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An Uncertainty Quantification Approach to the Study of

Gene Expression Robustness

Pierre Degond∗ Shi Jin† Yuhua Zhu‡

Dedicated to Professor Ling Hsaios 80th birthday

Abstract

We study a chemical kinetic system with uncertainty modeling a gene regulatory

network in biology. Specifically, we consider a system of two equations for the messenger

RNA and micro RNA content of a cell. Our target is to provide a simple framework for noise

buffering in gene expression through micro RNA production. Here the uncertainty, modeled

by random variables, enters the system through the initial data and the source term. We

obtain a sharp decay rate of the solution to the steady state, which reveals that the biology

system is not sensitive to the initial perturbation around the steady state. The sharp

regularity estimate leads to the stability of the generalized Polynomial Chaos stochastic

Galerkin (gPC-SG) method. Based on the smoothness of the solution in the random space

and the stability of the numerical method, we conclude the gPC-SG method has spectral

accuracy. Numerical experiments are conducted to verify the theoretical findings.

Key words. Gene Expression, generalized Polynomial Chaos, sensitivity analysis, spec-

tral accuracy

AMS subject classifications. 35Q92, 92C37, 65M70, 65M12

1 Introduction

In this paper, we are interested in a model of a simple gene regulatory network describing

the regulation of the transcription of nuclear DNA by microRNAs (further denoted by µRNA).

The synthesis of a protein from its DNA sequence involves several steps: the binding of a

transcription factor (which can be a protein or another type of molecule) on the gene promotor

sequence initiates the transcription of DNA into messenger RNA (further denoted by mRNA).

mRNA is later translated into proteins in the ribosomes. Here, we are specifically interested

in the first step, i.e. the transcription of DNA into mRNA. This transcription is subject to a

high level of noise due for instance to noise in the availability of transcription factors. Yet, cells

have to perform functions with a high level of precision and some noise buffering systems must
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be at play. In recent years, the role of µRNA has attracted focus. µRNAs are very short RNA

sequences which are coded by non protein-coding sequences of the nuclear DNA. They seem

to have (among other roles) a role in the regulation of transcription. Indeed, in many cases,

the transcription factor initiates transcription of DNA into both the mRNA and a regulatory

µRNA. The synthetized µRNA binds on the mRNA and prevents its translation into proteins.

It has been argued that the main function of this regulation is to reduce the effect of noise in

the transcription process (see [2, 3] and the review [10]).

Our model involves a pair of chemical kinetic equations for the mRNA and µRNA content,

with source terms modeling the action of the transcription factor. The effect of the noise is

taken into account by adding some uncertainty in the noise term and the initial data. We are

interested in looking at how this uncertainty propagates to the mRNA content and in comparing

this uncertainty between situations including µRNA production or not. The uncertainty is

modeled by random variables with given probability density functions.

A classical approach to the study of noise in gene regulatory networks is through the chemical

master equation [18] which is solved numerically by means of Gillespie’s algorithm [9], see e.g.

[4, 16]. Here, we use the chemical kinetic approach, which is a valid approximation of the

chemical master equation when ther number of molecules is large. However, this approximation

is far from being valid in a cell. This is why we mitigate this discrepancy by assuming a random

availability of transcription factors. The advantage is a considerably simpler treatment than

with the chemical master equation while preserving the important features of the system. An

alternate approach presented in [8] considers Brownian perturbations in the chemical kinetic

equations. Introducing the joint probability density for mRNA and µRNA leads to a Fokker-

Planck equation which can be analytically solved under some time-scale separation hypotheses.

Underlying this approach is the idea that random perturbations do not only affect the initial

condition and the source term, but are present at all times. In the present work, we restrict

to random perturbation of the source term and initial data which allows us to use the simpler

framework of uncertainty quantification.

We will mainly focus on two aspects of this problem. First, we study how a random pertur-

bation near the steady state will affect the system by analyzing the long-time behavior of the

perturbative solution in the random space in terms of the weighted Sobolev norm Hn
π , where

π is the probability density function of the random variable. We also study the stability and

the convergence rate of a numerical method to the system with uncertainty, specifically, the

generalized Polynomial Chaos approximation based stochastic Galerkin (gPC-SG) method.

There are plenty of developments regarding the sensitivity analysis and convergence analysis

in uncertainty quantification. For example, the solution to elliptic equations, parabolic equations,

[1, 6, 7], and kinetic equations [11, 14, 13, 12, 17, 15, 21, 20]. To our knowledge, there has been

no such analysis done to a system of chemical kinetic equations describing a gene regulatory

network.

There are mainly two difficulties in the analysis. The first one is in the sensitivity analysis

in the random space. When we do estimates on the Sobolev norm Hn
π , the size of the nonlinear

terms will increase to O(2n). This will result in a strong assumption on the initial data, that

is, the initial randomness is required to be as small as O(1/2n) to get an exponential decay.

Similarly, when we do the stability analysis of the gPC-SG method, if we approximate the

solution by K-th order polynomial chaos bases, the size of the nonlinear terms in the resulting
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deterministic system will be O(K!). If we directly do energy estimates on the approximate

solution, then we can only prove stability when the initial randomness is as small as O(1/K!).

To sum up, how to get a sharp estimate in terms of n and K without strong assumption on the

initial data or steady state is the main difficulty in this problem.

In this paper, we obtain a sharp decay of the random perturbation around the steady state

in terms of its Sobolev norm Hn
π through a carefully designed weighted energy norm. Under

some mild conditions on the initial data that is independent of n, we find that the random

perturbation near the steady state will decay exponentially. Our results also reveal that the

solution preserves the regularity in the random space. Moreover, with another weighted energy

norm, we prove the stability of the K-th order gPC-SG method with an assumption on initial

data independent of K. The smoothness of the solution in the random space and the stability of

the gPC-SG method allows us to prove the spectral convergence of the gPC-SG method. When

approximating the numerical solution by the K-th order polynomial chaos basis, the error of the

approximation solution in Hn
π is O(K−n).

This paper is organized as follows. Section 2 gives an introduction to the chemical kinetic

system modeling the targeted gene regulatory network and its corresponding steady state. The

main result and proof sketch about the sensitivity of the system under random perturbation

near steady state is stated in Section 2.1. The proof of this result is in the following Section

3. In Section 4, the gPC-SG method is introduced and the stability and the convergence rate

of this method are stated in Section 4.2. The proof of these two results are in Section 5 and 6

respectively. In Section 7 we numerically study how the presence of RNA inuences the noise in

the concentration of unbound mRNA.

2 The model

Consider the following model, ∂tρ̃ = S(z)− aρ̃− cρ̃m̃,

∂tm̃ = S(z)− bm̃− cρ̃m̃,
(2.1)

with initial data ρ̃(0, z), m̃(0, z). a, b, c are positive constants. Here ρ̃(t, z), m̃(t, z) respectively

stand for the content of unbound mRNA and µRNA of a cell at time t. S(z) is the source term

which models the production of mRNA and µRNA through DNA transcription. We assume

that a molecule of µRNA is produced each time a molecule of mRNA is produced, hence the

same source term arises in the two equations. The production of mRNA and µRNA is subject

to the availability of the transcription factor, which is random. We model this randomness by

assuming that the source term is a given function of a random variable z (modelling for instance

the concentration of transcription factors) with probability density function π(z) on a compact

set Iz ⊂ R. The first equation of (2.1) models the decay of unbound mRNA through its binding

to an unbound µRNA (the term −cρ̃m̃) or through other degradation mechanisms (the term

−aρ̃). The second equation of (2.1) describes the decay of unbound µRNA through its binding

to an unbound mRNA (the term −cρ̃m̃ again) and through other degradation mechanisms (the

term −bm̃). Note that the binding of µRNA to mRNA consumes one molecule of µRNA and

one molecule of mRNA at the same time, which explains why the same loss term is involved in
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the two equations. The remaining unbound mRNA is then supposed to enter the translation

process into proteins through the actions of ribosomes. This step is supposed to occur later and

is not included in the model.

If one sets ∂tρ̃ = ∂tm̃ = 0, one can get the steady state ρ∞(z), m̃∞(z),

ρ∞ = br∞, m̃∞ = ar∞, with r∞(z) =
1

2c

(
−1 +

√
∆
)
> 0, ∆ = 1 +

4cS(z)

ab
> 1. (2.2)

Let (ρ,m) = (ρ̃− ρ∞, m̃− m̃∞) be the random perturbative solution around the steady state,

then (ρ(t, z),m(t, z)) satisfies{
∂tρ = − (a+ acr∞) ρ− bcr∞m− cρm,

∂tm = − (b+ bcr∞)m− acr∞ρ− cρm,
(2.3)

with initial data,

ρ(0, z) = ρ̃(0, z)− ρ∞(z), m(0, z) = m̃(0, z)− m̃∞(z).

