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Introduction

In this paper, we are interested in a model of a simple gene regulatory network describing the regulation of the transcription of nuclear DNA by microRNAs (further denoted by µRNA). The synthesis of a protein from its DNA sequence involves several steps: the binding of a transcription factor (which can be a protein or another type of molecule) on the gene promotor sequence initiates the transcription of DNA into messenger RNA (further denoted by mRNA). mRNA is later translated into proteins in the ribosomes. Here, we are specifically interested in the first step, i.e. the transcription of DNA into mRNA. This transcription is subject to a high level of noise due for instance to noise in the availability of transcription factors. Yet, cells have to perform functions with a high level of precision and some noise buffering systems must be at play. In recent years, the role of µRNA has attracted focus. µRNAs are very short RNA sequences which are coded by non protein-coding sequences of the nuclear DNA. They seem to have (among other roles) a role in the regulation of transcription. Indeed, in many cases, the transcription factor initiates transcription of DNA into both the mRNA and a regulatory µRNA. The synthetized µRNA binds on the mRNA and prevents its translation into proteins. It has been argued that the main function of this regulation is to reduce the effect of noise in the transcription process (see [START_REF] Bleris | Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template[END_REF][START_REF] Blevins | microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes[END_REF] and the review [START_REF] Herranz | MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems[END_REF]).

Our model involves a pair of chemical kinetic equations for the mRNA and µRNA content, with source terms modeling the action of the transcription factor. The effect of the noise is taken into account by adding some uncertainty in the noise term and the initial data. We are interested in looking at how this uncertainty propagates to the mRNA content and in comparing this uncertainty between situations including µRNA production or not. The uncertainty is modeled by random variables with given probability density functions.

A classical approach to the study of noise in gene regulatory networks is through the chemical master equation [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF] which is solved numerically by means of Gillespie's algorithm [START_REF] Daniel | Exact stochastic simulation of coupled chemical reactions[END_REF], see e.g. [START_REF] Bosia | Gene autoregulation via intronic microRNAs and its functions[END_REF][START_REF] Osella | The role of incoherent microRNA-mediated feedforward loops in noise buffering[END_REF]. Here, we use the chemical kinetic approach, which is a valid approximation of the chemical master equation when ther number of molecules is large. However, this approximation is far from being valid in a cell. This is why we mitigate this discrepancy by assuming a random availability of transcription factors. The advantage is a considerably simpler treatment than with the chemical master equation while preserving the important features of the system. An alternate approach presented in [START_REF] Degond | A Fokker-Planck approach to the study of robustness in gene expression[END_REF] considers Brownian perturbations in the chemical kinetic equations. Introducing the joint probability density for mRNA and µRNA leads to a Fokker-Planck equation which can be analytically solved under some time-scale separation hypotheses. Underlying this approach is the idea that random perturbations do not only affect the initial condition and the source term, but are present at all times. In the present work, we restrict to random perturbation of the source term and initial data which allows us to use the simpler framework of uncertainty quantification.

We will mainly focus on two aspects of this problem. First, we study how a random perturbation near the steady state will affect the system by analyzing the long-time behavior of the perturbative solution in the random space in terms of the weighted Sobolev norm H n π , where π is the probability density function of the random variable. We also study the stability and the convergence rate of a numerical method to the system with uncertainty, specifically, the generalized Polynomial Chaos approximation based stochastic Galerkin (gPC-SG) method.

There are plenty of developments regarding the sensitivity analysis and convergence analysis in uncertainty quantification. For example, the solution to elliptic equations, parabolic equations, [START_REF] Babuska | Galerkin finite element approximations of stochastic elliptic partial differential equations[END_REF][START_REF] Cohen | Convergence rates of best n-term galerkin approximations for a class of elliptic spdes[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic elliptic pde's[END_REF], and kinetic equations [START_REF] Hu | Uncertainty quantification for kinetic equations[END_REF][START_REF] Li | Uniform regularity for linear kinetic equations with random input based on hypocoercivity[END_REF][START_REF] Shi | Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales[END_REF][START_REF] Shi | Uniform spectral convergence of the stochastic galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition based asymptotic preserving method[END_REF][START_REF] Shu | Uniform regularity in the random space and spectral accuracy of the stochastic galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime[END_REF][START_REF] Liu | Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic galerkin approximation to collisional kinetic equations with multiple scales and random inputs[END_REF][START_REF] Zhu | Sensitivity analysis and uniform regularity for the Boltzmann equation with uncertainty and its stochastic galerkin approximation[END_REF][START_REF] Zhu | A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic galerkin method[END_REF]. To our knowledge, there has been no such analysis done to a system of chemical kinetic equations describing a gene regulatory network.

There are mainly two difficulties in the analysis. The first one is in the sensitivity analysis in the random space. When we do estimates on the Sobolev norm H n π , the size of the nonlinear terms will increase to O(2 n ). This will result in a strong assumption on the initial data, that is, the initial randomness is required to be as small as O(1/2 n ) to get an exponential decay. Similarly, when we do the stability analysis of the gPC-SG method, if we approximate the solution by K-th order polynomial chaos bases, the size of the nonlinear terms in the resulting deterministic system will be O(K!). If we directly do energy estimates on the approximate solution, then we can only prove stability when the initial randomness is as small as O(1/K!).

To sum up, how to get a sharp estimate in terms of n and K without strong assumption on the initial data or steady state is the main difficulty in this problem.

In this paper, we obtain a sharp decay of the random perturbation around the steady state in terms of its Sobolev norm H n π through a carefully designed weighted energy norm. Under some mild conditions on the initial data that is independent of n, we find that the random perturbation near the steady state will decay exponentially. Our results also reveal that the solution preserves the regularity in the random space. Moreover, with another weighted energy norm, we prove the stability of the K-th order gPC-SG method with an assumption on initial data independent of K. The smoothness of the solution in the random space and the stability of the gPC-SG method allows us to prove the spectral convergence of the gPC-SG method. When approximating the numerical solution by the K-th order polynomial chaos basis, the error of the approximation solution in

H n π is O(K -n
). This paper is organized as follows. Section 2 gives an introduction to the chemical kinetic system modeling the targeted gene regulatory network and its corresponding steady state. The main result and proof sketch about the sensitivity of the system under random perturbation near steady state is stated in Section 2.1. The proof of this result is in the following Section 3. In Section 4, the gPC-SG method is introduced and the stability and the convergence rate of this method are stated in Section 4.2. The proof of these two results are in Section 5 and 6 respectively. In Section 7 we numerically study how the presence of RNA inuences the noise in the concentration of unbound mRNA.

The model

Consider the following model,

   ∂ t ρ = S(z) -aρ -cρ m, ∂ t m = S(z) -b m -cρ m, (2.1)
with initial data ρ(0, z), m(0, z). a, b, c are positive constants. Here ρ(t, z), m(t, z) respectively stand for the content of unbound mRNA and µRNA of a cell at time t. S(z) is the source term which models the production of mRNA and µRNA through DNA transcription. We assume that a molecule of µRNA is produced each time a molecule of mRNA is produced, hence the same source term arises in the two equations. The production of mRNA and µRNA is subject to the availability of the transcription factor, which is random. We model this randomness by assuming that the source term is a given function of a random variable z (modelling for instance the concentration of transcription factors) with probability density function π(z) on a compact set I z ⊂ R. The first equation of (2.1) models the decay of unbound mRNA through its binding to an unbound µRNA (the term -cρ m) or through other degradation mechanisms (the term -aρ). The second equation of (2.1) describes the decay of unbound µRNA through its binding to an unbound mRNA (the term -cρ m again) and through other degradation mechanisms (the term -b m). Note that the binding of µRNA to mRNA consumes one molecule of µRNA and one molecule of mRNA at the same time, which explains why the same loss term is involved in the two equations. The remaining unbound mRNA is then supposed to enter the translation process into proteins through the actions of ribosomes. This step is supposed to occur later and is not included in the model.

