varieties of activity patterns.

With Multimed, we intend to overcome the limitations of software solutions (lack of integrability
and high processing latency) while maintaining the modularity that they offer. It utilizes VHDL
(the standardized Hardware Description Language for digital circuits) modules, optimized for resource
cost and speed, to assemble full-hardware processing architectures with high performance.

2.2. The Multimed Hardware

The electronics that were used to host Multimed is a custom system designed specifically to
perform various operations on multichannel data. It is composed of three custom boards, as shown in
Figure 2.
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Figure 2. The Multimed system and its hardware interfaces.

The first board is an acquisition board, acquiring data on 64 channels, at 10 kHz, with 16 bit
precision. Optimal use of the ADCs’ input range is ensured using Programmable Gain Amplifiers
(PGAs) with gains ranging from 1 to 100. The board has two SCSI68 connectors, which are compatible
with Multi Channel Systems 60-electrode equipment. An internal ±8 V power supply can be bridged
to pins #1, #67, and #68 (ground, positive, negative) to power preamplifiers. All of the signal pins
from the connectors are wired in parallel (leaving the power supply pins independent on both
connectors), which means that Multimed can transparently be inserted in an existing acquisition
chain: one connector serves as a signal input and the other as a parallel output. Note that the
64 channels are provided for design symmetry reasons; therefore, the four inputs that are unused with
the 60-channel connector are accessible via either four SMA connectors or four standard 2.54 mm pitch
square connectors.

The second board is both a processing board and a control board. It has numerous I/Os that are
connected throughout the system and to its main component, a Xilinx Spartan-6 FPGA. It can access
all of the digital components and interfaces in the system, meaning that it can send configuration
instructions to any subsystem in Multimed. It also means that it can read the sampled multichannel
data from the first board, process it, and send feedback instructions accordingly, all using reconfigurable
architectures. To facilitate communication with high-level interfaces, the FPGA embeds a softcore
PIC16F-instruction-compatible processor.

The third and last board is an interface board, which includes multiple LEDs, buttons,
and switches, but also generic digital I/Os, a 3.5 mm TRS jack output, a VGA output, a micro-B
USB port, a JTAG connector, and four SD card slots. It is also the board that distributes all the power
supplies throughout the system: both the processing and acquisition board are plugged into and
powered by it.

2.3. External Equipment

To measure biological signals that are captured by MEAs, ranging in the tens and hundreds of
microvolts, Multimed requires an external high-gain, low-noise amplification stage, which is placed



Sensors 2018, 18, 2099 5 of 25

as close to the electrodes as possible. In this study, MEA1060 amplifiers by Multi Channel Systems
(MEA1060-Inv, MEA1060-Inv-BC, Multi Channel Systems (MCS), Reutlingen, Germany) were used.
They can host standard 60-electrode MEAs and have a SCSI68 output connector. They have a gain of
1200 and their bandwidth can be chosen according to the final application (0.1 Hz–3 kHz, 1 Hz–3 kHz,
or 10 Hz–3 kHz).

Similarly, Multimed does not have extensive stimulation capabilities and needs stimulation
equipment it can trigger. In this study, it has been connected to an STG 4004 by MCS (STG 4004, MCS,
Reutlingen, Germany), 4-channel stimulus generator with 4 independent TTL input triggers.

3. System Architecture and FPGA Design

Within the context being described in Methods, we designed Multimed, a module-based,
multi-application platform dedicated to the acquisition and processing of biological signals.
It meets configurability and real-time constraints, and features filtering, detection, measurement,
and decision-making capabilities. This section describes the resulting system in more detail.
Specifically, it gives an overview of Multimed’s architecture, as well as a list of all the available
processing modules. Then, processing performance figures are given. Finally, examples of experiments
are given to highlight Multimed’s ability to conduct multichannel recording.

3.1. System Architecture

The architecture design was primarily motivated by the real-time constraint. This resulted in the
implementation of two separate functional groups, as highlighted in Figure 3a, with different aims
and different levels of constraint. One group is the processing chain, a sub-architecture responsible
for critical real-time signal processing. It steadily performs operations on input signals with fully
pipelined or parallelized algorithms. The other is the interface group, which was responsible for
managing configuration, recording, and display. It constitutes an environment that controls processing
and distributes data between peripherals. It does not take part in signal processing, and consequently,
it has a weaker time constraint. This flexibility in latency and refresh rate justifies the use of the softcore
processor, which in turn, also facilitates development. The current section describes in detail both
functional groups and their interaction.

As represented in Figure 3, signal processing is carried out using a module-based sub-architecture
implemented on the FPGA. It performs operations on a generic number of channels, N, received from
the acquisition board. The first stage of this sub-architecture, Digital Input Processing, extracts events
from the input data. These events represent the detection of APs, SPs, LFPs, or bursts on a single bit
per channel, significantly reducing bitrate. They are either directed into a generic Event Processing
module with K outputs, or a Feature Extraction module that calculates P event-related features, such as
frequencies or synchronization. Finally, the events from Event Processing or the extracted features
are sent to an Output Processing module that formats them into M stimulation-driving channels.
Commercial multichannel recording and stimulation systems [19] usually contain multiple buffering
levels that impede real-time control and feedback capacity. On the contrary, Multimed is fully pipelined
or parallelized and provides a constant, well-characterized processing latency. Furthermore, all of
the intermediate processing stages are accessible in higher-level layers of the system for both display
and recording. All of the processing and display modules are configurable via a computer before and
during experiments.