2.1 Main results and proof sketch

We are interested in the estimates for the solution (ρ,m) in the random space using the norm

‖ρ(t)‖2Hnπ =

n∑
i=0

∫
(∂izρ)2π(z)dz, ‖m(t)‖2Hnπ =

n∑
i=0

∫
(∂izm)2π(z)dz. (2.4)

There are two reasons why we are interested in this Sobolev norm. First, by studying this norm,

we can understand how sensitive the system with respect to the random perturbation around the

steady state is and how this perturbation evolves in time. Second, this norm gives the Sobolev

regularity of the solution in the random space. We will approximate the solution by the gPC-

SG method in the random space in Section 4. Such regularity allows us to prove the spectral

convergence of the method.

The difficulty in the analysis is to get an estimate of ‖ρ‖2Hnπ , ‖m‖
2
Hnπ

that is sharp for large

n. For n = 0, one can do standard energy estimates on a ‖ρ‖2 + b ‖m‖2 to get an exponential

decay of the random perturbation in time under a smallness assumption on initial data. We will

show the result for n = 0 in the following lemma, and explain why it is not trivial to extend it

to n > 0 after the proof of the lemma.

Lemma 2.1. If initially, the random perturbations satisfy

‖ρ(0)‖2π ≤
b2

4c2
, ‖m(0)‖2π ≤

a2

4c2
,

then the perturbations (‖ρ(t)‖2π , ‖m(t)‖2π) decay exponentially in time as follows,

‖ρ(t)‖2π ≤
1

a

(
a ‖ρ(0)‖2π + b ‖m(0)‖2π

)
e−at, ‖m(t)‖2π ≤

1

b

(
a ‖ρ(0)‖2π + b ‖m(0)‖2π

)
e−bt.

Proof. Multiplying aρ and bm to the two equations in (2.3) respectively, and then adding them
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together gives,

1

2
∂t
(
aρ2 + bm2

)
=− a2ρ2 − b2m2−

(
a2cr∞ρ2 + 2abcr∞mρ+ b2cr∞m2

)︸ ︷︷ ︸
linear part

−acρ2m− bcm2ρ︸ ︷︷ ︸
nonlinear part

≤− a2ρ2 − b2m2−cr∞ (aρ+ bm)
2︸ ︷︷ ︸

linear part

+c2ρ2m2 +
a2

4
ρ2 + c2ρ2m2 +

b2

4
m2︸ ︷︷ ︸

nonlinear part

≤−
(

3a

4
− c2

a
m2

)
aρ2 −

(
3b

4
− c2

b
ρ2
)
bm2,

(2.5)

where we apply Young’s inequality to the nonlinear part in the first line to obtain the first inequal-

ity. Since r∞ defined in (2.2) is always positive for any z ∈ Iz, this gives −cr∞ (aρ+ bm)
2 ≤ 0,

so we can omit this term in the second inequality.

After we obtain the inequality as in (2.5), the exponential decay of ρ2,m2 follows from a

smallness assumption on the initial condition. Assume the coefficients of aρ2 and bm2 on the

RHS of (2.5) are smaller than −a2 and − b
2 respectively, which is equivalent to assume

m2(0, z) ≤ a2

4c2
, ρ2(0, z) ≤ b2

4c2
, for all z ∈ Iz, (2.6)

then by continuity argument, for all t > 0, one has

1

2
∂t
(
aρ2 + bm2

)
≤ −a

2

2
ρ2 − b2

2
m2.

Integrating the above equation over time, one gets,

aρ2(t) + bm2(t) ≤ aρ2(0) + bm2(0)−
∫ t

0

a2ρ(s)2ds−
∫ t

0

b2m(s)2ds,

which implies

aρ2(t) ≤ aρ2(0) + bm2(0)− a2
∫ t

0

ρ(s)2ds,

bm2(t) ≤ aρ2(0) + bm2(0)− b2
∫ t

0

m(s)2ds.

By Grownwall’s inequality, one can get the exponential decay of ρ2,m2 as follows,

ρ2(t, z) ≤ 1

a

(
aρ2(0, z) + bm2(0, z)

)
e−at, m2(t, z) ≤ 1

b

(
aρ2(0, z) + bm2(0, z)

)
e−bt.

Finally, one integrates (2.6) and the above estimates over π(z)dz, one completes the proof of

Lemma 2.1.

The difficulties of extending the results in Lemma 2.1 to ‖ρ‖2Hnπ , ‖m‖
2
Hnπ

are mainly due to two

reasons. First when n = 0, the linear part in (2.5) is a negative square without any assumption

on r∞, so we can directly omit these terms in the estimates. However, if we directly do energy

estimates on ‖ρ‖2Hnπ , ‖m‖
2
Hnπ

for n > 0, we have to assume
∑n
i=1

∣∣∂izr∞∣∣ ≤ O(1/n!) to make

the linear part negative and this assumption is too strong. Second, the nonlinear part will be

O(n(n!)2) if we directly estimate on ‖ρ‖2Hnπ , ‖m‖
2
Hnπ

for n > 0. This implies that one needs to
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assume the initial data ‖ρ(0)‖2Hnπ , ‖m(0)‖2Hnπ as small as O(1/n/(n!)2) to get the exponential

decay in time. We will explain it in more details in the following paragraph.

In order to simplify the notation, we set

θ = aρ+ bm;

ρn = (ρ, ∂zρ, · · · , ∂nz ρ), similar for mn,θn,
(2.7)

and let ‖·‖2 be the regular Euclidean norm,

‖ρn‖2 =

n∑
l=0

ρ2l .

If we directly do energy estimates on a ‖ρn‖2+b ‖mn‖2, then we will get the following inequality

by taking ∂lz (0 ≤ l ≤ n) to (2.3), then multiplying aρl, bml respectively and adding all equations

together,

1

2
∂t

(
a ‖ρn‖2 + b ‖mn‖2

)
=− a2 ‖ρn‖2 − b2 ‖mn‖2 +

n∑
l=0

[
−c∂lz (r∞θ)

]
θl︸ ︷︷ ︸

linear part

+

n∑
l=0

−ac∂lz(ρm)∂lzρ− bc∂lz(ρm)∂lzm︸ ︷︷ ︸
nonlinear part

(2.8)

First, for the linear part, when n = 0, the linear part is automatically a negative square term,

so we do not need to bound this term any more. However, when n > 0, since r∞ in the linear

term depends on z, so taking ∂lz to the linear terms gives

linear part = −c
n∑
l=0

∂lz (r∞θ) θl = −cr∞ ‖θn‖2 − c
n∑
l=1

l∑
i=1

(
l

i

)
∂izr
∞ (∂l−iz θ

) (
∂lzθ
)
. (2.9)

Since −∂izr∞(z), i ≥ 1 are not necessarily negative, only the first term in the last equality of the

above equation is negative. Therefore, we need to bound all other terms using the first negative

term. By applying Young’s inequality and Cauchy-Schwatz inequality to all other terms gives,∣∣∣∣∣−c
n∑
l=1

l∑
i=1

(
l

i

)
∂izr
∞ (∂l−iz θ

) (
∂lzθ
)∣∣∣∣∣ ≤ c2

n∑
l=1

l∑
i=1

(
l

i

) ∣∣∂izr∞∣∣ ((∂l−iz θ
)2

+
(
∂lzθ
)2)

.

(
n

[n/2]

)( n∑
i=1

∣∣∂izr∞∣∣
)
‖θn‖2 ,

where [n/2] represents the smallest integer that is larger than or equal to n/2. The coefficient

can be upper bounded by (
n

[n/2]

)
≤ 2n,

this implies only when
n∑
i=1

|r∞i | ≤ O
(
r∞

2n

)
, (2.10)

the RHS of (2.9) is non-positive. Obviously, the constraint (2.10) on r∞(z) is too strong. Only

a small set of steady states are included in this analysis. So we will develop another method to

avoid that.
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Second, for the nonlinear part in (2.8), since the two terms are similar, we only estimate the

first nonlinear term. Applying Young’s inequality gives∣∣∣∣∣
n∑
l=0

ac∂lz (ρm) ∂lzρ

∣∣∣∣∣ ≤ c2
n∑
l=0

(
∂lz (ρm)

)2
+
a2

4
‖ρn‖2 =

n∑
l=0

(
l∑
i=0

(
l

i

)
∂izm∂

l−i
z ρ

)2

+
a2

4
‖ρn‖2

≤
n∑
l=0

(
l∑
i=0

(
l

i

)(
∂izm

)2)( l∑
i=0

(
l

i

)(
∂l−iz ρ

)2)
+
a2

4
‖ρn‖2 ≤

(
l

[l/2]

)2 ∥∥ml
∥∥2 ∥∥ρl∥∥2 +

a2

4
‖ρn‖2

≤c2n
(

n

[n/2]

)2

‖mn‖2 ‖ρn‖2 +
a2

4
‖ρn‖2 ≤ c2n22n ‖mn‖2 ‖ρn‖2 +

a2

4
‖ρn‖2 ,

(2.11)

where the first inequality comes from Cauchy-Schwatz inequality. One can get similar inequality

for
∣∣∑n

l=0 bc∂
l
z(ρm)∂lzm

∣∣. Therefore, if one ignores the linear terms in (2.8), one ends up with

the following estimates,

1

2
∂t

(
a ‖ρn‖2 + b ‖mn‖2

)
≤−

(
3a

4
− c2

a
22nn ‖mn‖2

)
a ‖ρn‖2 −

(
3b

4
− c2

b
22nn ‖ρn‖2

)
b ‖mn‖2 ,

which implies that we have to assume

‖ρn(0)‖2 , ‖mn(0)‖2 ≤ O
(

1

22nn

)
(2.12)

to get an exponential decay as follows

‖ρn(t)‖2 ≤ O(e−at), ‖mn(t)‖2 ≤ O(e−bt).