If one sets ∂ t ρ = ∂ t m = 0, one can get the steady state ρ ∞ (z), m∞ (z),

ρ ∞ = br ∞ , m∞ = ar ∞ , with r ∞ (z) = 1 2c -1 + √ ∆ > 0, ∆ = 1 + 4cS(z) ab > 1. (2.2)
Let (ρ, m) = (ρ -ρ ∞ , m -m∞ ) be the random perturbative solution around the steady state, then (ρ(t, z), m(t, z)) satisfies

∂ t ρ = -(a + acr ∞ ) ρ -bcr ∞ m -cρm, ∂ t m = -(b + bcr ∞ ) m -acr ∞ ρ -cρm, (2.3) 
with initial data,

ρ(0, z) = ρ(0, z) -ρ ∞ (z), m(0, z) = m(0, z) -m∞ (z).

Main results and proof sketch

We are interested in the estimates for the solution (ρ, m) in the random space using the norm

ρ(t) 2 H n π = n i=0 (∂ i z ρ) 2 π(z)dz, m(t) 2 H n π = n i=0 (∂ i z m) 2 π(z)dz. (2.4) 
There are two reasons why we are interested in this Sobolev norm. First, by studying this norm, we can understand how sensitive the system with respect to the random perturbation around the steady state is and how this perturbation evolves in time. Second, this norm gives the Sobolev regularity of the solution in the random space. We will approximate the solution by the gPC-SG method in the random space in Section 4. Such regularity allows us to prove the spectral convergence of the method. The difficulty in the analysis is to get an estimate of ρ

2 H n π , m 2 H n
π that is sharp for large n. For n = 0, one can do standard energy estimates on a ρ 2 + b m 2 to get an exponential decay of the random perturbation in time under a smallness assumption on initial data. We will show the result for n = 0 in the following lemma, and explain why it is not trivial to extend it to n > 0 after the proof of the lemma.

Lemma 2.1. If initially, the random perturbations satisfy

ρ(0) 2 π ≤ b 2 4c 2 , m(0) 2 π ≤ a 2 4c 2 ,
then the perturbations ( ρ(t) 

ρ(t) 2 π ≤ 1 a a ρ(0) 2 π + b m(0) 2 π e -at , m(t) 2 π ≤ 1 b a ρ(0) 2 π + b m(0) 2 π e -bt .
Proof. Multiplying aρ and bm to the two equations in (2.3) respectively, and then adding them together gives,

1 2 ∂ t aρ 2 + bm 2 = -a 2 ρ 2 -b 2 m 2 -a 2 cr ∞ ρ 2 + 2abcr ∞ mρ + b 2 cr ∞ m 2 linear part -acρ 2 m -bcm 2 ρ nonlinear part ≤ -a 2 ρ 2 -b 2 m 2 -cr ∞ (aρ + bm) 2 linear part +c 2 ρ 2 m 2 + a 2 4 ρ 2 + c 2 ρ 2 m 2 + b 2 4 m 2 nonlinear part ≤ - 3a 4 - c 2 a m 2 aρ 2 - 3b 4 - c 2 b ρ 2 bm 2 ,
(2.5) where we apply Young's inequality to the nonlinear part in the first line to obtain the first inequality. Since r ∞ defined in (2.2) is always positive for any z ∈ I z , this gives -cr ∞ (aρ + bm)

2 ≤ 0, so we can omit this term in the second inequality.

After we obtain the inequality as in (2.5), the exponential decay of ρ 2 , m 2 follows from a smallness assumption on the initial condition. Assume the coefficients of aρ 2 and bm 2 on the RHS of (2.5) are smaller than -a 2 and -b 2 respectively, which is equivalent to assume

m 2 (0, z) ≤ a 2 4c 2 , ρ 2 (0, z) ≤ b 2 4c 2 , for all z ∈ I z , (2.6) 
then by continuity argument, for all t > 0, one has

1 2 ∂ t aρ 2 + bm 2 ≤ - a 2 2 ρ 2 - b 2 2 m 2 .
Integrating the above equation over time, one gets,

aρ 2 (t) + bm 2 (t) ≤ aρ 2 (0) + bm 2 (0) - t 0 a 2 ρ(s) 2 ds - t 0 b 2 m(s) 2 ds, which implies aρ 2 (t) ≤ aρ 2 (0) + bm 2 (0) -a 2 t 0 ρ(s) 2 ds, bm 2 (t) ≤ aρ 2 (0) + bm 2 (0) -b 2 t 0 m(s) 2 ds.
By Grownwall's inequality, one can get the exponential decay of ρ 2 , m 2 as follows,

ρ 2 (t, z) ≤ 1 a aρ 2 (0, z) + bm 2 (0, z) e -at , m 2 (t, z) ≤ 1 b aρ 2 (0, z) + bm 2 (0, z) e -bt .
Finally, one integrates (2.6) and the above estimates over π(z)dz, one completes the proof of Lemma 2.1.

The difficulties of extending the results in

Lemma 2.1 to ρ 2 H n π , m 2 H n
π are mainly due to two reasons. First when n = 0, the linear part in (2.5) is a negative square without any assumption on r ∞ , so we can directly omit these terms in the estimates. However, if we directly do energy estimates on ρ

2 H n π , m 2 H n π for n > 0, we have to assume n i=1 ∂ i z r ∞ ≤ O(1/n!)
to make the linear part negative and this assumption is too strong. Second, the nonlinear part will be

O(n(n!) 2 ) if we directly estimate on ρ 2 H n π , m 2 H n π
for n > 0. This implies that one needs to assume the initial data ρ(0)

2 H n π , m(0) 2 H n π as small as O(1/n/(n!) 2
) to get the exponential decay in time. We will explain it in more details in the following paragraph.

In order to simplify the notation, we set θ = aρ + bm;

ρ n = (ρ, ∂ z ρ, • • • , ∂ n z ρ), similar for m n , θ n , (2.7) 
and let • 2 be the regular Euclidean norm,

ρ n 2 = n l=0 ρ 2 l .
If we directly do energy estimates on a ρ n 2 +b m n 2 , then we will get the following inequality by taking

∂ l z (0 ≤ l ≤ n) to (2.
3), then multiplying aρ l , bm l respectively and adding all equations together,

1 2 ∂ t a ρ n 2 + b m n 2 = -a 2 ρ n 2 -b 2 m n 2 + n l=0 -c∂ l z (r ∞ θ) θ l linear part + n l=0 -ac∂ l z (ρm)∂ l z ρ -bc∂ l z (ρm)∂ l z m nonlinear part (2.8)
First, for the linear part, when n = 0, the linear part is automatically a negative square term, so we do not need to bound this term any more. However, when n > 0, since r ∞ in the linear term depends on z, so taking ∂ l z to the linear terms gives

linear part = -c n l=0 ∂ l z (r ∞ θ) θ l = -cr ∞ θ n 2 -c n l=1 l i=1 l i ∂ i z r ∞ ∂ l-i z θ ∂ l z θ .
(2.9)

Since -∂ i z r ∞ (z), i ≥ 1 are not necessarily negative, only the first term in the last equality of the above equation is negative. Therefore, we need to bound all other terms using the first negative term. By applying Young's inequality and Cauchy-Schwatz inequality to all other terms gives,

-c n l=1 l i=1 l i ∂ i z r ∞ ∂ l-i z θ ∂ l z θ ≤ c 2 n l=1 l i=1 l i ∂ i z r ∞ ∂ l-i z θ 2 + ∂ l z θ 2 n [n/2] n i=1 ∂ i z r ∞ θ n 2 ,
where [n/2] represents the smallest integer that is larger than or equal to n/2. The coefficient can be upper bounded by

n [n/2] ≤ 2 n , this implies only when n i=1 |r ∞ i | ≤ O r ∞ 2 n , (2.10) 
the RHS of (2.9) is non-positive. Obviously, the constraint (2.10) on r ∞ (z) is too strong. Only a small set of steady states are included in this analysis. So we will develop another method to avoid that.