Each Multimed digital processing stage is an application-specific arrangement of processing units
from a dedicated library, as detailed in Processing units and Function combinations. The processing
architecture may be remodeled, as illustrated in the examples in Figure 3b,c, depicting, respectively,
an open-loop architecture dedicated to signal analysis and monitoring [20] and its counterpart for
open-loop stimulation driven by a Spiking Neural Network (SNN). In the latter case, the Central
Pattern Generator described in [21] was integrated in Events Processing to generate stimulation triggers.
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Figure 3. (a) Architectural description of the Multimed board and its peripherals. Data acquisition and
processing is simultaneous on N channels. P features may be extracted from individual channels or
as a synthesis of a cluster of channels. Features and events are processed to control stimulation on
M configurable channels (trigger/configuration, electrical, or chemical). Stimulation-synchronized
digital blanking is available on the N recording channels. N, P, K, and M are application-specific
design parameters. Human-machine interfaces include serial configuration, VGA display, and flash
memory (SD card) storage; (b) Architecture example for data acquisition and real-time, dynamically
configurable processing, recording, and display of biological activity; (c) Architecture example for
Spiking Neural Network (SNN)-controlled stimulation of a biological medium, where an SNN is used
as an autonomous event generator, providing live SNN event recording and display.

The processing architecture, due to its modularity, requires a flexible environment that will manage
the communication between the user interface and the hardware components of the board (later
referenced as Main GP). This is where the softcore generic processor (GP) comes into play: it handles
all of the operations that are deemed “non-critical” in the real-time domain. These include data
recording management and configuration management. The modules responsible for this environment
(the Main GP and Storage in Figure 4) can either read experimental data from data buffers or write
values in module configuration inputs. However, the resulting read/write operations are designed to
have no effect on the signal processing loop timing.

Figure 4. High-level data flow of Multimed. The generic processor (GP) is separate from the data
processing chain and only helps as a means of communicating and configuring. All of the digital
processing modules feed off the same data bus (Experimental data), minimizing dependencies and
facilitating complex connections.
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A dedicated softcore environment is also implemented for the display management. Much like
the Main GP, this processor is not involved in the real-time closed loop computation, but has access to
all data received and processed by the board.

The softcore processor itself controls the system parameters. It is not involved in data processing,
but it handles communication between processing modules and hardware peripherals. It interprets
user instructions and parameters to distribute them through the system. Available configuration inputs
include processing parameters, as well as display and storage unit control. This processor is capable
of running either embedded or user software. It also controls the system flash memory, providing
user-friendly update capabilities when experiment results raise architecture additions.

Recorded raw and processed data (function outputs) are stored on SDHC cards: 32 GB cards
hold up to 7 h of 64-channel raw data sampled at 10 kHz. Data storage is controlled by the processor,
but it retrieves data directly from the source, in order to satisfy the real-time requirements. SD storage
routines have thus been embedded in the FPGA. Online display is also possible via a VGA port and
dedicated graphic processing units have been embedded in the FPGA. This specific module offers a
flexible data display, which is entirely configured by the main processor and handled by a specific
secondary processor.

3.2. Processing Units

As previously stated, Multimed is a multi-application platform with extensive configurability
features. For that purpose, and to support interchangeable data flows, a module-based approach has
been used, in which communication and processing units are implemented on a FPGA. A library of
functional blocks has thus been developed in VHDL, with standardized connectivity rules for easy,
straightforward design of real-time, multichannel processing chains.

Processing modules are designed to be fully configurable, with two categories of parameters:
dynamic parameters, which are modifiable by the user, while the system is in operation, and static
parameters (generally architecture-related, such as the number of channels and data width) set during
the architecture design phase. Dynamic parameter implementation has been designed to keep data
consistency while updates are performed. The user can then tune parameters while the system is
running without risk to record incoherent data.

Data manipulation protocols are also standardized inside and between processing units to
maximize compatibility and modularity, as well as optimize the necessary resources per processing
channel: event-based processing and transfer are parallelized while digital signal processing and
transfer are pipelined. Because our hardware is FPGA-based, there are no pre-allocated resources for a
given unit; available hardware resources are only bounded at the system level by FPGA size.

This section presents an inventory of the basic processing functions that are available in the VHDL
library, as summarized in Table 1 and represented in graphical form in Figure 5, at the end of the
section. These elementary functions are assembled in a processing chain for each application. Some
commonly used combinations of these functions are described in Section 3.3.

Table 1. List of the elementary real-time processing functions.

# Elementary Function Processing Latency (Clock Cycles)

A1 Linear filters 2N k + 2 *
A2 Wavelet filters From 7N to 65N **
A3 Standard deviation estimator 9N + 4
A4 Hysteresis comparator 4N
A5 Leaky event counter N
A6 Extrema detection 6N + 1
A7 Spatial average calculator N + W + 1

* k filters; ** mother wavelet-dependent; W: data width; N: number of channels. The numbering in the left-hand
column is used for further reference. Notations are coherent with those of the equations in part III: N is the number
of channels and W the data width.
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Figure 5. Processing units from Multimed’s module library. Square inputs/outputs represent event
connections and round inputs/outputs represent signal stream connections. The numbering of the
modules refers to that of both Table 1 and the current section.