If one integrates the above two equations over π(z)dz, then one will get the corresponding result

in the Sobolev space. However, this result is too weak for large n. If the initial perturbation is

smooth enough in the random space, then ‖ρ(0)‖ , ‖m(0)‖ ∈ Hn
π for any large n. However, by

the above result, only for the initial random perturbation ‖ρ(0)‖2Hnz , ‖m(0)‖2Hnz that are as small

as O(1/4nn), then ‖ρ(t)‖2Hnz , ‖m(t)‖2Hnz will decay exponentially in time.

In our analysis, we overcome the two difficulties mentioned above by adding a weight ω∗i
to ρi,mi. Then we will only have an assumption on the initial data that is independent of n,

furthermore, we only require r∞ to satisfy the following assumption.

Assumption 2.2. There exists a constant κ such that, the derivative of r∞ in the random space

can be bounded by

sup
z∈Iz
|(i+ 1)2∂izr

∞| ≤ κi+1i!, (2.13)

and it is bounded below and above by r,R respectively,

r ≤ r∞ ≤ R, ∀z ∈ Iz. (2.14)

This condition is not strict at all. Actually for any analytic function r∞(z) in a compact set

Iz, there exists a constant C, such that∣∣∂izr∞∣∣ ≤ Ci+1i!, for ∀i ≥ 0, ∀z ∈ Iz.
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Then set

κ = eC,

one can always get ∣∣(i+ 1)2∂izr
∞∣∣ ≤ κi+1i!, for ∀i ≥ 0, ∀z ∈ Iz.

The weight ω∗i we add to ρi,mi in ‖ρn‖2 , ‖mn‖2 is

ω∗i =
Ln−i

κi
(i+ 1)2

i!
,

where κ is the constant in (2.13), L is a constant depending on κ, which we will define later.

In this weight, the term (i+1)2

i! is used to avoid strong assumption on initial data like (2.12).

Notice that with 1
i! , the factorial in (2.11) can be absorbed into the weights, so one can get rid

of O(1/(n!)2) in the initial assumption; while the weight (i+ 1)2 is used to deal with O(1/n) in

the assumption. Another part of the weight Ln−i

κi is used to avoid strong constraint on r∞ like

(2.10). Under Assumption 2.2, the term 1
ki can be used to bound |r∞i |. One further notices that

when i is smaller, θi will be summed for more times, so the term Ln−i is used to balance this.

Please refer to Lemma 3.1 for details.

The (i+1)2

i! part of the weight is first introduced in [17]; However, the assumption on r∞ and

its corresponding weight Ln−i/κi haven’t been developed before.

Before we present the main theorems on the sensitivity of the perturbative solution (ρ,m),

we first list the frequently used notations here.

– A,L are constants defined as,

A =

∞∑
i=1

1

i2
=
π2

6
, (2.15)

L =

√
16Aκ2

r2
+ 1, (2.16)

where κ is defined in (2.13).

The following Theorem is about the sensitivity of the perturbative solution (ρ,m) in the

random space.

Theorem 2.3. For ∀n ≥ 0, under assumption 2.2, in addition, if initially

‖m(0)‖2Hnπ ≤ a
2C0, ‖ρ(0)‖2Hnπ ≤ b

2C0, (2.17)

then the perturbative solution to (2.3) satisfies,

‖ρ(t)‖2Hnπ ≤
(5νnn!)

2

a
EHnπ (0)e−at, ‖m(t)‖2Hnπ ≤

(5νnn!)
2

b
EHnπ (0)e−bt,

where EHnπ (0) = a ‖ρ(0)‖2Hnπ + b ‖m(0)‖2Hnπ . Here C0, ν are constants independent of n, C0 =

(5225Ac2)−1, ν = κL and L,A, κ are constants defined in (2.16), (2.15), (2.13) respectively.

Remark 2.4. The above theorem tells us that as long as the initial random perturbation around

the steady state is small enough, then the perturbation will exponentially decay with a rate of

e−at, e−bt for ρ,m respectively.
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3 Proof of Theorem 2.3 (The sensitivity analysis around

the steady state)

In this section, we are going to analyze how EHnπ = a ‖ρ‖2Hnπ + b ‖m‖2Hnπ evolves in time by

studying En,

En = a ‖ρnω‖
2

+ b ‖mn
ω‖

2
, (3.1)

where ρnω,m
n
ω,θ

n
ω are similarly defined as

ρnω = (ω∗0ρ, ω
∗
1∂zρ, · · · , ω∗n∂nz ρ) , (3.2)

for weights ω∗i defined as,

ωi =
(i+ 1)2

κii!
, ω∗i = Ln−iωi. (3.3)

After taking the integration of the result for En in the random space over π(z)dz, we can get

the results for Enπ ,

‖ρnω‖
2
π =

∫
‖ρnω‖

2
π(z)dz, ‖mn

ω‖
2
π =

∫
‖mn

ω‖
2
Hnπ

π(z)dz, Enπ = a ‖ρnω‖
2
π + b ‖mn

ω‖
2
π . (3.4)

Using the relationship between Enπ and EHnπ (t) = a ‖ρ(t)‖2Hnπ + b ‖m(t)‖2Hnπ , we can get the

exponential decay for EHnπ .

The most important part in the proof is stated in the following Lemma 3.1, which will be

proved later.

Lemma 3.1. For r∞ under Condition 2.13, and any vector function ρn,mn,θn, the following

inequalities hold

n∑
l=0

(ω∗l )
2
∂lz (ρm) ∂lzρ ≤

2A

γLn
‖ρnω‖

2 ‖mn
ω‖

2
+

2γ

Ln
‖ρnω‖

2
, ∀γ > 0; (3.5)

−
n∑
l=0

(ω∗l )
2
∂lz (r∞θ) ∂lzθ ≤ 0. (3.6)

Proof. See Section 3.1.

If one multiplies ω∗l to the two equations in (2.8) and adds the two equations together, then

sums l from 0 to n, one has,

1

2
∂tE

n = −a2 ‖ρnω‖
2 − b2 ‖mn

ω‖
2 − c

n∑
l=0

(ω∗l )
2
∂lz (r∞θ) ∂lzθ − c

n∑
l=0

(ω∗l )
2
∂lz (ρm) ∂lzθ. (3.7)

Based on (3.6) in Lemma 3.1, one can omit the third term on the RHS of (3.7). Furthermore,

by setting γ = Ln

8c in (3.5), one can bound the nonlinear terms by

1

2
∂tE

n ≤− a2 ‖ρnω‖
2 − b2 ‖mn

ω‖
2

+ c2
16A

L2n
‖ρnω‖

2 ‖mn
ω‖

2
+
a2

4
‖ρnω‖

2
+
b2

4
‖mn

ω‖
2

=−
(

3a

4
− 8c2A

aL2n
‖mn

ω‖
2

)
a ‖ρnω‖

2 −
(

3b

4
− 8c2A

bL2n
‖ρnω‖

2

)
b ‖mn

ω‖
2
.

(3.8)
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Since (3.8) is similar to (2.5) in the proof of Lemma 2.1, by the continuity arguement, one can

conclude that if initially,

8c2A

aL2n
‖mn

ω(0)‖2π ≤
a

4
,

8c2A

bL2n
‖ρnω(0)‖2π ≤

b

4
, (3.9)

‖ρnω(t)‖2π , ‖mn
ω(t)‖2π decay as follows,

‖ρnω(t)‖2π ≤
Enπ (0)

a
e−at, ‖mn

ω(t)‖2π ≤
Enπ (0)

b
e−bt. (3.10)

Now, we need to transfer (3.9) and (3.10) to the Sobolev norm we want to estimate in the random

space
(
‖ρ‖2Hnπ , ‖m‖

2
Hnπ

)
. Since

1

n!
≤ (i+ 1)2

i!
≤ 5, for 0 ≤ i ≤ n,

so one has
1

κnn!
≤ ω∗i ≤ 5Ln, for 0 ≤ i ≤ n,

which implies that, (
1

κnn!