Second, for the nonlinear part in (2.8), since the two terms are similar, we only estimate the first nonlinear term. Applying Young's inequality gives

n l=0 ac∂ l z (ρm) ∂ l z ρ ≤ c 2 n l=0 ∂ l z (ρm) 2 + a 2 4 ρ n 2 = n l=0 l i=0 l i ∂ i z m∂ l-i z ρ 2 + a 2 4 ρ n 2 ≤ n l=0 l i=0 l i ∂ i z m 2 l i=0 l i ∂ l-i z ρ 2 + a 2 4 ρ n 2 ≤ l [l/2] 2 m l 2 ρ l 2 + a 2 4 ρ n 2 ≤c 2 n n [n/2] 2 m n 2 ρ n 2 + a 2 4 ρ n 2 ≤ c 2 n2 2n m n 2 ρ n 2 + a 2 4 ρ n 2 ,
(2.11) where the first inequality comes from Cauchy-Schwatz inequality. One can get similar inequality for n l=0 bc∂ l z (ρm)∂ l z m . Therefore, if one ignores the linear terms in (2.8), one ends up with the following estimates,

1 2 ∂ t a ρ n 2 + b m n 2 ≤ - 3a 4 - c 2 a 2 2n n m n 2 a ρ n 2 - 3b 4 - c 2 b 2 2n n ρ n 2 b m n 2 ,
which implies that we have to assume

ρ n (0) 2 , m n (0) 2 ≤ O 1 2 2n n (2.12)
to get an exponential decay as follows

ρ n (t) 2 ≤ O(e -at ), m n (t) 2 ≤ O(e -bt ).
If one integrates the above two equations over π(z)dz, then one will get the corresponding result in the Sobolev space. However, this result is too weak for large n. If the initial perturbation is smooth enough in the random space, then ρ(0) , m(0) ∈ H n π for any large n. However, by the above result, only for the initial random perturbation ρ(0)

2 H n z , m(0) 2 H n z that are as small as O(1/4 n n), then ρ(t) 2 H n z , m(t) 2 H n z
will decay exponentially in time. In our analysis, we overcome the two difficulties mentioned above by adding a weight ω * i to ρ i , m i . Then we will only have an assumption on the initial data that is independent of n, furthermore, we only require r ∞ to satisfy the following assumption. Assumption 2.2. There exists a constant κ such that, the derivative of r ∞ in the random space can be bounded by

sup z∈Iz |(i + 1) 2 ∂ i z r ∞ | ≤ κ i+1 i!, (2.13) 
and it is bounded below and above by r, R respectively,

r ≤ r ∞ ≤ R, ∀z ∈ I z . (2.14)
This condition is not strict at all. Actually for any analytic function r ∞ (z) in a compact set I z , there exists a constant C, such that

∂ i z r ∞ ≤ C i+1 i!, for ∀i ≥ 0, ∀z ∈ I z .
Then set

κ = eC, one can always get (i + 1) 2 ∂ i z r ∞ ≤ κ i+1 i!, for ∀i ≥ 0, ∀z ∈ I z .
The weight ω * i we add to

ρ i , m i in ρ n 2 , m n 2 is ω * i = L n-i κ i (i + 1) 2 i! ,
where κ is the constant in (2.13), L is a constant depending on κ, which we will define later.

In this weight, the term (i+1)

2 i!
is used to avoid strong assumption on initial data like (2.12). Notice that with 1 i! , the factorial in (2.11) can be absorbed into the weights, so one can get rid of O(1/(n!) 2 ) in the initial assumption; while the weight (i + 1) 2 is used to deal with O(1/n) in the assumption. Another part of the weight L n-i κ i is used to avoid strong constraint on r ∞ like (2.10). Under Assumption 2.2, the term 1 k i can be used to bound |r ∞ i |. One further notices that when i is smaller, θ i will be summed for more times, so the term L n-i is used to balance this. Please refer to Lemma 3.1 for details.

The (i+1) 2 i!
part of the weight is first introduced in [START_REF] Shu | Uniform regularity in the random space and spectral accuracy of the stochastic galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime[END_REF]; However, the assumption on r ∞ and its corresponding weight L n-i /κ i haven't been developed before.

Before we present the main theorems on the sensitivity of the perturbative solution (ρ, m), we first list the frequently used notations here.

-A, L are constants defined as,

A = ∞ i=1 1 i 2 = π 2 6 , (2.15) 
L = 16Aκ 2 r 2 + 1, (2.16) 
where κ is defined in (2.13).

The following Theorem is about the sensitivity of the perturbative solution (ρ, m) in the random space.

Theorem 2.3. For ∀n ≥ 0, under assumption 2.2, in addition, if initially

m(0) 2 H n π ≤ a 2 C 0 , ρ(0) 2 H n π ≤ b 2 C 0 , (2.17) 
then the perturbative solution to (2.3) satisfies,

ρ(t) 2 H n π ≤ (5ν n n!) 2 a E H n π (0)e -at , m(t) 2 H n π ≤ (5ν n n!) 2 b E H n π (0)e -bt ,
where

E H n π (0) = a ρ(0) 2 H n π + b m(0) 2 H n π .
Here C 0 , ν are constants independent of n, C 0 = (5 2 2 5 Ac 2 ) -1 , ν = κL and L, A, κ are constants defined in (2.16), (2.15), (2.13) respectively.

Remark 2.4. The above theorem tells us that as long as the initial random perturbation around the steady state is small enough, then the perturbation will exponentially decay with a rate of e -at , e -bt for ρ, m respectively.

Proof of Theorem 2.(The sensitivity analysis around the steady state)

In this section, we are going to analyze how

E H n π = a ρ 2 H n π + b m 2 H n π evolves in time by studying E n , E n = a ρ n ω 2 + b m n ω 2 , (3.1) 
where ρ n ω , m n ω , θ n ω are similarly defined as

ρ n ω = (ω * 0 ρ, ω * 1 ∂ z ρ, • • • , ω * n ∂ n z ρ) , (3.2) 
for weights ω * i defined as,

ω i = (i + 1) 2 κ i i! , ω * i = L n-i ω i . (3.3)
After taking the integration of the result for E n in the random space over π(z)dz, we can get the results for E n π ,

ρ n ω 2 π = ρ n ω 2 π(z)dz, m n ω 2 π = m n ω 2 H n π π(z)dz, E n π = a ρ n ω 2 π + b m n ω 2 π . (3.4)
Using the relationship between E n π and

E H n π (t) = a ρ(t) 2 H n π + b m(t) 2 
H n π , we can get the exponential decay for E H n π . The most important part in the proof is stated in the following Lemma 3.1, which will be proved later. Lemma 3.1. For r ∞ under Condition 2.13, and any vector function ρ n , m n , θ n , the following inequalities hold

n l=0 (ω * l ) 2 ∂ l z (ρm) ∂ l z ρ ≤ 2A γL n ρ n ω 2 m n ω 2 + 2γ L n ρ n ω 2 , ∀γ > 0; (3.5) - n l=0 (ω * l ) 2 ∂ l z (r ∞ θ) ∂ l z θ ≤ 0. ( 3.6) 
Proof. See Section 3.1.