3.2.1. Infinite Impulse Response (IIR) Filters

A Butterworth IIR linear filter module has been implemented to isolate components of interest
from biosignals for further processing: for instance, Slow Potential (SP) detection in the 0.2 Hz–2 Hz
range [4] requires band-pass filtering before event detection. To optimize memory use and
improve configurability, the filter module consists of the eight first-order, low-pass filters in series,
with separately configurable cut-off frequencies, Fc. Each first-order filtering operation is defined by
the following equation:

Yn = Yn−1 ×
(

1− 1
2k

)
+

Xn

2k (1a)

1
Fc

=
(

2k − 1
)

2πTs, k ∈ {0, 17} (1b)

where Yn is the nth output sample, Xn is the nth input sample, and Fc is an approximation of the cutoff
frequency. Consequently, high-pass filtering is also available by computing the difference between
the input signal and the output of a specific portion of the low-pass filter chain. This forms a fully
configurable filter unit, which is up to eight orders. Band-pass filtering is achieved by configuring both
high- and low-pass filters within the same filter unit.

3.2.2. Wavelet Filters

Consistent spike detection relies on good discrimination of AP waveforms from baseline noise.
Though APs may be discerned using only high-pass filtering, a low signal-to-noise ratio will
impede detection. We therefore implemented wavelet filters with configurable detail level and
mother wavelet coefficients. This enhances AP waveforms that may otherwise be drowned in noise.
The SWT (Stationary Wavelet Transform) [22] algorithm is used to compute dj

n and aj
n, the detail and

approximation coefficients for detail level j at the nth sample, respectively:

dj
n =

L

∑
k=0

g[k]× aj−1
n−2jk

(2a)
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aj
n =

L

∑
k=0

h[k]× aj−1
n−2jk

(2b)

where g[k] and h[k] are the kth coefficient of the high- and low-pass filters, respectively, out of L wavelet
coefficients. dj

n is the useful signal component and aj
n, the noise component, at the detail level j.

3.2.3. Standard Deviation Estimator

APs are detected when the spiking signal exceeds a threshold, which are chosen to establish
a clear distinction between samples that constitute noise and those that belong to an AP. However,
in multichannel processing, noise levels may vary between channels and over time [5], thus making it
impossible to use a single, constant detection threshold.

A commonly used solution in electrophysiology consists of setting the detection threshold to a
multiple of the standard deviation of individual channel signals [23]. Therefore, we implemented
digital models [22] of analog real-time standard deviation estimators [24]. The chosen model is a
closed-loop regulator based on noise distribution hypotheses. It estimates the standard deviation so
that a precise proportion of samples exceeds it (15.9% in the case of a white Gaussian noise). In order to
accommodate noise-distribution non-idealities, all of the model parameters are accessible for dynamic
configuration. Although such a unit is referenced as standard-deviation estimator in the literature, it is
in fact used to provide an image of signal amplitude that is rather immune to the cell activity present
in the measured signal.

3.2.4. Hysteresis Comparator

A two-threshold asymmetrical comparator is available for all thresholding uses, including
event detection and inter-spike interval discrimination. This module output follows a hysteresis
cycle that improves noise immunity. The two thresholds are set separately, making it usable as a
simple comparator if both thresholds are equal. This comparator is suited for both amplitude and
time thresholds.

3.2.5. Leaky Event Counter

Channel activity is quantified by counting the number of events detected. However, in neural
applications, the significance of information often decreases with its anteriority, so the leaky event
counter, Cn, gives temporal significance to event quantification by systematically decreasing the event
count over time. This “leak” is fine-tuned by changing an increment step, sU , and a decrement step, sD.
The leak value is constant, so this unit actually measures the difference between the instantaneous
firing rate and a reference firing rate on a sliding time window. This facilitates the detection of event
synchronization and network bursts.

A secondary output of the counter also produces an event when the quantity of activity measured
exceeds a threshold, Q. All of the counter features are defined by Equations (3) and (4) below:

Cn =

{
0, Cn−1 + Xn × sU ≥ Q

max (Cn−1 + Xn × sU − sD; 0), otherwise
(3)

Yn =

{
1, Cn−1 + Xn × sU ≥ Q

0, otherwise
(4)

where Cn is the event counter, Xn is the input event ,and Yn is the output event, all for sample n.

3.2.6. Extrema Detection

Slow Potentials are detected on the basis of local maxima and minima in the low-frequency
components of input signals. To avoid the detection of smaller, insignificant ripples, we implemented
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a module that detects local extrema and discriminates them according to their peak amplitude.
An amplitude threshold, ∆, may be configured to define the minimum amplitude between two
consecutive extrema. Maxima and minima are detected separately and alternately. When the module
expects a maximum, the detection occurs, according to the following criteria:

Mn =


Xn, Xn > Mn−1

Xn, Xn ≥ mn−1 + ∆
Mn−1, otherwise

(5a)

YM
n =

{
1, Xn ≤ Mn−1 − ∆

0, otherwise
(5b)

where YM
n is the nth output sample of the maximum detection and Xn is the nth input sample.

The maximum value of X up to sample n is stored in Mn, and is considered a maximum only when
the signal drops below this value by at least ∆, at which point Mn is reset and the module enters a
minimum detection mode, which operates similarly:

mn =


Xn, Xn < mn−1

Xn, Xn ≤ Mn−1 − ∆
mn−1, otherwise

(6a)

Ym
n =

{
1, Xn ≥ mn−1 + ∆

0, otherwise
(6b)

where Ym
n and mn are the counterparts for YM

n and Mn, respectively, whenever the module expects
a minimum.

3.2.7. Spatial Average Calculator

It is possible to integrate the measurements from several channels by computing their instantaneous
mean: the spatial average calculator module averages any combination of N streams into one.
The operation is optimized for speed as it is bound to be repeatedly performed at the sampling frequency.