)2

‖ρ‖2Hnπ ≤ ‖ρ
n
ω(t)‖2π ≤ (5Ln)

2 ‖ρ‖2Hnπ ,

and similar relationship can be obtained for ‖mn
ω(t)‖2π and ‖m‖2Hnπ . Therefore, the initial re-

quirement (3.9) becomes,

528c2A

a
‖m(0)‖2Hnπ ≤

a

4
,

528c2A

b
‖ρ(0)‖2Hnπ ≤

b

4
,

then
(
‖ρ‖2Hnπ , ‖m‖

2
Hnπ

)
will decay as follows,

‖ρ(t)‖2Hnπ ≤ (5κnn!Ln)
2 EHnπ (0)

a
e−at, ‖m(t)‖2Hnπ ≤ (5κnn!Ln)

2 EHnπ (0)

b
e−bt,

where EHnπ (0) = a ‖ρ(0)‖2Hnπ + b ‖m(0)‖2Hnπ and this is obtained from (3.10). The above two

equations give the final results in Theorem 2.3.

3.1 Proof of Lemma 3.1

The following is the proof of Lemma 3.1.

Proof. Expanding ∂lz(ρm) gives,

n∑
l=0

(ω∗l )
2
∂lz (ρm) ∂lzρ =

n∑
l=0

l∑
i=0

(ω∗l )
2

(
l

i

)
∂izρ∂

l−i
z m∂lzρ. (3.11)

First notice that∣∣∣∣(ω∗l )
2

(
l

i

)
∂izρ∂

l−i
z m∂lzρ

∣∣∣∣ =

∣∣∣∣ (l + 1)2Ln

LiLl−iκiκl−il!

l!

i!(l − i)!
∂izρ∂

l−i
z m

(
ω∗l ∂

l
zρ
)∣∣∣∣

=

∣∣∣∣ (l + 1)2

(i+ 1)2(l − i+ 1)2Ln
(
ω∗i ∂

i
zρ
) (
ω∗l−i∂

l−i
z m

) (
ω∗l ∂

l
zρ
)∣∣∣∣

≤ 2

Ln

(
1

(i+ 1)2
+

1

(l − i+ 1)2

)(
ω∗i ∂

i
zρ
) (
ω∗l−i∂

l−i
z m

) (
ω∗l ∂

l
zρ
)
,

(3.12)
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where the second inequality is because of

(l + 1)2 ≤ ((i+ 1) + (l − i+ 1))
2 ≤ 2(i+ 1)2 + 2(l − i+ 1)2.

If one sums up the first part of (3.12) over i, l, one has,

2

Ln

n∑
l=0

l∑
i=0

1

(i+ 1)2
(
ω∗i ∂

i
zρ
) (
ω∗l−i∂

l−i
z m

) (
ω∗l ∂

l
zρ
)

≤ 1

γLn

n∑
l=0

(
l∑
i=0

1

(i+ 1)2
(
ω∗i ∂

i
zρ
) (
ω∗l−i∂

l−i
z m

))2

+
γ

Ln

n∑
l=0

(
ω∗l ∂

l
zρ
)2

≤ 1

γLn

n∑
l=0

(
l∑
i=0

1

(i+ 1)2

)(
l∑
i=0

1

(i+ 1)2
(
ω∗i ∂

i
zρ
)2 (

ω∗l−i∂
l−i
z m

)2)
+

γ

Ln
‖ρnω‖

2

≤ A

γLn

n∑
i=0

n∑
l=i

1

(i+ 1)2
(
ω∗i ∂

i
zρ
)2 (

ω∗l−i∂
l−i
z m

)2
+

γ

Ln
‖ρnω‖

2

≤ A

γLn

n∑
i=0

1

(i+ 1)2
(
ω∗i ∂

i
zρ
)2 n∑

l−i=0

(
ω∗l−i∂

l−i
z m

)2
+

γ

Ln
‖ρnω‖

2

≤ A

γLn
‖ρnω‖

2 ‖mn
ω‖

2
+

γ

Ln
‖ρnω‖

2
.

(3.13)

The first inequality is obtained by applying Young’s inequality, and then applying Cauchy-

Schwartz inequality gives the second one. Since l− i and i are symmetric, so the second part of

(3.12) can be similarly bounded. Therefore, summing (3.12) over i, l gives an upper bound for

the RHS of (3.11). This implies

n∑
l=0

(ω∗l )
2
∂lz (ρm) ρl ≤

2A

γLn
‖ρnω‖

2 ‖mn
ω‖

2
+

2γ

Ln
‖ρnω‖

2
.

For the second inequality (3.6), one first separates it into two parts,

−
n∑
l=0

(ω∗l )
2
∂lz (r∞θ) ∂lzθ = −

n∑
l=0

(ω∗l )
2
r∞∂lzθ∂

l
zθ −

n∑
l=1

l∑
i=1

(ω∗l )
2

(
l

i

)
∂izr
∞∂l−iz θ∂lzθ

=− r∞ ‖θnω‖
2 − 2

Ln

n∑
l=1

l∑
i=1

(
1

(i+ 1)2
+

1

(l − i+ 1)2

)(
ω∗i ∂

i
zr
∞) (ω∗l−i∂l−iz θ

) (
ω∗l ∂

l
zθ
)

≤− r∞ ‖θnω‖
2

+
1

γLn

n∑
l=1

(
l∑
i=1

1

(i+ 1)2
(ω∗i r

∞
i )
(
ω∗l−iθl−i

))2

+
1

γLn

n∑
l=1

(
l∑
i=1

1

(l − i+ 1)2
(ω∗i r

∞
i )
(
ω∗l−iθl−i

))2

+
2γ

Ln

n∑
l=0

‖θnω‖
2

≤− r∞

2
‖θnω‖

2
+

4

L2nr∞

n∑
l=1

(
l∑
i=1

1

(i+ 1)2
(ω∗i r

∞
i )
(
ω∗l−iθl−i

))2

+
4

L2nr∞

n∑
l=1

(
l∑
i=1

1

(l − i+ 1)2
(ω∗i r

∞
i )
(
ω∗l−iθl−i

))2

,

(3.14)

where the second equality is obtained by applying (3.12), then applying Young’s inequality gives

the first inequality, and setting γ = Lnr∞

4 gives the last inequality. The second and third terms
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in the last inequality are similar to the first term in the second line of (3.13), so according to

the fourth line in (3.13), (3.14) can be further simplified to

−
n∑
l=0

(ω∗l )
2
∂lz (r∞θ) θl

≤− r∞

2
‖θnω‖

2
+

4A

L2nr∞

n∑
l=1

l∑
i=1

(
1

(i+ 1)2
+

1

(l − i+ 1)2

)
(ω∗i r

∞
i )

2 (
ω∗l−iθl−i

)2
=− r∞

2
‖θnω‖

2
+

4A

r∞

n∑
l=1

l∑
i=1

(
L−2i

(i+ 1)2
+

L−2i

(l − i+ 1)2

)
(ωir

∞
i )

2 (
ω∗l−iθl−i

)2
≤− r∞

2
‖θnω‖

2
+

4Aκ2

r∞

n∑
l=1

l∑
i=1

(
L−2i

(i+ 1)2
+

L−2i

(l − i+ 1)2

)(
ω∗l−iθl−i

)2
=− r∞

2
‖θnω‖

2
+

4Aκ2

r∞

n∑
i=1

L−2i

(i+ 1)2

n∑
l=i

(
ω∗l−iθl−i

)2
+

4Aκ2

r∞

n∑
i=1

L−2i
n∑
l=i

(
ω∗l−iθl−i

)2
(l − i+ 1)2

(3.15)

where the first equality comes from the definition of ω∗i in (3.3), and the second inequality is by

Assumption 2.2,

sup
z∈Iz

(
ωi∂

i
zr
∞)2 ≤ κ2.

Furthermore, since
n∑
i=1

L−2i

(i+ 1)2
≤

n∑
i=1

L−2i ≤ 1

(L2 − 1)
≤ r2

16Aκ2
,

by the definition of L in (2.16). Inserting it back to (3.15) gives

−
n∑
l=0

(ω∗l )
2
∂lz (r∞θ) θl ≤ −

r∞

2
‖θnω‖

2
+
r

4
‖θnω‖

2
+
r

4
‖θnω‖

2 ≤ 0,

which completes the proof for the second inequality (3.6).

4 The gPC-SG method

4.1 The numerical method

In this section, we will introduce a numerical method for model (2.1), which enjoys spectral

accuracy in the random space.

For random variable z with probability density function π(z), there exists a corresponding

orthogonal polynomial basis {Φi}∞i=0 with respect to the measure π(z)dz, which is orthonormal

to each other in the weighted L2
π inner product,∫

Iz

ΦiΦjπ(z)dz = δij , (4.1)

where δij is the Kronecker delta function. The K-th order subspace is therefore spanned by

{Φi}Ki=0. As a popular numerical method, the generalized Polynomial Chaos stochastic Galarkin

(gPC-SG) method is to find the approximate solution in the truncated K-th order subspace.