If one multiplies ω * l to the two equations in (2.8) and adds the two equations together, then sums l from 0 to n, one has,

1 2 ∂ t E n = -a 2 ρ n ω 2 -b 2 m n ω 2 -c n l=0 (ω * l ) 2 ∂ l z (r ∞ θ) ∂ l z θ -c n l=0 (ω * l ) 2 ∂ l z (ρm) ∂ l z θ. (3.7) 
Based on (3.6) in Lemma 3.1, one can omit the third term on the RHS of (3.7). Furthermore, by setting γ = L n 8c in (3.5), one can bound the nonlinear terms by

1 2 ∂ t E n ≤ -a 2 ρ n ω 2 -b 2 m n ω 2 + c 2 16A L 2n ρ n ω 2 m n ω 2 + a 2 4 ρ n ω 2 + b 2 4 m n ω 2 = - 3a 4 - 8c 2 A aL 2n m n ω 2 a ρ n ω 2 - 3b 4 - 8c 2 A bL 2n ρ n ω 2 b m n ω 2 .
(3.8) Since (3.8) is similar to (2.5) in the proof of Lemma 2.1, by the continuity arguement, one can conclude that if initially,

8c 2 A aL 2n m n ω (0) 2 π ≤ a 4 , 8c 2 A bL 2n ρ n ω (0) 2 π ≤ b 4 , (3.9) 
ρ n ω (t) 2 π , m n ω (t) 2 
π decay as follows,

ρ n ω (t) 2 π ≤ E n π (0) a e -at , m n ω (t) 2 π ≤ E n π (0) b e -bt . (3.10) 
Now, we need to transfer (3.9) and (3.10) to the Sobolev norm we want to estimate in the random space ρ

2 H n π , m 2 H n π . Since 1 n! ≤ (i + 1) 2 i! ≤ 5, for 0 ≤ i ≤ n, so one has 1 κ n n! ≤ ω * i ≤ 5L n , for 0 ≤ i ≤ n, which implies that, 1 κ n n! 2 ρ 2 H n π ≤ ρ n ω (t) 2 π ≤ (5L n ) 2 ρ 2 H n π ,
and similar relationship can be obtained for m n ω (t)

2 π and m 2 H n π .
Therefore, the initial requirement (3.9) becomes,

5 2 8c 2 A a m(0) 2 H n π ≤ a 4 , 5 2 8c 2 A b ρ(0) 2 H n π ≤ b 4 , then ρ 2 H n π , m 2 
H n π will decay as follows,

ρ(t) 2 H n π ≤ (5κ n n!L n ) 2 E H n π (0) a e -at , m(t) 2 H n π ≤ (5κ n n!L n ) 2 E H n π (0) b e -bt ,
where

E H n π (0) = a ρ(0) 2 H n π + b m(0) 2 H n π
and this is obtained from (3.10). The above two equations give the final results in Theorem 2.3.

Proof of Lemma 3.1

The following is the proof of Lemma 3.1.

Proof. Expanding ∂ l z (ρm) gives, n l=0 (ω * l ) 2 ∂ l z (ρm) ∂ l z ρ = n l=0 l i=0 (ω * l ) 2 l i ∂ i z ρ∂ l-i z m∂ l z ρ. (3.11) First notice that (ω * l ) 2 l i ∂ i z ρ∂ l-i z m∂ l z ρ = (l + 1) 2 L n L i L l-i κ i κ l-i l! l! i!(l -i)! ∂ i z ρ∂ l-i z m ω * l ∂ l z ρ = (l + 1) 2 (i + 1) 2 (l -i + 1) 2 L n ω * i ∂ i z ρ ω * l-i ∂ l-i z m ω * l ∂ l z ρ ≤ 2 L n 1 (i + 1) 2 + 1 (l -i + 1) 2 ω * i ∂ i z ρ ω * l-i ∂ l-i z m ω * l ∂ l z ρ , (3.12) 
where the second inequality is because of

(l + 1) 2 ≤ ((i + 1) + (l -i + 1)) 2 ≤ 2(i + 1) 2 + 2(l -i + 1) 2 .
If one sums up the first part of (3.12) over i, l, one has,

2 L n n l=0 l i=0 1 (i + 1) 2 ω * i ∂ i z ρ ω * l-i ∂ l-i z m ω * l ∂ l z ρ ≤ 1 γL n n l=0 l i=0 1 (i + 1) 2 ω * i ∂ i z ρ ω * l-i ∂ l-i z m 2 + γ L n n l=0 ω * l ∂ l z ρ 2 ≤ 1 γL n n l=0 l i=0 1 (i + 1) 2 l i=0 1 (i + 1) 2 ω * i ∂ i z ρ 2 ω * l-i ∂ l-i z m 2 + γ L n ρ n ω 2 ≤ A γL n n i=0 n l=i 1 (i + 1) 2 ω * i ∂ i z ρ 2 ω * l-i ∂ l-i z m 2 + γ L n ρ n ω 2 ≤ A γL n n i=0 1 (i + 1) 2 ω * i ∂ i z ρ 2 n l-i=0 ω * l-i ∂ l-i z m 2 + γ L n ρ n ω 2 ≤ A γL n ρ n ω 2 m n ω 2 + γ L n ρ n ω 2 .
(3.13)

The first inequality is obtained by applying Young's inequality, and then applying Cauchy-Schwartz inequality gives the second one. Since l -i and i are symmetric, so the second part of (3.12) can be similarly bounded. Therefore, summing (3.12) over i, l gives an upper bound for the RHS of (3.11). This implies

n l=0 (ω * l ) 2 ∂ l z (ρm) ρ l ≤ 2A γL n ρ n ω 2 m n ω 2 + 2γ L n ρ n ω 2 .
For the second inequality (3.6), one first separates it into two parts,

- n l=0 (ω * l ) 2 ∂ l z (r ∞ θ) ∂ l z θ = - n l=0 (ω * l ) 2 r ∞ ∂ l z θ∂ l z θ - n l=1 l i=1 (ω * l ) 2 l i ∂ i z r ∞ ∂ l-i z θ∂ l z θ = -r ∞ θ n ω 2 - 2 L n n l=1 l i=1 1 (i + 1) 2 + 1 (l -i + 1) 2 ω * i ∂ i z r ∞ ω * l-i ∂ l-i z θ ω * l ∂ l z θ ≤ -r ∞ θ n ω 2 + 1 γL n n l=1 l i=1 1 (i + 1) 2 (ω * i r ∞ i ) ω * l-i θ l-i 2 + 1 γL n n l=1 l i=1 1 (l -i + 1) 2 (ω * i r ∞ i ) ω * l-i θ l-i 2 + 2γ L n n l=0 θ n ω 2 ≤ - r ∞ 2 θ n ω 2 + 4 L 2n r ∞ n l=1 l i=1 1 (i + 1) 2 (ω * i r ∞ i ) ω * l-i θ l-i 2 + 4 L 2n r ∞ n l=1 l i=1 1 (l -i + 1) 2 (ω * i r ∞ i ) ω * l-i θ l-i 2 , (3.14) 
where the second equality is obtained by applying (3.12), then applying Young's inequality gives the first inequality, and setting γ = L n r ∞ in the last inequality are similar to the first term in the second line of (3.13), so according to the fourth line in (3.13), (3.14) can be further simplified to