A decomposition of the averaging operation is first computed using Equation (7), which is
performed once as a Euclidian division:

A = 2W/N (7)

where W is the data width. Let J be the set of N channel data to be averaged. The spatial average Y is
computed by Equation (8), where ai is the ith digit of the binary representation of A:

Yn =
W−1

∑
i=0

ai ×
∑j∈J X j

n

2i+1 (8)

where Yn is the nth output sample and X j
n is the nth input sample for channel j within J.

3.3. Function Combinations

The processing functions described above are commonly used in isolation (e.g., isolating AP
waveforms may only require one IIR filter bank), but they can be assembled into more complex
processing units (e.g., adaptive AP detection requires a combination of a filter bank, threshold
computation with a standard deviation estimator, and a threshold comparator). To make complex
architecture design easier, such combinations have been made available as building blocks, as listed in
Table 2 and detailed in Figure 6. In order to maintain full configurability, all of the parameters from the
sub-blocks (listed in Table 1) are accessible in these functions.
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Table 2. Combined functions.

# Combined Function Elementary Parts Used Dependencies Processing Latency
(Clock Cycles/Channel) Memory Cost (Bits)

B1a Adaptive wavelet AP Detection 1 A2 + A3 + A4 From 16N + 4 to 74N + 4 From 256N to 16,512N
B1b Adaptive AP Detection 1 A1 + A3 + A4 16N + 6 512N
B1c LFP detection 1 A1 + A3 + A4 16N + 6 512N
B2 Burst detection/AP cleaning 1 A5 + A4 B1a or B1b 4N 128N × 216

B3 Synchronization detection *2 A5 4N + 1 8N
B4a Event frequency computation 2 A1 B2 9 72N
B4b FOPP computation 2 A1 B2 9 72N
B5 Slow Potential detection 1 A6 + A4 + A5 A1 7N + 1 48N
B6 Channel sorting *2 A5 + A4 + B3 9N + 3 152N

B7a TTL stimulation control (MCS) *3 Any event source stimulation dependent 14 + 4S
B7b High level stimulation control (CNE) 3 processor B6a stimulator dependent stimulator dependent

* Processing on multiple channels; 1 part of the digital input processing unit; 2 part of the feature extraction unit; 3 part of the output processing unit; Notations are consistent with those of the
Equation (1) through Equation (8): N is the number of channels, and S the number of stimulation channels. Assemblies are detailed in Figure 6.
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Figure 6. Combinations of processing units generate more complex functions. Numbering refers to
that of Table 2. (1a): Adaptive wavelet AP detection; (1b-c): Adaptive AP-Local Field Potentials (LFP)
detection; (2): burst detection/AP cleaning; (3): Synchronization detection; (4a): Event frequency
measurement; (4b): Burst Fraction of Plateau Phase (FOPP) measurement; (5): Extremum detection;
and, (6): Electrode sorting. Blocks in dotted lines indicate connection context.

3.3.1. AP/LFP Detection

One of the most commonly used detection functions is AP detection. Two variants are available in
the VHDL function library, according to the type of AP. For clearly discernible APs (e.g., in patterned
neural cultures), the detection module consists of a band-pass filter to isolate waveforms of interest,
a standard-deviation estimator for computing the detection threshold, and a simple comparator to
determine when the spiking activity exceeds the threshold. If the APs cannot be clearly distinguished
from the baseline noise, a variant module includes wavelet filters instead of linear filters [22]. Note that
fixed threshold detection may also be implemented while using a simple comparator module.
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Similar to APs, LFPs are commonly detected by filtering (at frequencies typically two orders of
magnitude below those of APs) and thresholding. The same module is used for detection, but wavelet
filters are not used as LFP amplitude generally provides good discrimination.

3.3.2. Burst Detection

Bursts of activity are detected using a leaky event counter and a hysteresis comparator.
When comparing the event count to a threshold generates the burst event while hysteresis provides
different time sensitivities in detecting the start and end of a burst. The burst detection module
also incorporates a spike cleaning function: all successful AP detections are followed by a
configurable period, during which all of the incoming events are blanked. This reduces noise-induced
detection artefacts.

3.3.3. Synchronization Detection

Synchronization detection identifies network bursts in patterned cultures, or faulty electrodes
that are electrically coupled, while using a leaky event counter. Events from different channels
are mixed and increment the leaky event counter. The value memorized by this counter thus
represents a quantification of recent network activity. If this quantity of activity exceeds a threshold,
a synchronization event is flagged.

3.3.4. Event Frequency and Burst Fraction of Plateau Phase (FOPP)

Event frequency and burst FOPP are representative of channel activity. They are computed
using IIR low-pass filters with a configurable time constant and order (first or second). The module
acts as an averager: of the burst envelope in the case of the FOPP and single events in event
frequency computation.

3.3.5. Channel Sorting

Once individual channels have been processed, it is relevant to increase their statistical significance
by processing sets of channels. An electrode sorting module, as described in [25], is used to select the
channels of interest. Four sorting banks separately sort channels according to user-defined criteria,
including:

• Raw signal amplitude exceeds a threshold value.
• Occurrences of a given event (AP, SP, or LFP) exceed a threshold.
• Channel synchronization has been detected (one or more times). In this case, all of the channels

that contributed to the synchronization are flagged.
• This first stage yields four intermediate sorting results. After that, a user-defined logic Equation

defines the final sorting results by combining the results from every bank.