12



That is, define the approximation solution of the perturbative ρ,m in the form of,

ρ̂K(t, x, z) =

K∑
i=0

ρ̂i(t, x)Φi(z), m̂K(t, x, z) =

K∑
i=0

m̂i(t, x)Φi(z), (4.2)

then insert ρ̂K , m̂K into (2.2) and do Galerkin projection, so the approximation solution ρ̂K , m̂K

satisfies,
〈
∂tρ̂

K ,Φj
〉
π

=
〈
− (a+ acr∞) ρ̂K − bcr∞m̂K − cρ̂Km̂K ,Φj

〉
π
, 0 ≤ j ≤ K,〈

∂tm̂
K ,Φj

〉
π

=
〈
− (b+ bcr∞) m̂K − acr∞ρ̂K − cρ̂Km̂K ,Φj

〉
π
, 0 ≤ j ≤ K.

(4.3)

Equivalently, (4.3) can be written as a system of the deterministic coefficients of ρ̂K , m̂K , i.e.

the vector functions ρ̂K(t, x) = (ρ̂0(t, x), · · · , ρ̂K(t, x))
>

, m̂K(t, x) = (m̂0(t, x), · · · , m̂K(t, x))
>

satisfiy, 

∂tρ̂
K = −aρ̂K − acΥρ̂K − bcΥm̂K − c

∑
i,j

m̂iS
l
ij ρ̂j

K

l=0

,

∂tm̂
K = −bm̂K − bcΥm̂K − acΥρ̂K − c

∑
i,j

m̂iS
l
ij ρ̂j

K

l=0

,

(4.4)

with initial data,

ρ̂j(0) = 〈ρ(0, z),Φj〉π , m̂j(0) = 〈m(0, z),Φj〉π , 0 ≤ j ≤ K.

Here Sl,Υ are symmetric matrices defined as

Slij =

∫
Iz

ΦiΦjΦl π(z)dz, Υij =

∫
Iz

r∞ΦiΦj π(z)dz. (4.5)

4.2 Main results and proof sketch

We will prove that the approximate solution obtained by the gPC-SG from solving the de-

terministic system (4.4) has spectral accuracy. We will decompose the error of the approximate

solution into two parts, one is the projection error, another is the Galerkin error. The first part

is determined by the regularity of the solution (ρ,m) in the random space, while the second part

is determined by the stability of the Galerkin system (4.4).

Define the projection of the analytic perturbative solution (ρ,m) onto the subspace {Φi}Ki=0

as,

ρ̄K :=

(∫
ρΦKdπ(z)

)
·ΦK , m̄K :=

(∫
mΦKdπ(z)

)
·ΦK , (4.6)

where ΦK(z) = (Φi)
K
i=0 is the vector function that contains all basis functions up to the K-th

order. Then we can decompose the error of the approximation solution
(
ρ̂K , m̂K

)
into two parts,

ρ− ρ̂K = (ρ− ρ̄K)︸ ︷︷ ︸
%Kρ

+ (ρ̄K − ρ̂K)︸ ︷︷ ︸
εKρ

, (4.7)

m− m̂K = (m− m̄K)︸ ︷︷ ︸
%Km

+ (m̄K − m̂K)︸ ︷︷ ︸
εKm

, (4.8)
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where
(
%Kρ , %

K
m

)
represents for the projection error,

(
εKρ , ε

K
m

)
are errors from the stochastic

Galerkin. Especially, we set (εKρ , ε
K
m) to be the vector function defined as,

εKρ = εKρ ·ΦK :=

(∫
(ρ− ρ̂K)ΦKdπ(z)

)
·ΦK ,

εKm = εKm ·ΦK :=

(∫
(m− m̂K)ΦKdπ(z)

)
·ΦK .

(4.9)

Because of the orthonality of the bases, it is easy to check that∥∥εKρ ∥∥2π =
∥∥εKρ ∥∥2 , ∥∥εKm∥∥2π =

∥∥εKm∥∥2 .
From Theorem 2.3, one can bound (%Kρ , %

K
m) as in the following Corollary.

Corollary 4.1. Under the same initial condition as in Theorem 2.3, the projection error decays

in time exponentially according to,

∥∥%Kρ ∥∥2π =
∥∥ρ− ρ̄K∥∥2

π
≤
D (νnn!)

2
EHnπ (0)

a(K + 1)2n
e−at,

∥∥%Km∥∥2π =
∥∥m− m̄K

∥∥2
π
≤
D (νnn!)

2
EHnπ (0)

b(K + 1)2n
e−bt,

(4.10)

for some constant D related to the measure π(z)dz.

Proof. (4.10) comes from the classical approximation theorem of orthogonal basis, one can refer

to Theorem 2.1 in [5]. For ρ ∈ Hn
z , there exists a constant D, such that

∥∥ρ− ρ̄K∥∥2
π
≤ D

‖ρ‖2Hnz
(K + 1)2n

, (4.11)

then applying the result of Theorem 2.3 directly gives (4.10).

Since by Corollary 4.1, we already have estimates for the projection error (%Kρ , %
K
m), so in

order to study the convergence rate of the gPC-SG method, we only need to analyze the Galerkin

error (εKρ , ε
K
m). Estimates for (εKρ , ε

K
m) are based on the stability of the gPC-SG method, which

is stated in Theorem 4.6. Similar to the analysis we did to get the estimates for ‖ρ‖Hnπ , ‖m‖Hnπ ,

if one directly does the energy estimates on
∥∥ρ̂K∥∥

π
,
∥∥m̂K

∥∥
π
, one will end up with a strong

assumption on the initial data for large K. In order to avoid that, we add a weight µi to ρ̂i, m̂i,

then under Assumptions 4.2 and 4.4, we can get a stability result that is sharp in K.

Assumption 4.2. There exists a positive integer p, such that the basis functions {Φi(z)}i≥0
satisfy,

‖Φi(z)‖L∞ ≤ ηi = (i+ 1)p, for all i ≥ 0. (4.12)

Remark 4.3. This assumption, first introduced in [17], combined with the weight µi defined in

(4.16) guarantees that the initial data do not depend on K. For example, the bases of normalized

Legendre polynomials, which corresponds to uniform distribution in [−1, 1], satisfy the above

condition with p = 1/2; The bases of normalized Chebyshev polynomials, which corresponds to

the random variable with pdf π(z) = 2
π
√
1−z2 , satisfy this condition with p = 0.
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Assumption 4.4. Let r∞i = 〈r∞,Φi〉π, we assume∑
j≥1

((j + 1)qr∞j )2 ≤ (r∞0 )
2

22q+3A
, (4.13)

where the constant A is defined in (2.15), q = p+2, with p defined in (4.12); r∞0 =
∫
Iz
r∞π(z)dz

is the expectation of r∞.

Remark 4.5. One sufficient condition for r∞ is,∣∣r∞j ∣∣2 ≤ C

(j + 1)2q+2
, for ∀j ≥ 1, C =

(r∞0 )
2

22q+4ACS
. (4.14)

This implies that the variance of r∞, which is equal to
∑
j≥1

(
r∞j
)2

, has to be small enough.

We further define ρ̂Kµ , m̂
K
µ as weighted approximate solution

ρ̂Kµ = (µ0ρ̂0, · · · , µK ρ̂K) , m̂K
µ = (µ0m̂0, · · · , µKm̂K) (4.15)

where µi are weights defined as,

µi = (i+ 1)q, for q = p+ 2, (4.16)

and here p is the positive constant defined in (4.12).

Theorem 4.6. (Stability of the gPC-SG method) Under Assumptions 4.2 and 4.4, for the ap-

proximate perturbative solution (ρ̂K , m̂K) obtained by the gPC-SG method, if initially∥∥m̂K
µ (0)

∥∥2 ≤ a2Ĉ0,
∥∥ρ̂Kµ (0)

∥∥2 ≤ b2Ĉ0, (4.17)

then it decays in time as follows∥∥ρ̂Kµ (t)
∥∥2 ≤ 1

a
ÊK(0)e−at,

∥∥m̂K
µ (t)

∥∥2 ≤ 1

b
ÊK(0)e−bt, (4.18)

where ÊK = a
∥∥ρ̂Kµ (t)

∥∥2 + b
∥∥m̂K

µ (t)
∥∥2. Here Ĉ0 = (22q+6c2A)−1 and A is defined in (2.15).