- n l=0 (ω * l ) 2 ∂ l z (r ∞ θ) θ l ≤ - r ∞ 2 θ n ω 2 + 4A L 2n r ∞ n l=1 l i=1 1 (i + 1) 2 + 1 (l -i + 1) 2 (ω * i r ∞ i ) 2 ω * l-i θ l-i 2 = - r ∞ 2 θ n ω 2 + 4A r ∞ n l=1 l i=1 L -2i (i + 1) 2 + L -2i (l -i + 1) 2 (ω i r ∞ i ) 2 ω * l-i θ l-i 2 ≤ - r ∞ 2 θ n ω 2 + 4Aκ 2 r ∞ n l=1 l i=1 L -2i (i + 1) 2 + L -2i (l -i + 1) 2 ω * l-i θ l-i 2 = - r ∞ 2 θ n ω 2 + 4Aκ 2 r ∞ n i=1 L -2i (i + 1) 2 n l=i ω * l-i θ l-i 2 + 4Aκ 2 r ∞ n i=1 L -2i n l=i ω * l-i θ l-i 2 (l -i + 1) 2 (3.15)
where the first equality comes from the definition of ω * i in (3.3), and the second inequality is by Assumption 2.2, sup

z∈Iz ω i ∂ i z r ∞ 2 ≤ κ 2 .
Furthermore, since

n i=1 L -2i (i + 1) 2 ≤ n i=1 L -2i ≤ 1 (L 2 -1) ≤ r 2 16Aκ 2 ,
by the definition of L in (2.16). Inserting it back to (3.15) gives

- n l=0 (ω * l ) 2 ∂ l z (r ∞ θ) θ l ≤ - r ∞ 2 θ n ω 2 + r 4 θ n ω 2 + r 4 θ n ω 2 ≤ 0,
which completes the proof for the second inequality (3.6).

4 The gPC-SG method

The numerical method

In this section, we will introduce a numerical method for model (2.1), which enjoys spectral accuracy in the random space.

For random variable z with probability density function π(z), there exists a corresponding orthogonal polynomial basis {Φ i } ∞ i=0 with respect to the measure π(z)dz, which is orthonormal to each other in the weighted L 2 π inner product,

Iz Φ i Φ j π(z)dz = δ ij , (4.1) 
where δ ij is the Kronecker delta function. The K-th order subspace is therefore spanned by {Φ i } K i=0 . As a popular numerical method, the generalized Polynomial Chaos stochastic Galarkin (gPC-SG) method is to find the approximate solution in the truncated K-th order subspace.

That is, define the approximation solution of the perturbative ρ, m in the form of,

ρK (t, x, z) = K i=0 ρi (t, x)Φ i (z), mK (t, x, z) = K i=0 mi (t, x)Φ i (z), (4.2)
then insert ρK , mK into (2.2) and do Galerkin projection, so the approximation solution ρK , mK satisfies,

   ∂ t ρK , Φ j π = -(a + acr ∞ ) ρK -bcr ∞ mK -cρ K mK , Φ j π , 0 ≤ j ≤ K, ∂ t mK , Φ j π = -(b + bcr ∞ ) mK -acr ∞ ρK -cρ K mK , Φ j π , 0 ≤ j ≤ K. (4.3)
Equivalently, (4.3) can be written as a system of the deterministic coefficients of ρK , mK , i.e. the vector functions ρK (t, x) = (ρ 0 (t, x),

• • • , ρK (t, x)) , mK (t, x) = ( m0 (t, x), • • • , mK (t, x)) satisfiy,                  ∂ t ρK = -a ρK -acΥ ρK -bcΥ mK -c   i,j mi S l ij ρj   K l=0 , ∂ t mK = -b mK -bcΥ mK -acΥ ρK -c   i,j mi S l ij ρj   K l=0 , (4.4) 
with initial data,

ρj (0) = ρ(0, z), Φ j π , mj (0) = m(0, z), Φ j π , 0 ≤ j ≤ K.
Here S l , Υ are symmetric matrices defined as

S l ij = Iz Φ i Φ j Φ l π(z)dz, Υ ij = Iz r ∞ Φ i Φ j π(z)dz. (4.5)

Main results and proof sketch

We will prove that the approximate solution obtained by the gPC-SG from solving the deterministic system (4.4) has spectral accuracy. We will decompose the error of the approximate solution into two parts, one is the projection error, another is the Galerkin error. The first part is determined by the regularity of the solution (ρ, m) in the random space, while the second part is determined by the stability of the Galerkin system (4.4).

Define the projection of the analytic perturbative solution (ρ, m) onto the subspace

{Φ i } K i=0 as, ρK := ρΦ K dπ(z) • Φ K , mK := mΦ K dπ(z) • Φ K , (4.6) 
where

Φ K (z) = (Φ i ) K i=0
is the vector function that contains all basis functions up to the K-th order. Then we can decompose the error of the approximation solution ρK , mK into two parts,

ρ -ρK = (ρ -ρK ) K ρ + (ρ K -ρK ) ε K ρ , (4.7) m -mK = (m -mK ) K m + ( mK -mK ) ε K m , (4.8) 
where K ρ , K m represents for the projection error, ε K ρ , ε K m are errors from the stochastic Galerkin. Especially, we set (ε K ρ , ε K m ) to be the vector function defined as,

ε K ρ = ε K ρ • Φ K := (ρ -ρK )Φ K dπ(z) • Φ K , ε K m = ε K m • Φ K := (m -mK )Φ K dπ(z) • Φ K . (4.9)
Because of the orthonality of the bases, it is easy to check that

ε K ρ 2 π = ε K ρ 2 , ε K m 2 π = ε K m 2 .
From Theorem 2.3, one can bound ( K ρ , K m ) as in the following Corollary.

Corollary 4.1. Under the same initial condition as in Theorem 2.3, the projection error decays in time exponentially according to,

K ρ 2 π = ρ -ρK 2 π ≤ D (ν n n!) 2 E H n π (0) a(K + 1) 2n e -at , K m 2 π = m -mK 2 π ≤ D (ν n n!) 2 E H n π (0) b(K + 1) 2n e -bt , (4.10) 
for some constant D related to the measure π(z)dz.

Proof. (4.10) comes from the classical approximation theorem of orthogonal basis, one can refer to Theorem 2.1 in [START_REF] Canuto | Approximation results for orthogonal polynomials in sobolev spaces[END_REF]. For ρ ∈ H n z , there exists a constant D, such that

ρ -ρK 2 π ≤ D ρ 2 H n z (K + 1) 2n , (4.11)
then applying the result of Theorem 2.3 directly gives (4.10).

Since by Corollary 4.1, we already have estimates for the projection error ( K ρ , K m ), so in order to study the convergence rate of the gPC-SG method, we only need to analyze the Galerkin error (ε K ρ , ε K m ). Estimates for (ε K ρ , ε K m ) are based on the stability of the gPC-SG method, which is stated in Theorem 4.6. Similar to the analysis we did to get the estimates for ρ H n π , m H n π , if one directly does the energy estimates on ρK π , mK π , one will end up with a strong assumption on the initial data for large K. In order to avoid that, we add a weight µ i to ρi , mi , then under Assumptions 4.2 and 4.4, we can get a stability result that is sharp in K. Assumption 4.2. There exists a positive integer p, such that the basis functions {Φ i (z)} i≥0 satisfy,

Φ i (z) L ∞ ≤ η i = (i + 1) p , for all i ≥ 0.
(4.12)

Remark 4.3. This assumption, first introduced in [START_REF] Shu | Uniform regularity in the random space and spectral accuracy of the stochastic galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime[END_REF], combined with the weight µ i defined in (4.16) guarantees that the initial data do not depend on K. For example, the bases of normalized Legendre polynomials, which corresponds to uniform distribution in [-1, 1], satisfy the above condition with p = 1/2; The bases of normalized Chebyshev polynomials, which corresponds to the random variable with pdf π(z)

= Assumption 4.4. Let r ∞ i = r ∞ , Φ i π , we assume j≥1 ((j + 1) q r ∞ j ) 2 ≤ (r ∞ 0 ) 2 2 2q+3 A , (4.13) 
where the constant A is defined in (2.15), q = p + 2, with p defined in (4.12); r ∞ 0 = Iz r ∞ π(z)dz is the expectation of r ∞ . Remark 4.5. One sufficient condition for r ∞ is,

r ∞ j 2 ≤ C (j + 1) 2q+2 , for ∀j ≥ 1, C = (r ∞ 0 ) 2 2 2q+4 AC S . (4.14) 
This implies that the variance of r ∞ , which is equal to j≥1 r ∞ j 2 , has to be small enough.