Automatic sorting criteria are computed either on request or at regular intervals in time. The actual
sorting is, however, only updated at the end of a measurement period. The set of sorted electrodes can,
for example, feed the spatial averager.

3.3.6. Stimulation Control

The stimulation control module provides an appropriate trigger to the stimulator or
stimulation source: a proprietary integrated circuit or instrument. We compiled a library of
stimulator-dependent modules. A module control output may be as simple as a TTL line to trigger an
externally-preconfigured stimulator, or a higher-level communication protocol that both modulates
and triggers a stimulation event.

TTL-triggered stimulators have the lowest response time, while the modulated stimulators are
more flexible for complex feedback in closed-loop configurations. Although stimulation control is
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provided by our module in a very short time (under 10 µs), the time cost of the full stimulation and
the decision-making scheme is experiment-dependent and may be in milliseconds, depending on the
number of required samples for decision-making.

To illustrate stimulation generation performance in Multimed, Figure 7 presents the computation
steps in a simple case: in a 64-channel acquisition chain, a single AP is detected by IIR filtering and
adaptive thresholding, and triggers a stimulus on an MCS STG 4004 (STG 4004, MCS, Multi Channel
Systems, Reutlingen, Germany). All of the processing steps between the raw signal and the actual
electrical stimulus (filtering, threshold computation, and routing) are represented, including the
external stimulator time lag, as specified by the manufacturer. In this case, our stimulation control
module output a TTL trigger and computed the “routing” step in 2.56 µs, giving a total of 103.62 µs
between the AP and the stimulus.

Figure 7. Timing example of a feedback stimulation chain in a neuron culture. Simple spike detection
was used with linear filtering, adaptive threshold, and direct routing. The colored time intervals
represent the system computation lag. The stimulator time lag, represented in gray, is also taken into
account. The time lag shown is that of the MCS STG 4004 Stimulation Generator (STG 4004, MCS,
Reutlingen, Germany), which was previously used with the system. The “stimulation response” mark
represents the instant at which the electrical stimulus was sent.

The stimulation control is associated with a blanking function that drops any event detected
within a time window after the stimulation has been triggered. Blanked channels and window time
are configurable (in the 0–25 ms range per 0.1 ms step for blanking time) and are closely related to
the stimulation scheme. Blanking is necessary to reject stimulation artifacts, otherwise considered as
intrinsic cell activity, thus making the measurements irrelevant.

Commercial preamplifiers, such as MCS’ MEA1060-Inv-BC (MEA1060-Inv-BC, MCS, Reutlingen,
Germany), include a built-in analog blanking circuit. Multimed’s digital blanking, in contrast to analog
blanking, only cancels event detection and processing, thus maintaining continuous acquisition during
stimulation artifacts.
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3.4. Performance

Measurements have been performed to validate every available function. However, with processing
and detection accuracy being highly dependent on the nature of the signal and the processing parameters,
validation was mainly algorithm-driven; proper algorithmic operation was verified and visual controls
validated the accurate detection of events on neural and pancreatic biosignals during experiments.
An in-depth validation of wavelet adaptive detection of APs is detailed in [22].

The main advantage of the Multimed system is the small amount of hardware resources it requires
for the functions it provides. Computation is performed in fixed point representation with a specific
bit-length precision and uses simple, resource-efficient computation schemes, which is unachievable
using generic processors or DSPs. The dedicated architecture also makes a high number of operations
per clock cycle, thus improving the efficiency of the whole system. Our VHDL modules also receive
generic parameters that remove unwanted channel computation. This feature results in an excellent
time- and resource-cost per acquisition channel (as detailed in Tables 1 and 2), regardless of the number
of channels.

All of the control and interface functions share the same FPGA as the data processing functions,
thus limiting the available resources. In a standard configuration, control functions use 10% to 40% of
RAM resources (the worst case is due to the memory buffer necessary for SDHC cards) and 15% of
distributed logic.

To improve performance, data is transferred between modules in a flow. At the module level,
N samples corresponding to N electrodes are serially input and output. Simple modules are fully
pipelined and implemented at very little resource and time cost, while more complex modules are
not fully pipelined: data is buffered in a local memory. Although this communication scheme may
sometimes induce duplicated storage in the system, it improves the processing latency (quantified in
Table 2).

Multimed features are summarized in Table 3. With the described environment, it is relatively
straightforward to build a fully real-time system where maximum processing latency remains well
below the sampling period. Furthermore, the user can freely upscale full data processing chains,
even if the overall processing latency is longer than the sampling period, as all of the computation
modules obey the real-time processing constraint (“real-time processing constraint” meaning that
computation time is bounded by design). Processing latency remains constant, with no necessity
for data buffering, and no risk for data overflow. This is an advantage for long-term (chronic)
experiments that require a high sampling frequency and complex processing, on the one hand,
but provide long physiological responses, on the other hand. Multimed’s modest computation
resources and high efficiency result in an architecture ready for battery-powered devices with a
small form factor. Associated with its autonomy in stimulation decision, it is ready for the design of
embedded, closed-loop healthcare architectures.

Table 3. Full system features.

Number of independent analog inputs 64
Analog input/output ports 2×SCSI68 *

Number of generic digital I/Os 10
Amplifier stage gain ×0-1-2-5-10-20-50-100

Bit depth 16 bits fixed point
Sampling frequency 10 kHz
Raw data generated 73.24 MB/min

Maximum recording time 7 h
Display output port VGA
Communication port micro-B USB

Communication protocol Serial, 115,200 baud

* 60 channels, MCS-compatible.
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4. Existing Applications

This section presents a series of experiments utilizing Multimed in different application fields.
To illustrate its capabilities, a relevant experimental result is given for each application, alongside the
corresponding system architecture. All of the experimental procedures were approved by the French
Ministry of Education and Research.