The above theorem will be proved in Section 5. It tells us that the gPC-SG method is stable

under some smallness assumption on the initial data. Based on the above result, we can prove

the spectral accuracy of the gPC-SG method, which is stated in Theorem 4.7. Before we state

the theorem, we first introduce the Sobolev constant CS ,

‖ρ‖2L∞z ≤ CS ‖ρ‖
2
H1

z
, for ∀ρ ∈ H1

z . (4.19)

Theorem 4.7. (Spectral accuracy of the gPC-SG method) Under Assumptions 2.2, 4.2, 4.4,

and in addition, initially the exact solution (ρ,m) ∈ Hn
π , and the approximate solution (ρ̂K , m̂K)

satisfies,

‖m(0)‖2Hnπ ≤ a
2C0, ‖ρ(0)‖2Hnπ ≤ b

2C0,
∥∥m̂K

µ (0)
∥∥2 ≤ a2Ĉ0,

∥∥ρ̂Kµ (0)
∥∥2 ≤ b2Ĉ0,

then (ρ̂K , m̂K) converges to (ρ,m) according to,∥∥ρ− ρ̂K∥∥2
π
≤ C(n)

a(K + 1)2n
e−at,

∥∥m− m̂K
∥∥2
π
≤ C(n)

b(K + 1)2n
e−bt,

where C0 = b
a+b (5

226ν2c2ACS)−1, Ĉ0 = a
a+b

(
22q+6c2A

)−1
, C(n) = D (1 + I0) ν2n(n!)2EHnπ (0),

I0 =
(
32c2R2 + 1

)
, A,R,D,CS are constants defined in (2.15), (2.14), (4.10), (4.19) respectively

and ν is the same constant as in Theorem 2.3.
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5 Proof of Theorem 4.6 (Stability of the gPC-SG method)

In this section, we will study the stability of the gPC-SG method for this model. We will

use energy estimates to analyze ÊK = a
∥∥ρ̂Kµ (t)

∥∥2 + b
∥∥m̂K

µ (t)
∥∥2. Similar to the proof in the

sensitivity analysis in Section 3, the most important part in the proof is how to bound the

nonlinear term and the linear term with coefficient r∞(z) properly. We use the weight µi to

make the upper bound of this two terms independent of K, and it is stated in Lemma 5.1, which

will be proved in Appendices B.

By multiplying a(ρ̂K)>U2 and b(m̂K)>U2 with U = diag(µ0, · · · , µK) to the two systems in

(4.4) respectively, one has,

1

2
∂tÊ

K ≤− a2
∥∥ρ̂Kµ ∥∥− b2 ∥∥m̂K

µ

∥∥− c(θ̂K)> U2Υθ̂K − c
n∑
l=0

∑
i,j

µ2
l ρ̂iS

l
ijm̂j θ̂l, (5.1)

where θ̂ = aρ̂l+ bm̂l and θ̂K =
(
θ̂0, · · · , θ̂K

)
. In the following Lemma 5.1, by (5.4) one can omit

the third term on the RHS of the above equation; by (5.3), and setting γ = 1
2c , one can bound

the last term by,

1

2
∂tÊ

K ≤− a2
∥∥ρ̂Kµ ∥∥2 − b2 ∥∥m̂K

µ

∥∥2 + 22q+5c2A
∥∥m̂K

µ

∥∥∥∥ρ̂Kµ ∥∥2 +
a2

4

∥∥ρ̂Kµ ∥∥2 +
b2

4

∥∥m̂K
µ

∥∥2
≤−

(
3a

4
− c222q+4A

a

∥∥m̂K
µ

∥∥2) a ∥∥ρ̂Kµ ∥∥2H1
x

−
(

3b

4
− c222q+4A

b

∥∥ρ̂Kµ ∥∥2) b∥∥m̂K
µ

∥∥2 .
(5.2)

Since the above inequality is similar to (3.8), by the continuity theorem, one gets similar result

for
∥∥ρ̂Kµ ∥∥2 ,∥∥m̂K

µ

∥∥, which completes the proof.

Lemma 5.1. For Sl defined in (4.5), the following inequality holds,

n∑
l=0

∑
i,j

µ2
l ρ̂iS

l
ijm̂j ρ̂l ≤

22q+3A

γ

∥∥m̂K
µ

∥∥∥∥ρ̂Kµ ∥∥2 +
γ

2

∥∥ρ̂Kµ ∥∥2 , (5.3)

where q, A are constants defined in (4.16), (2.15).

For Υ defined in (4.5), under Assumption 4.4, the following inequality holds

−
(
θ̂K
)>

U2Υθ̂K ≤ 0. (5.4)

Proof. Similar proof of (5.3) can be found in [21], and based on (5.3) and Assumption 4.4, one

can easily get (5.4). Therefore, we put the details of the proof in Appendix B.

6 Proof of Theorem 4.7 (Spectral accuracy of the gPC-SG

method)

In this section, we will prove the spectral accuracy of the gPC-SG method based on Theorems

2.3 and 4.6. We will use energy estimates to analyze EKε ,

EKε = a
∥∥εKρ ∥∥2 + b

∥∥εKm∥∥2 . (6.1)
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Project (2.3) onto the truncated subspace {ΦK}, and then subtract the approximate perturbative

system (4.3) from it, one has the following system for (εKρ , ε
K
m),

∂tε
K
ρ =− aεKρ − acΥεKρ − bcΥεKm − c

∫ (
ar∞%Kρ + br∞%Km

)
ΦKdπ(z)

− c
∫ (

ρm− ρ̂Km̂K
)
ΦKdπ(z),

∂tε
K
m =− bεKm − bcΥεKm − acΥεKρ − c

∫ (
br∞%Km + ar∞%Kρ

)
ΦKdπ(z)

− c
∫ (

ρm− ρ̂Km̂K
)
ΦKdπ(z).

(6.2)

(6.3)

When one does energy estimates to the above system, the most difficult part lies in how to

bound the last nonlinear term. We analyze this term in Lemmas 6.2 and 6.3. For other linear

terms, notice that r ≤ r∞(z) ≤ R for all z ∈ Iz, so by Theorem 3.1 in [19], Υ has the following

properties. One can also refer to Appendices for the proof.

Proposition 6.1. For the steady state r∞ with lower bound and upper bound as in (2.14), the

constant matrix Υ defined in (4.5) is a positive definite matrix and for any vector α,

r ‖α‖2 ≤ α>Υα ≤ R ‖α‖2 .

Therefore, if one does dot product of aεKρ , bε
K
m to the two equations respectively, then add

them together, after applying the above Proposition, one has

∂tE
K
ε

≤− a2
∥∥εKρ ∥∥2 − b2 ∥∥εKm∥∥2 − c 〈r∞ (a%Kρ + b%Km

)
, aεKρ + bεKm

〉
π

−c
〈
ρm− ρ̂Km̂K , aεKρ + bεKm

〉
π︸ ︷︷ ︸

IV

≤− a2
∥∥εKρ ∥∥2 − b2 ∥∥εKm∥∥2 + c2 ‖r∞‖2L∞z

(
8a2

∥∥%Kρ ∥∥2π + 8b2
∥∥%Km∥∥2π)

+
a2

8

∥∥εKρ ∥∥2 +
b2

8

∥∥εKm∥∥2 +

(
16c2CS ‖ρ‖2H1

z
+
b2

8

)∥∥εKm∥∥2 +

(
64c2A

∥∥m̂K
µ

∥∥2 +
a2

8

)∥∥εKρ ∥∥2
+ 16c2CS ‖ρ‖2H1

z

∥∥%Km∥∥2π + 64c2A
∥∥m̂K

µ

∥∥2 ∥∥%Kρ ∥∥2π
=−

(
3a

4
− 64c2A

a

∥∥m̂K
µ

∥∥2) a∥∥εKρ ∥∥2 − (3b

4
− 16c2CS ‖ρ‖2H1

z

)
b
∥∥εKm∥∥2

+
(

8a2c2R2 + 64c2A
∥∥m̂K

µ

∥∥2)∥∥%Kρ ∥∥2π +
(

8b2c2R2 + 16c2CS ‖ρ‖2H1
z

)∥∥%Km∥∥2π︸ ︷︷ ︸
J(t)

,

(6.4)

where Young’s inequality and Lemma 6.3 are applied to the second inequality. Based on inequal-

ity (6.4), if

64c2A
∥∥m̂K

µ (t)
∥∥2 ≤ a2

4
, 16c2CS ‖ρ(t)‖2H1

z
≤ b2

4
, (6.5)

then one has
1

2
∂tE

K
ε ≤−

a2

2

∥∥εKρ ∥∥2 − b2

2

∥∥εKm∥∥2 + J(t). (6.6)

17



If J(t) can be bounded for ∀t > 0, then one can have exponential decay of EKε . But first, let us

check when assumption (6.5) is satisfied. By Theorems 4.6 and 2.3, one has,

∥∥m̂K
µ

∥∥2 ≤ ÊK(0)

b
≤ a(a+ b)Ĉ0, ‖ρ‖2H1

π
≤

(5ν)2EH1
π
(0)

a
≤ b(a+ b)52ν2C0.