We further define ρK µ , mK µ as weighted approximate solution

ρK µ = (µ 0 ρ0 , • • • , µ K ρK ) , mK µ = (µ 0 m0 , • • • , µ K mK ) (4.15) 
where µ i are weights defined as,

µ i = (i + 1) q , for q = p + 2, (4.16) 
and here p is the positive constant defined in (4.12).

Theorem 4.6. (Stability of the gPC-SG method) Under Assumptions 4.2 and 4.4, for the approximate perturbative solution ( ρK , mK ) obtained by the gPC-SG method, if initially

mK µ (0) 2 ≤ a 2 Ĉ0 , ρK µ (0) 2 ≤ b 2 Ĉ0 , (4.17) 
then it decays in time as follows

ρK µ (t) 2 ≤ 1 a ÊK (0)e -at , mK µ (t) 2 ≤ 1 b ÊK (0)e -bt , (4.18) 
where ÊK = a ρK µ (t) 2 + b mK µ (t) 2 . Here Ĉ0 = (2 2q+6 c 2 A) -1 and A is defined in (2.15).

The above theorem will be proved in Section 5. It tells us that the gPC-SG method is stable under some smallness assumption on the initial data. Based on the above result, we can prove the spectral accuracy of the gPC-SG method, which is stated in Theorem 4.7. Before we state the theorem, we first introduce the Sobolev constant C S ,

ρ 2 L ∞ z ≤ C S ρ 2 H 1 z , for ∀ρ ∈ H 1 z . (4.19) 
Theorem 4.7. (Spectral accuracy of the gPC-SG method) Under Assumptions 2.2, 4.2, 4.4, and in addition, initially the exact solution (ρ, m) ∈ H n π , and the approximate solution

(ρ K , mK ) satisfies, m(0) 2 H n π ≤ a 2 C 0 , ρ(0) 2 H n π ≤ b 2 C 0 , mK µ (0) 2 ≤ a 2 Ĉ0 , ρK µ (0) 2 ≤ b 2 Ĉ0 , then (ρ K , mK ) converges to (ρ, m) according to, ρ -ρK 2 π ≤ C(n) a(K + 1) 2n e -at , m -mK 2 π ≤ C(n) b(K + 1) 2n e -bt , where C 0 = b a+b (5 2 2 6 ν 2 c 2 AC S ) -1 , Ĉ0 = a a+b 2 2q+6 c 2 A -1 , C(n) = D (1 + I 0 ) ν 2n (n!) 2 E H n π (0), I 0 = 32c 2 R 2 + 1 , A, R, D, C S are
constants defined in (2.15), (2.14), (4.10), (4. [START_REF] Xiu | Efficient stochastic galerkin methods for random diffusion equations[END_REF]) respectively and ν is the same constant as in Theorem 2.3. Project (2.3) onto the truncated subspace {Φ K }, and then subtract the approximate perturbative system (4.3) from it, one has the following system for (ε

K ρ , ε K m ),                          ∂ t ε K ρ = -aε K ρ -acΥε K ρ -bcΥε K m -c ar ∞ K ρ + br ∞ K m Φ K dπ(z) -c ρm -ρK mK Φ K dπ(z), ∂ t ε K m = -bε K m -bcΥε K m -acΥε K ρ -c br ∞ K m + ar ∞ K ρ Φ K dπ(z) -c ρm -ρK mK Φ K dπ(z). (6.2) (6.3) 
When one does energy estimates to the above system, the most difficult part lies in how to bound the last nonlinear term. We analyze this term in Lemmas 6.2 and 6.3. For other linear terms, notice that r ≤ r ∞ (z) ≤ R for all z ∈ I z , so by Theorem 3.1 in [START_REF] Xiu | Efficient stochastic galerkin methods for random diffusion equations[END_REF], Υ has the following properties. One can also refer to Appendices for the proof.

Proposition 6.1. For the steady state r ∞ with lower bound and upper bound as in (2.14), the constant matrix Υ defined in (4.5) is a positive definite matrix and for any vector α,

r α 2 ≤ α Υα ≤ R α 2 .
Therefore, if one does dot product of aε K ρ , bε K m to the two equations respectively, then add them together, after applying the above Proposition, one has

∂ t E K ε ≤ -a 2 ε K ρ 2 -b 2 ε K m 2 -c r ∞ a K ρ + b K m , aε K ρ + bε K m π -c ρm -ρK mK , aε K ρ + bε K m π IV ≤ -a 2 ε K ρ 2 -b 2 ε K m 2 + c 2 r ∞ 2 L ∞ z 8a 2 K ρ 2 π + 8b 2 K m 2 π + a 2 8 ε K ρ 2 + b 2 8 ε K m 2 + 16c 2 C S ρ 2 H 1 z + b 2 8 ε K m 2 + 64c 2 A mK µ 2 + a 2 8 ε K ρ 2 + 16c 2 C S ρ 2 H 1 z K m 2 π + 64c 2 A mK µ 2 K ρ 2 π = - 3a 4 - 64c 2 A a mK µ 2 a ε K ρ 2 - 3b 4 -16c 2 C S ρ 2 H 1 z b ε K m 2 + 8a 2 c 2 R 2 + 64c 2 A mK µ 2 K ρ 2 π + 8b 2 c 2 R 2 + 16c 2 C S ρ 2 H 1 z K m 2 π J(t) , (6.4 
) where Young's inequality and Lemma 6.3 are applied to the second inequality. Based on inequality (6.4), if

64c 2 A mK µ (t) 2 ≤ a 2 4 , 16c 2 C S ρ(t) 2 H 1 z ≤ b 2 4 , (6.5) 
then one has 1 2

∂ t E K ε ≤ - a 2 2 ε K ρ 2 - b 2 2 ε K m 2 + J(t). (6.6) 
If J(t) can be bounded for ∀t > 0, then one can have exponential decay of E K ε . But first, let us check when assumption (6.5) is satisfied. By Theorems 4.6 and 2.3, one has,

mK µ 2 ≤ ÊK (0) b ≤ a(a + b) Ĉ0 , ρ 2 H 1 π ≤ (5ν) 2 E H 1 π (0) a ≤ b(a + b)5 2 ν 2 C 0 .
Therefore, as long as Ĉ0 ≤ min a (a + b)

1 2 8 c 2 A , 1 2 2q+6 c 2 A ≤ a a + b 2 2q+6 c 2 A -1 , C 0 ≤ min b (a + b) 1 5 2 2 6 ν 2 c 2 C S , 1 5 2 2 5 Ac 2 ≤ b a + b (5 2 2 6 ν 2 c 2 AC S ) -1
(6.7) (6.6) is satisfied, and then the error E K ε satisfies (6.6). Integrating (6.6) over t gives,

a ε K ρ (t) 2 + b ε K m (t) 2 ≤2 t 0 J(s)ds -a 2 ε K ρ 2 -b 2 ε K m 2 ,
where E K ε (0) = 0 is used. Then separate it into two parts, one has