4.1. Biological Protocols

In neuron preparations, cell activity was measured using 60-electrode MEAs from the Qwane
Biosciences Company [Qwane, Lausanne, Switzerland]. These biochips provide 60 platinum electrodes
with 40 µm-diameter tips and 200 µm spacing, a larger area for the grounded electrode, and a
6 mm-high glass cylinder, used as a culture chamber. Primary neuron cell cultures were obtained from
the cortex of embryonic (E18) Sprague-Dawley rats, following a standard protocol (see [26] for a full
protocol description). The MCS pre-amplifier (MEA1060-Inv, MCS, Multi Channel Systems, Reutlingen,
Germany) had a gain of 1200 and raw data were sampled at 10 kHz/channel. Neuron culture age
was 48 DIV (Days in Vitro) in the monitoring application and 36 DIV in the stimulation application;
both when neuronal activity mainly consisted of bursts [27,28].

In pancreatic islet preparations, activity was measured using 60-electrode MEAs in
two configurations, including one where drug concentrations could be continuously modulated by
using microfluidic circuitry. These were custom MEAs, supplied by Qwane Biosciences company
(Qwane Biosciences, Lausanne, Switzerland), featuring 30 Platinum electrodes with 30 µm-diameter
and 150 µm spacing. Other MEAs, as obtained from MCS [MEA200/30-Ti-gr from Multi Channel
Systems, Reutlingen, Germany], featured 60 Titanium nitride (TiN) electrodes with 30 µm-diameter and
200 µm spacing, together with a 6 mm-high glass cylinder used as a culture chamber. Whole murine
islets were cultured for 2–7 days on the MEAs, as described in [4,20]. The pre-amplifier was a
MCS 60-electrode amplifier (MEA1060-Inv-BC from Multi Channel Systems, Reutlingen, Germany),
custom with a gain of 1100 and a bandwidth of 0.1–3000 Hz.

4.2. Experiment #1: Recording and Detection

Neuronal response to mobile telephony signal exposure was investigated by monitoring the
electrical activity of neural cultures on MEAs over long periods of time. The study, as published
in [29], revealed a reversible decrease in firing and bursting rate during exposure to a 900 MHz
mobile telephony signal (900-GSM). The Multimed architecture used for these experiments was a
direct processing chain, with no feedback (see Figure 8). The 60 channels were processed, stored,
and displayed in real time. Digital processing included AP, LFP, and burst detection. Figure 9
displays a raster plot of adaptive wavelet AP detection. Low amplitude (tens of microvolts) APs
were discriminated using Haar wavelet filtering and adaptive thresholding, as illustrated in Figure 10.
Wavelet parameters were defined according to validated data for AP detection on rodent cortical
neurons [22].

Figure 8. Multimed processing architecture for the detection and recording of neural spiking activity.
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Figure 9. Raster plot of real-time neural AP detection on a patterned culture, recorded on a 60-electrode
MEA. In this reading, the average burst contained 11 APs per electrode. The experimenter validated
detected events offline.

Figure 10. Detail of real-time AP detection on a neuron culture using an adaptive threshold and
Haar wavelet filtering. Signals shown are: A: raw signal and AP detection; B: 4th wavelet transform
level on which detection was performed, detection threshold, AP detection; and, C: 1st wavelet
transform level, on which the detection threshold was computed, detection threshold, and AP detection.
The experimenter visually validated detected events.

This series of experiments, conducted in parallel with commercial hardware, helped to validate
the ability of the system to render real-time analyses of spiking activity in neuron cultures with an
open-loop architecture.

4.3. Experiment #2: Screening and Processing

The process of testing new drugs in pharmacology involves subjecting live cells to chemical
compounds and measuring a range of parameters to assess the quality of the drug. Those parameters
reflect the way that the cells reacted and helped to deduct which of their mechanisms were altered.
The Multimed platform introduces an electrophysiological approach to this process, displaying the
effects of the drug in real-time. This approach has the advantage of providing time-dependent
information on the effects of the drugs, while eliminating the need to take samples from the
preparations being tested.
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The electrical activity of pancreatic islets is an integrative read-out that encodes the body’s demand
for insulin. Various techniques (thermal or impedance spectroscopy, fluorescence, photoacoustic,
or electromagnetic sensing, etc.) are available to investigate the effects of new drugs in the treatment
of diabetes, while our system provides direct access to the physiological response of the islets [4].
Screening measurements were conducted to determine the behavior of murine pancreatic islets in
response to changes in the main physiological stimulus (Glucose) and can be easily extended to other
nutrients and hormones.

The Multimed configuration (see Figure 11) for this application was able to record raw data, as well
as detecting APs, AP bursts, and Slow Potentials (SPs). It also included measurement modules to
compute AP and SP frequency and FOPP, as well as the spatial average of those parameters. Figure 12
shows the changes in both signal amplitude and SP frequency in response to changes in the perfused
glucose solutions. Real-time processing emphasizes the dynamics of islet response, particularly when
the glucose concentration increased (from G3 to G7).

Figure 11. Multimed processing architecture for pancreatic islet screening.