Therefore, as long as

Ĉ0 ≤ min

{
a

(a+ b)

1

28c2A
,

1

22q+6c2A

}
≤ a

a+ b

(
22q+6c2A

)−1
,

C0 ≤ min

{
b

(a+ b)

1

5226ν2c2CS
,

1

5225Ac2

}
≤ b

a+ b
(5226ν2c2ACS)−1

(6.7)

(6.6) is satisfied, and then the error EKε satisfies (6.6). Integrating (6.6) over t gives,

a
∥∥εKρ (t)

∥∥2 + b
∥∥εKm(t)

∥∥2 ≤2

∫ t

0

J(s)ds− a2
∥∥εKρ ∥∥2 − b2 ∥∥εKm∥∥2 ,

where EKε (0) = 0 is used. Then separate it into two parts, one has∥∥εKρ (t)
∥∥2 ≤2

a

∫ t

0

J(s)ds− a
∥∥εKρ ∥∥2 , ∥∥εKm(t)

∥∥2 ≤ 2

b

∫ t

0

J(s)ds− b
∥∥εKm∥∥2 . (6.8)

Now we need to bound the term
∫ t
0
J(s)ds. Insert (6.6) and Corollary 4.1 into J(t),

J(t) ≤
(

8a2c2R2 +
a2

4

)
D (νnn!)

2
EHnπ (0)

a(K + 1)2n
e−at +

(
8b2c2R2 +

b2

4

)
D (νnn!)

2
EHnπ (0)

b(K + 1)2n
e−bt,

which implies that

2

∫ t

0

J(s)ds

≤2

a

(
8a2c2R2 +

a2

4

)
D (νnn!)

2
EHnπ (0)

a(K + 1)2n
+

2

b

(
8b2c2R2 +

b2

4

)
D (νnn!)

2
EHnπ (0)

b(K + 1)2n

≤2

(
16c2R2 +

1

2

)
D (νnn!)

2
EHnπ (0)

(K + 1)2n
≤
I0D (νnn!)

2
EHnπ (0)

2(K + 1)2n
,

where I0 = 32c2R2 + 1, so (6.8) becomes

∥∥εKρ (t)
∥∥2 ≤I0D (νnn!)

2
EHnπ (0)

a(K + 1)2n
− a

∥∥εKρ ∥∥2 , ∥∥εKm(t)
∥∥2 ≤ I0D (νnn!)

2
EHnπ (0)

b(K + 1)2n
− b

∥∥εKm∥∥2 .
(6.9)

Applying Grownwall’s inequality gives,

∥∥εKρ ∥∥2 ≤ I0D (νnn!)
2
EHnπ (0)

a(K + 1)2n
e−at,

∥∥εKm∥∥2 ≤ I0D (νnn!)
2
EHnπ (0)

b(K + 1)2n
e−bt. (6.10)

Therefore, By (4.7), ∥∥ρ− ρ̂K∥∥2
π
≤
∥∥%Kρ ∥∥2π +

∥∥εKρ ∥∥2π
and inserting (4.10), (6.10) gives,∥∥ρ− ρ̂K∥∥2

π
≤ D(1 + I0)

ν2n(n!)2EHnπ (0)

a(K + 1)2n
e−at.

Similar inequality can be obtained for
∥∥m− m̂K

∥∥2
π
, which completes the proof of Theorem 4.7.
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Lemma 6.2. For any function

m(z) =

∞∑
i=0

miΦi(z), ρ(z) =

∞∑
i=0

ρiΦi(z),

where mi =
∫
mΦdπ(z), ρi =

∫
ρΦdπ(z), the following inequality holds,

K∑
l=0

(∫
ρmΦldπ(z)

)2

≤ 4A
∑
i≥0

((i+ 1)qρi)
2
∑
i≥0

m2
i ,

where q = p+ 2 and p,A are constants defined in (4.12), (2.15).

Proof. First we define a function χijl of non-negative integer i, j, l,

χijl =

{
1, if i+ j ≥ l, or i+ l ≥ j, or j + l ≥ i

0, ortherwise.
(6.11)

Then we note that

Slij = χijl

∫
ΦiΦjΦlπ(z)dz ≤ χijl ηmin{i,j,l} ‖Φi‖π ‖Φl‖π ≤ ηmin{i,j,l}χijl, (6.12)

with ηi defined in (4.12). Therefore,

K∑
l=0

(∫
ρmΦldπ(z)

)2

=

K∑
l=0

∫  ∞∑
i≥0

ρiΦi

∑
j≥0

mjΦj

Φldπ(z)

2

=

K∑
l=0

∑
i≥0

∑
j≥0

ρimjS
l
ij

2

≤
K∑
l=0

∑
i≥0

∑
j≥0

|(i+ 1)qρi| |mj |
ηi

(i+ 1)q
χijl

2

=

K∑
l=0

∑
i≥0

|(i+ 1)qρi|
1

(i+ 1)2

∑
j≥0

|mj |χijl

2

≤
K∑
l=0

∑
i≥0

1

(i+ 1)2

∑
i≥0

((i+ 1)qρi)
2

(i+ 1)2

∑
j≥0

|mj |χijl

2

≤A
K∑
l=0

∑
i≥0

((i+ 1)qρi)
2

(i+ 1)2

∑
j≥0

m2
jχijl

∑
j≥0

χijl ≤ A
K∑
l=0

∑
i≥0

2i+ 1

(i+ 1)2
((i+ 1)qρi)

2
∑
j≥0

m2
jχijl

≤A
∑
i≥0

(2i+ 1)2

(i+ 1)2
((i+ 1)qρi)

2
∑
j≥0

m2
j ≤ 4A

∑
i≥0

((i+ 1)qρi)
2
∑
i≥0

m2
i .

In the above estimates, the first inequality is because of (6.12), then the Cauchy-Schwartz in-

equality is applied in the second and third inequalities. In the fourth inequality, one uses the

property of χijl, since for fixed i, l, χijl is nonzero only if l − i ≤ j ≤ l + i, which implies that∑
j≥0 χijl ≤ (2i + 1). Similar property is applied in the fifth inequality for

∑
l χijl. The last

inequality comes from (2i+ 1)2 ≤ 4(i+ 1)2.

Lemma 6.3. The following inequality holds〈
ρm− ρ̂Km̂K , aεKρ + bεKm

〉
≤
(

16c2CS ‖ρ‖2H1
z

+
b2

8

)∥∥εKm∥∥2 +

(
64c2A

∥∥m̂K
µ

∥∥2 +
a2

8

)∥∥εKρ ∥∥2 + 16c2CS ‖ρ‖2H1
z

∥∥%Km∥∥2π
+ 64c2A

∥∥m̂K
µ

∥∥2 ∥∥%Kρ ∥∥2π .
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Proof. First notice that

ρm− ρ̂Km̂K =
(
ρm− ρm̂K

)
+
(
ρm̂K − ρ̂Km̂K

)
= ρ(εKm + %Km)︸ ︷︷ ︸

1

+ m̂K
(
%Kρ + εKρ

)︸ ︷︷ ︸
2

.

Apply Young’s inequality to the first part, one has∣∣−c 〈 1 , aεKρ + bεKm
〉∣∣

≤16c2CS ‖ρ‖2H1
z

∥∥εKm∥∥2 + 16c2CS ‖ρ‖2H1
z

∥∥%Km∥∥2π +
a2

16

∥∥εKρ ∥∥2 +
b2

16

∥∥εKm∥∥2 , (6.13)

where the constant CS comes from the Sobolev Embedding (4.19). For the second part 2 , using

Lemma 6.2, one has,∣∣∣−c 〈 2 , aεKρ + bεKm
〉
π

∣∣∣ = c

(∫
2 ΦKπ(z)dz

)
·
(
aεKρ + bεKm

)
≤16c2

(∫
m̂K%Kρ ΦKπ(z)dz

)2

+ 16c2
(∫

m̂KεKρ ΦKπ(z)dz

)2

+
a2

16

∥∥εKρ ∥∥2 +
b2

16

∥∥εKm∥∥2
≤64c2ACS

∑
i≥0

((i+ 1)qm̂i)
2

(∥∥%Kρ ∥∥2π +
∥∥εKρ ∥∥2)+

a2

16

∥∥εKρ ∥∥2 +
b2

16

∥∥εKm∥∥2
=64c2ACS

∥∥m̂K
µ

∥∥2 (∥∥εKρ ∥∥2 +
∥∥%Kρ ∥∥2π)+

a2

16

∥∥εKρ ∥∥2 +
b2

16

∥∥εKm∥∥2 .
(6.14)

Adding (6.13) and (6.14) together completes the proof.

7 Numerical examples

7.1 Coefficient of variation

We want to check how the presence of µRNA influences the noise in the concentration of

unbound mRNA. One common way to perform this comparison is to compute the coefficient of

variation (CV) of the mRNA content, i.e. the ratio of the standard deviation to the mean. Indeed,

we expect the presence of µRNA to reduce the mean in the content of mRNA, simply because

binding to µRNA reduces the amount of unbound mRNA. Since we deal with distributions on

the positive real line, the reduction of the mean is also likely to reduce the variance. However,

we wish to show that the variance reduction obtained by the presence of µRNA is actually bigger

than the mere reduction which would be obtained as a consequence of a reduction of the mean.