ε K ρ (t) 2 ≤ 2 a t 0 J(s)ds -a ε K ρ 2 , ε K m (t) 2 ≤ 2 b t 0 J(s)ds -b ε K m 2 . (6.8)
Now we need to bound the term t 0 J(s)ds. Insert (6.6) and Corollary 4.1 into J(t),

J(t) ≤ 8a 2 c 2 R 2 + a 2 4 D (ν n n!) 2 E H n π (0) a(K + 1) 2n e -at + 8b 2 c 2 R 2 + b 2 4 D (ν n n!) 2 E H n π (0) b(K + 1) 2n e -bt ,
which implies that 2n , where I 0 = 32c 2 R 2 + 1, so (6.8) becomes

2 t 0 J(s)ds ≤ 2 a 8a 2 c 2 R 2 + a 2 4 D (ν n n!) 2 E H n π (0) a(K + 1) 2n + 2 b 8b 2 c 2 R 2 + b 2 4 D (ν n n!) 2 E H n π (0) b(K + 1) 2n ≤2 16c 2 R 2 + 1 2 D (ν n n!) 2 E H n π (0) (K + 1) 2n ≤ I 0 D (ν n n!) 2 E H n π (0) 2(K + 1)
ε K ρ (t) 2 ≤ I 0 D (ν n n!) 2 E H n π (0) a(K + 1) 2n -a ε K ρ 2 , ε K m (t) 2 ≤ I 0 D (ν n n!) 2 E H n π (0) b(K + 1) 2n -b ε K m 2 .
(6.9) Applying Grownwall's inequality gives,

ε K ρ 2 ≤ I 0 D (ν n n!) 2 E H n π (0) a(K + 1) 2n e -at , ε K m 2 ≤ I 0 D (ν n n!) 2 E H n π (0) b(K + 1) 2n
e -bt . (6.10) Therefore, By (4.7),

ρ -ρK 2 π ≤ K ρ 2 π + ε K ρ 2 π
and inserting (4.10), (6.10) gives,

ρ -ρK 2 π ≤ D(1 + I 0 ) ν 2n (n!) 2 E H n π (0) a(K + 1) 2n e -at .
Similar inequality can be obtained for m -mK 2 π , which completes the proof of Theorem 4.7.

Lemma 6.2. For any function

m(z) = ∞ i=0 m i Φ i (z), ρ(z) = ∞ i=0 ρ i Φ i (z),
where m i = mΦdπ(z), ρ i = ρΦdπ(z), the following inequality holds,

K l=0 ρmΦ l dπ(z) 2 ≤ 4A i≥0 ((i + 1) q ρ i ) 2 i≥0 m 2 i ,
where q = p + 2 and p, A are constants defined in (4.12), (2.15).

Proof. First we define a function χ ijl of non-negative integer i, j, l,

χ ijl = 1, if i + j ≥ l, or i + l ≥ j, or j + l ≥ i 0, ortherwise. (6.11) 
Then we note that

S l ij = χ ijl Φ i Φ j Φ l π(z)dz ≤ χ ijl η min{i,j,l} Φ i π Φ l π ≤ η min{i,j,l} χ ijl , (6.12) 
with η i defined in (4.12). Therefore,

K l=0 ρmΦ l dπ(z) 2 = K l=0     ∞ i≥0 ρ i Φ i     j≥0 m j Φ j   Φ l dπ(z)   2 = K l=0   i≥0 j≥0 ρ i m j S l ij   2 ≤ K l=0   i≥0 j≥0 |(i + 1) q ρ i | |m j | η i (i + 1) q χ ijl   2 = K l=0   i≥0 |(i + 1) q ρ i | 1 (i + 1) 2 j≥0 |m j | χ ijl   2 ≤ K l=0   i≥0 1 (i + 1) 2   i≥0 ((i + 1) q ρ i ) 2 (i + 1) 2   j≥0 |m j | χ ijl   2 ≤A K l=0 i≥0 ((i + 1) q ρ i ) 2 (i + 1) 2 j≥0 m 2 j χ ijl j≥0 χ ijl ≤ A K l=0 i≥0 2i + 1 (i + 1) 2 ((i + 1) q ρ i ) 2 j≥0 m 2 j χ ijl ≤A i≥0 (2i + 1) 2 (i + 1) 2 ((i + 1) q ρ i ) 2 j≥0 m 2 j ≤ 4A i≥0 ((i + 1) q ρ i ) 2 i≥0 m 2 i .
In the above estimates, the first inequality is because of (6.12), then the Cauchy-Schwartz inequality is applied in the second and third inequalities. In the fourth inequality, one uses the property of χ ijl , since for fixed i, l, χ ijl is nonzero only if l -i ≤ j ≤ l + i, which implies that j≥0 χ ijl ≤ (2i + 1). Similar property is applied in the fifth inequality for l χ ijl . The last inequality comes from (2i + 1) 2 ≤ 4(i + 1) 2 . Lemma 6.3. The following inequality holds

ρm -ρK mK , aε K ρ + bε K m ≤ 16c 2 C S ρ 2 H 1 z + b 2 8 ε K m 2 + 64c 2 A mK µ 2 + a 2 8 ε K ρ 2 + 16c 2 C S ρ 2 H 1 z K m 2 π + 64c 2 A mK µ 2 K ρ 2 π . Proof. First notice that ρm -ρK mK = ρm -ρ mK + ρ mK -ρK mK = ρ(ε K m + K m ) 1 + mK K ρ + ε K ρ 2 .
Apply Young's inequality to the first part, one has

-c 1 , aε K ρ + bε K m ≤16c 2 C S ρ 2 H 1 z ε K m 2 + 16c 2 C S ρ 2 H 1 z K m 2 π + a 2 16 ε K ρ 2 + b 2 16 ε K m 2 , (6.13) 
where the constant C S comes from the Sobolev Embedding (4.19). For the second part 2 , using Lemma 6.2, one has,

-c 2 , aε K ρ + bε K m π = c 2 Φ K π(z)dz • aε K ρ + bε K m ≤16c 2 mK K ρ Φ K π(z)dz 2 + 16c 2 mK ε K ρ Φ K π(z)dz 2 + a 2 16 ε K ρ 2 + b 2 16 ε K m 2 ≤64c 2 AC S   i≥0 ((i + 1) q mi ) 2   K ρ 2 π + ε K ρ 2 + a 2 16 ε K ρ 2 + b 2 16 ε K m 2 =64c 2 AC S mK µ 2 ε K ρ 2 + K ρ 2 π + a 2 16 ε K ρ 2 + b 2 16 ε K m 2 .
(6.14) Adding (6.13) and (6.14) together completes the proof.

Numerical examples 7.1 Coefficient of variation

We want to check how the presence of µRNA influences the noise in the concentration of unbound mRNA. One common way to perform this comparison is to compute the coefficient of variation (CV) of the mRNA content, i.e. the ratio of the standard deviation to the mean. Indeed, we expect the presence of µRNA to reduce the mean in the content of mRNA, simply because binding to µRNA reduces the amount of unbound mRNA. Since we deal with distributions on the positive real line, the reduction of the mean is also likely to reduce the variance. However, we wish to show that the variance reduction obtained by the presence of µRNA is actually bigger than the mere reduction which would be obtained as a consequence of a reduction of the mean. This is the reason of considering the CV. A reduction of the CV by the presence of µRNA shows a reduction of the variance which is larger than the corresponding reduction of the mean. Specifically, we compare the CV on ρ ∞ (z) obtained from system (2.1) which includes µRNA production with the CV on the steady state ρ∞ of the equation where binding with µRNA is ignored, namely ∂ t ρ = S(z) -aρ.