Figure 12. Raw signal (black) and Slow Potential (SPs) frequency measurements (red) on a mouse islet
culture, using a Qwane MEA with microfluidic features. Zoom on three representative samples of the
measured biosignal to provide a clearer illustration of changes in measured activity. Experimental
protocol is described with the “G3”, “G7”, and “G9” labels, indicating changes in glucose concentrations
in mM/L.
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It is also possible to perform statistical analyses, and more specific, costly calculations on events.
We hypothesized that SPs were better biomarkers of islet function and insulin demand than APs [4].
In [4], we validated the AP-SP correlation by detecting APs and SPs off-line and evaluating their
respective angular position. We reproduced that result using Multimed’s online and real-time detection.
Figure 13 shows an example of a statistical analysis that was performed on a set of online-recorded
data on mouse islets (MCS 60-channel MEA). 2608 APs and 329 SPs were detected in real-time and
the computation of their relative positions, as performed in MATLAB (MathWorks, Cambridge, UK),
revealed that the majority of APs fired during the downward phase of SPs. Though the system does
not perform such analyses entirely in real-time, real time signal pre-processing significantly reduces
the transfer and post-processing time.

Figure 13. (a) Histogram of the angular position of APs on SPs, detected in real-time. Classes are
4◦-wide and sort 2608 APs from 329 SPs; and, (b,c) Sample raster plots of AP and SP real-time detection,
used as a base for the histogram. The recordings used lasted 300 s in total.

4.4. Experiment #3: Towards Closing the Loop

Biosignals recorded in vivo present signatures that were identified as representative of a
physiological state, and hence, relevant for physicians, and suitable for controlling feedback stimulation
to restore a healthy state: beta-band enhancement is a marker for motor symptoms in Parkinson’s
disease [30]; Slow Potentials act as glycaemia markers for diabetes control [4]; responsive cortical
stimulation is acknowledged as an efficient epilepsy treatment [31]; and, cortical spike patterns are
used to control prosthetics limbs [32]. Signal features may also reflect physiological changes that
require a modification of the stimulation parameters. With that in mind, designers refer to real-time
control systems as closed-loop control systems where one has a tight time window to gather data,
process that data, and update the system.

Multimed’s performance in decision-making and its architectural possibilities were designed
to make it suitable for closed-loop experiments involving pulsed stimulation. It would act as a
feedback controller for an external stimulator that loops back into the biological medium. The main
advantage when compared to previously presented architectures is the Output processing module,
which configures different signals, combinations of signals, and network dynamics as the source of
one of the stimulation trigger outputs (see Figure 14).
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Figure 14. Architecture for the closed-loop stimulation of neuron cultures.

Figure 15 presents the results of a demonstration experiment on a cortical neuron network,
in which a stimulation trigger was sent whenever the system detected network synchronization
between six user-defined channels.

Figure 15. A stimulation command triggered by synchronized spiking activity in a neuron culture.
The trigger was set off when more than four APs were detected across six selected channels in a
25 ms time window. (a) Unprocessed data on one of the channels of interest; (b) AP detection on the
six channels of interest and, (c) Illustration of synchronization detection: AP count and related trigger.

In this experiment, no stimulation artifact was observed as no stimulation was actually performed
on the culture. Closed-loop experiments using Multimed were recently performed in two research
projects: the BRAINBOW project [33], exploring functional organization and the dynamics of damaged
parts of the central nervous system, and the CENAVEX project [34,35], which implements a real-time
control scheme for ventilation after spinal cord injury impairing respiratory functions.

With these experiments, we illustrated different uses and configurations of Multimed to showcase
its features. First, event detection was shown in a monitoring-only configuration utilizing mouse
neuron cultures. Then, frequency measurements were presented to illustrate variations in pancreatic



Sensors 2018, 18, 2099 21 of 25

Slow Potentials in mice. It was suggested that online results could be exploited immediately off the
SD cards, but that they could also serve as pre-processed signals that cuts-off computation time in
otherwise computationally-heavy and time-consuming analyses. It was finally hinted that routing in
Multimed had been designed to permit closed-loop experiments, and that single events, as well as
network bursting, could be utilized as stimulation triggers. These results demonstrated the viability
of a system such as Multimed, as it could successfully adapt to the various materials and paradigms
proposed. As a sidenote, we remind that the performance of each submodule remained constant,
even with the increasingly complex architectures presented. This again underlines the advantage in
utilizing distributed logic, rather than software processing.

5. Discussion

Few recording systems described in the literature perform multi-application, multichannel,
real-time processing with closed-loop and versatility constraints. The Neurorighter [36] open-source
platform meets those constraints and is a great example of a versatile system: all processing is
performed in computer software, which makes it extremely flexible. This, however, is to the
detriment of global latency and integrability. Software solutions generally suffer from these drawbacks,
though latency can greatly be reduced with dedicated RTOS (real-time operating systems), like is the
case with RTXI and its 60 µs closed-loop latency [15].

A more comparable system is that depicted in [16], involving a closed-loop neural network
consisting of cortical neuron clusters interconnected with electronic synapses. Synapse-based
stimulation is computed on a reconfigurable event processor: in order to minimize processing
latency and to achieve acausal synaptic stimulation and decision making within the STDP window,
critical processing is done in an FPGA. The system’s processing architecture in itself is not
configurable, but the decision-making event engine is extremely flexible. Although Multimed features
a similar module, the one that is depicted in [16] is more complex and capable of creating entire
event-processing sub-architectures.