This is the reason of considering the CV. A reduction of the CV by the presence of µRNA

shows a reduction of the variance which is larger than the corresponding reduction of the mean.

Specifically, we compare the CV on ρ∞(z) obtained from system (2.1) which includes µRNA

production with the CV on the steady state ρ̃∞ of the equation where binding with µRNA is

ignored, namely

∂tρ̃ = S(z)− aρ̃. (7.1)

We let CVL be the CV of the steady state obtained from (7.1), i.e. without µRNA, while

CVNL is the CV of ρ∞ obtained from (2.1), i.e. with µRNA (’L’ and ’NL’ stand for ’linear’ and

’nonlinear’ as (7.1) is linear while (2.1) is nonlinear).
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Figure 1 shows how CVL - CVNL varies for different random sources. Here we set a = b =

c = 1, S(z) = kz + d, where z follows the uniform distribution in [−1/2, 1/2]. The five lines

correspond to the choices d = 1/3, 1/2, 1, 2, 5. The horizontal axis is the value of k2/2 which is

equal to the variance.

Figure 1: CVL − CVNL as a function of the variance of S(z) for different values of the mean of S(z)

when a = b = c = 1, S(z) = kz + d, for k ∈ [0, 2] and d = 1/3, 1/2, 1, 2, 5, where z follows the uniform

distribution in [−1/2, 1/2].

Figure 2 displays how CVL - CVNL depends on the parameters a, b, c. Here we set S(z) =

2z/3 + 1, so the mean of the source is 1 and the variance is 1/27.

From the two plots, one can see that the CV for the steady-state of the nonlinear system

is always smaller than that of the linear system. Thus, the influence of µRNAs is always to

decrease the uncertainty on the mRNA content. From Fig. 1 we see that the influence of

µRNAs increases as the intensity of the source decreases and its variance increases. From Fig.

2 we deduce that the influence of µRNAs increases as their binding rate to mRNA c increases.

A larger binding rate means less unbound for mRNAs or µRNAs, which has a similar effect

as a reduction of the source intensity. Indeed, the influence of µRNAs increases in both cases.

Finally, From Fig. 2, an increase of either the degradation rate a of mRNA or the degredation

rate b of µRNA both decrease the influence of µRNAs. In the latter case, this is understandable

as the amount of unbound µRNA decreases and less noise reduction occurs. In the former one,

this is less intuitive, as an increase of the degradation rate of mRNA should lead to a decrease

of mRNA concentration relative to the µRNA concentration and should make the mRNA more

sensitive to the presence of µRNA. This shows that nonintuitive outcome may occur from random

perturbation of chemical kinetic systems.

Finally, in spite of repeated attempts, we were not able to show the reduction of the CV in

the presence of µRNA analytically. This may be the indication that for some randomness, this

reduction does not happen.
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Figure 2: CVL−CVNL as a function of a, b, c, where we set S(z) = 2z/3 + 1, and z follows the uniform

distribution in [−1/2, 1/2].
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Appendices

A Proof of Proposition 6.1

Proof. For any K + 1-dimensional vector a 6= 0,

a>Fa =

K∑
i,j=1

aiFijaj =

K∑
i,j=1

∫
f(z)aiΦi(z)ajΦj(z)π(z)dz

=

∫
f(z)

(
K∑
i=1

aiΦi(z)

) K∑
j=1

ajΦj(z)

π(z)dz

=

∫
f(z)

(
K∑
i=1

aiΦi(z)

)2

π(z)dz ≥ C
K∑
i=1

a2i ,

(A.1)

where the last inequality comes from the orthonormal relationship of Φi as shown in (4.1).

B Proof of Lemma 5.1

Proof. First note that for each l,µl∑
i,j

m̂iρ̂jS
l
ij

 (µlρ̂l) ≤
1

2γ

µl
∑
i≤j

+
∑
i>j

Slij |m̂iρ̂j |

2

+
γ

2
(µlρ̂l)

2

≤µ
2
l

γ

∑
i≤j

ηiχijl |m̂iρ̂j |

2

+
µ2
l

γ

∑
i>j

ηjχijl |m̂iρ̂j |

2

+
γ

2
(µlρ̂l)

2
.

(B.1)

The second inequality is because

Slij = χijl

∫
ΦiΦjΦlπ(z)dz ≤ χijl ηmin{i,j,l} ‖Φi‖π ‖Φl‖π ≤ ηmin{i,j,l}χijl, (B.2)

where the first equality comes from the orthornality of Φi, and ηi defined in (4.12) is the upper

bound for Φi. We estimate the first part of (B.2) as follows,∑
i≤j

ηiχijl |m̂iρ̂j |

2

=

∑
i≤j

χijl
(i+ 1)2µj

|µim̂iµj ρ̂j |

2

≤

(∑
i

1

(i+ 1)2

)∑
i

 |µim̂i|
i+ 1

∑
j≥i

χijl |µj ρ̂j |
µj

2

≤A
∑
i

(
µim̂i

i+ 1

)2
∑
j≥i

χijl |µj ρ̂j |
µj

2

≤ A
∑
i

|µim̂i|2

(i+ 1)2

∑
j≥i

(
1

µj

)2

χijl
∑
j≥i

(µj ρ̂j)
2
χijl

 .
The first equality is because of the definition of µi in (4.16), then the Cauchy-Schwarz inequality

is applied to the first and the last inequalities, while the second inequality comes from the
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definition of A in (2.15). Therefore,

K∑
l=0

µ2
l

∑
i≤j

ηiχijl |m̂iρ̂j |

2

≤ A
K∑
l=0

K∑
i=0

|µim̂i|2

(i+ 1)2

∑
j≥i

(
µl
µj

)2

χijl
∑
j≥i

(µj ρ̂j)
2
χijl


≤22qA

K∑
i=0

(2i+ 1)
|µim̂i|2

(i+ 1)2

∑
j≥i

(µj ρ̂j)
2
K∑
l=0

χijl

≤22qA

K∑
i=0

(2i+ 1)2

(i+ 1)2
(µim̂i)

2
∑
j≥i

(µj ρ̂j)
2 ≤ 22q+2A

∥∥m̂K
µ

∥∥2 ∥∥ρ̂Kµ ∥∥2 .
Since χijl is nonzero only if when l ≤ i + j, and for j ≥ i, this means l ≤ 2j, so

(
µl
µj

)2
≤

(2j+1)2q

(j+1)2q ≤ 22q. Furthermore, for fixed i, l, χijl is nonzero only when l− i ≤ j ≤ l+ i, this means

the number of nonzero χijl is (2i+ 1). Therefore,∑
j≥i

(
µl
µj

)2

χijl ≤
(2j + 1)q

(j + 1)q
≤ 22q(2i+ 1),

which gives the second inequality. Similarly, one can obtain the third inequality. The fourth

inequality is because of (2i+ 1)2 ≤ 22(i+ 1)2.

Since i, j are symmetric, so the second part of (B.1) should have the same bound, hence,

n∑
l=0

〈
µl
∑
i,j

ρ̂im̂jS
l
ij , µlρ̂l

〉
≤ 22q+3A

γ

∥∥m̂K
µ

∥∥ ∥∥ρ̂Kµ ∥∥2 +
γ

2

∥∥ρ̂Kµ ∥∥2 . (B.3)

For the second inequality (5.4), first notice that,

−
K∑
l=0

〈
r∞θ̂KΦl, µ

2
l θ̂l

〉
π

= −
K∑
l=0

〈r∞0 +
∑
j≥1

r∞j Φj

( K∑
i=0

θ̂iΦi

)
Φl, µ

2
l θ̂l

〉
π

=−

〈
r∞0 ,

K∑
l=0

K∑
i=0

µ2
l θ̂iθ̂lΦiΦl

〉
π

−
K∑
l=0

∑
j≥1

K∑
i=0

µ2
l r
∞
j θ̂iS

l
ij θ̂l

=− r∞0
∥∥∥θ̂Kµ ∥∥∥2 − K∑

l=0

∑
j≥1

K∑
i=0

µ2
l r
∞
j θ̂iS

l
ij θ̂l

where Slij is defined in (4.5). The third equality is because of the orthogonality of {Φi}i≥0. For

the last term, using the same technique one uses to get (5.3), then one has

−
K∑
l=0

〈
r∞θ̂KΦl, µ

2
l θ̂l

〉
π
≤ −r∞0

∥∥∥θ̂Kµ ∥∥∥2 +
22q+3A

γ

∑
j≥1

(
µjr
∞
j

)2∥∥∥θ̂Kµ ∥∥∥2 +
γ

2

∥∥∥θ̂Kµ ∥∥∥2
Then set γ = r∞0 , and by the condition on

∑
j≥1(µjr

∞
j )2 ≤ (r∞0 )2

22q+3A , one completes the proof for

the second inequality (5.4).
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