We let CV L be the CV of the steady state obtained from (7.1), i.e. without µRNA, while CV N L is the CV of ρ ∞ obtained from (2.1), i.e. with µRNA ('L' and 'NL' stand for 'linear' and 'nonlinear' as (7.1) is linear while (2.1) is nonlinear). From the two plots, one can see that the CV for the steady-state of the nonlinear system is always smaller than that of the linear system. Thus, the influence of µRNAs is always to decrease the uncertainty on the mRNA content. From Fig. 1 we see that the influence of µRNAs increases as the intensity of the source decreases and its variance increases. From Fig. 2 we deduce that the influence of µRNAs increases as their binding rate to mRNA c increases. A larger binding rate means less unbound for mRNAs or µRNAs, which has a similar effect as a reduction of the source intensity. Indeed, the influence of µRNAs increases in both cases. Finally, From Fig. 2, an increase of either the degradation rate a of mRNA or the degredation rate b of µRNA both decrease the influence of µRNAs. In the latter case, this is understandable as the amount of unbound µRNA decreases and less noise reduction occurs. In the former one, this is less intuitive, as an increase of the degradation rate of mRNA should lead to a decrease of mRNA concentration relative to the µRNA concentration and should make the mRNA more sensitive to the presence of µRNA. This shows that nonintuitive outcome may occur from random perturbation of chemical kinetic systems.

Finally, in spite of repeated attempts, we were not able to show the reduction of the CV in the presence of µRNA analytically. This may be the indication that for some randomness, this reduction does not happen. (B.1)

The second inequality is because S l ij = χ ijl Φ i Φ j Φ l π(z)dz ≤ χ ijl η min{i,j,l} Φ i π Φ l π ≤ η min{i,j,l} χ ijl , (B.2)

where the first equality comes from the orthornality of Φ i , and η i defined in (4.12) is the upper bound for Φ i . We estimate the first part of (B. The first equality is because of the definition of µ i in (4.16), then the Cauchy-Schwarz inequality is applied to the first and the last inequalities, while the second inequality comes from the

2 π , m(t) 2 π

 22 ) decay exponentially in time as follows,

Figure 1

 1 Figure 1 shows how CV L -CV N L varies for different random sources. Here we set a = b = c = 1, S(z) = kz + d, where z follows the uniform distribution in [-1/2, 1/2]. The five lines correspond to the choices d = 1/3, 1/2, 1, 2, 5. The horizontal axis is the value of k 2 /2 which is equal to the variance.

Figure 1 :

 1 Figure 1: CVL -CVNL as a function of the variance of S(z) for different values of the mean of S(z) when a = b = c = 1, S(z) = kz + d, for k ∈ [0, 2] and d = 1/3, 1/2, 1, 2, 5, where z follows the uniform distribution in [-1/2, 1/2].

Figure 2

 2 Figure 2 displays how CV L -CV N L depends on the parameters a, b, c. Here we set S(z) = 2z/3 + 1, so the mean of the source is 1 and the variance is 1/27.From the two plots, one can see that the CV for the steady-state of the nonlinear system is always smaller than that of the linear system. Thus, the influence of µRNAs is always to decrease the uncertainty on the mRNA content. From Fig.1we see that the influence of µRNAs increases as the intensity of the source decreases and its variance increases. From Fig.2we deduce that the influence of µRNAs increases as their binding rate to mRNA c increases. A larger binding rate means less unbound for mRNAs or µRNAs, which has a similar effect as a reduction of the source intensity. Indeed, the influence of µRNAs increases in both cases. Finally, From Fig.2, an increase of either the degradation rate a of mRNA or the degredation rate b of µRNA both decrease the influence of µRNAs. In the latter case, this is understandable as the amount of unbound µRNA decreases and less noise reduction occurs. In the former one, this is less intuitive, as an increase of the degradation rate of mRNA should lead to a decrease of mRNA concentration relative to the µRNA concentration and should make the mRNA more sensitive to the presence of µRNA. This shows that nonintuitive outcome may occur from random perturbation of chemical kinetic systems.Finally, in spite of repeated attempts, we were not able to show the reduction of the CV in the presence of µRNA analytically. This may be the indication that for some randomness, this reduction does not happen.

Figure 2 :

 2 Figure 2: CVL -CVNL as a function of a, b, c, where we set S(z) = 2z/3 + 1, and z follows the uniform distribution in [-1/2, 1/2].

gives the last inequality. The second and third terms

π √ 1-z 2 , satisfy this condition with p = 0.
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5 Proof of Theorem 4.6 (Stability of the gPC-SG method)

In this section, we will study the stability of the gPC-SG method for this model. We will use energy estimates to analyze ÊK = a ρK µ (t) 2 + b mK µ (t) 2 . Similar to the proof in the sensitivity analysis in Section 3, the most important part in the proof is how to bound the nonlinear term and the linear term with coefficient r ∞ (z) properly. We use the weight µ i to make the upper bound of this two terms independent of K, and it is stated in Lemma 5.1, which will be proved in Appendices B. By multiplying a( ρK ) U 2 and b( mK ) U 2 with U = diag(µ 0 , • • • , µ K ) to the two systems in (4.4) respectively, one has,

where θ = aρ l + b ml and θK = θ0 , • • • , θK . In the following Lemma 5.1, by (5.4) one can omit the third term on the RHS of the above equation; by (5.3), and setting γ = 1 2c , one can bound the last term by,

(5.2) Since the above inequality is similar to (3.8), by the continuity theorem, one gets similar result for ρK µ 2 , mK µ , which completes the proof.

Lemma 5.1. For S l defined in (4.5), the following inequality holds,

where q, A are constants defined in (4.16), (2.15). For Υ defined in (4.5), under Assumption 4.4, the following inequality holds

Proof. Similar proof of (5.3) can be found in [START_REF] Zhu | Sensitivity analysis and uniform regularity for the Boltzmann equation with uncertainty and its stochastic galerkin approximation[END_REF], and based on (5.3) and Assumption 4.4, one can easily get (5.4). Therefore, we put the details of the proof in Appendix B.

6 Proof of Theorem 4.7 (Spectral accuracy of the gPC-SG method)

In this section, we will prove the spectral accuracy of the gPC-SG method based on Theorems 2.3 and 4.6. We will use energy estimates to analyze E K ε ,

Since χ ijl is nonzero only if when l ≤ i + j, and for j ≥ i, this means l ≤ 2j, so

(j+1) 2q ≤ 2 2q . Furthermore, for fixed i, l, χ ijl is nonzero only when l -i ≤ j ≤ l + i, this means the number of nonzero χ ijl is (2i + 1). Therefore,

which gives the second inequality. Similarly, one can obtain the third inequality. The fourth inequality is because of (2i + 1) 2 ≤ 2 2 (i + 1) 2 . Since i, j are symmetric, so the second part of (B.1) should have the same bound, hence,

For the second inequality (5.4), first notice that,

where S l ij is defined in (4.5). The third equality is because of the orthogonality of {Φ i } i≥0 . For the last term, using the same technique one uses to get (5.3), then one has

Then set γ = r ∞ 0 , and by the condition on j≥1 (µ j r ∞ j ) 2 ≤ (r ∞ 0 ) 2 2 2q+3 A , one completes the proof for the second inequality (5.4).