Comparable hardware is produced by Intan (Intan Technologies, Los Angeles, CA, USA) with
its RHD2000 interface board product line: an acquisition board is mounted with an Opal Kelly
FPGA board and has SPI interfaces to connect various Intan headstages. This hardware, with its
open-source control and real-time processing software, is the product of choice for recent open-source
electrophysiology projects. While the community recognizes the potential of Intan hardware to perform
sub-millisecond feedback thanks to its FPGA, it is not a native feature and no dedicated modules have
been released yet.

Finally, Open Ephys proposes a very popular system that is targeted at researchers that uses
implantable devices in non-human subjects. It is an open-source system that can be built at a low price
(less than $100 per channel). Although its electronics utilize an FPGA, signal processing is performed
in software, resulting in fairly high processing latencies: the closed-loop latency (typically between 10
and 20 ms) is attributed to software buffers and USB communication delays [11]. Again, this project
trades a great deal of flexibility for performance, as all data is available for online display in software.

With Multimed, we hope to bring out the best of both worlds, with the performance of
full-hardware processing and easily reconfigurable modules and architectures. Still, Multimed’s most
immediate limitation is its current analog front-end that limits its usage to 60 electrodes. Sampling
frequency is less constrained: the 10 kHz sampling frequency that we used in experiments is set to keep
coherency with the 3 kHz bandpass of our pre-amplifiers; that sampling frequency can be increased to
15 kHz for all of the channels without any modification to Multimed. The individual channel sampling
rate can also be increased simply by reducing the number of recorded channels to maintain the global
sample rate to its current value.

The Multimed computing architecture would not be immediately impacted by higher input figures
(e.g., number of electrodes or frequency), as processing modules are parameterized and scalable. Still,
implementing the modules library to process more inputs may at some point require a FPGA upgrade
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to provide sufficient hardware computation resources: Multimed is now equipped with a lowcost
Spartan 6 FPGA (Xilinx xc6slx150), which is used at 50% of its computation capacity for the whole
system. We performed a theoretical study that showed that same FPGA can handle in Multimed more
than 1024 individual channels, the limiting resource being embedded memory.

Upscaling input data (number of electrodes or sampling frequency) will also multiply the amount
of data to save in the same proportion. To be able to keep up with this extra amount of data, the system
would need extra storage capability. Final storage is not the primary issue, since SD-XC cards can
now handle eight times more data that our reference 32 GB SD-HC card, which corresponds to 14-h
recording of 60 electrodes sampled at 40 kHz. The main issue comes from the SD-XC pre-record data
buffer: its required size has not yet been fully characterized by the authors, when embedded in the
Multimed control architecture.

It is also worth mentioning that using highly-configurable systems, such as Multimed, requires
appropriate training for end-users: biologists or clinicians. Although Multimed modules are designed
to be easily interconnected through a standardized interface, building a customized architecture
requires experimenters that are trained in digital system design. Overcoming this constraint would
require an advanced, high-level, human-machine interface, which is suitable for use in constrained
environments. This interface has not yet been developed, since it was not a functional priority.

The Multimed system can be considered either as an electrophysiology platform or as a prototype
for electroceutic devices, such as cortical stimulators, which now bundle many separate functions
into a single implantable package [37,38]. Specifically, the synthesized digital architecture provides
a ready-to-use netlist for on-chip physical implementations. Multimed settles a proof of concept,
but more development is required to produce an embeddable device. A VLSI implementation
would greatly improve package size and power consumption, but the resulting IC would be
highly application-dependent.

Multimed’s architecture brings massive multi-electrode computing and multi-source fusion within
reach, but few experiment paradigms to date have required such performance levels. For that matter,
high multidisciplinary collaboration is crucial to define processing parameters and resource-efficient
algorithms, while working with signals with partially unknown features.

6. Conclusions

Our architecture demonstrated its accuracy in real-time, long-term [4,21,33–35,39] experiments.
Furthermore, current FPGA use is below its maximum processing potential, as only a few electrodes
and simple feedback rules have been exploited. The system that is presented here represents
technological advancement in the field of open- and closed-loop experiments for fundamental research
in bio-mechanism exploration and functional rehabilitation. It consists of a highly-configurable, generic
hardware, which is associated with a library of interoperable modules. The resulting platform makes
it easy to build application-specific, open- or closed-loop setups, with high computing efficiency and a
large number of channels. Targeting the use of living cells as sensing elements, Multimed provides
long term, continuous monitoring, and/or processing of signals recorded by bio-sensors. As recording
and display are only used for characterization and evaluation, removing these modules produces an
autonomous, embeddable system. This device is then able to perform multi-parametric, multi-channel
monitoring and analysis, and provide condensed reports, consultable from time to time (e.g., once or
twice a day), via a low-bandwidth connection.

Multimed setups have been installed in multiple sites and are being used by partner laboratories
in collaborative projects, always aiming for closed-loop experiments (BRAINBOW (EU project 284772,
ICT- FET FP7/2007–2013, FET Young Explorers) [33], CENAVEX (ANR grant 2013-NEUC-0001-01 and
NIH grant 5 R01 NS086088-02) [34,35,40], ISLET CHIP (ANR grant 2013-PRTS-0017) [25,41], HYRENE
(ANR grant 2010-BLANC-0316-01) [21]). New needs in terms of processing capabilities arise from
existing collaborations and can also emerge from new collaborations, leading to regular updates of the
digital library. In parallel, hardware developments are ongoing, in an effort to improve the interfaces
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with our custom high-voltage stimulation ASIC and facilitate the prototyping of fully-customized,
autonomous System-in-Package solutions. We also consider interfacing Multimed with commercial
sensor modules to investigate new applications that are based on alternative modalities, such as
temperature or protein sensing.
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