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Abstract

Motivated by experiments on cell segregation, we present a two-species model of interacting particles,
aiming at a quantitative description of this phenomenon. Under precise scaling hypothesis, we derive
from the microscopic model a macroscopic one and we analyze it. In particular, we determine the range
of parameters for which segregation is expected. We compare our analytical results and numerical
simulations of the macroscopic model to direct simulations of the particles, and comment on possible
links with experiments.

1 Introduction

The organisation of biological tissues during development is accompanied by the formation of sharp bor-
ders between distinct cell populations. During the morphogenesis of numerous tissues/organs, cells of
the same type regroup into regions, creating niches with specific identities that drive the differentia-
tion of particular cell types. This spatial organization is ensured via cell-cell signalling leading specific
cells/tissues to form at the appropriate location. The maintenance of this cell segregation is key in
adult tissue homeostatis, and its disruption can lead tumor cells to spread and form metastasis. This
segregation is challenged during tissue growth and morphogenesis due to the high mobility of many cells
that can lead to intermingling. Therefore, understanding the mechanisms involved in the generation and
maintenance of cell segregation is of tremendous importance in tissue morphogenesis, homeostasis, and
in the development of various invasive diseases such as tumors.

Numerous experiments have been conducted to identify the mechanisms of cell segregation. Exper-
iments show that mixing cells from different tissues in vitro leads to their segregation, with initially
fuzzy borders that sharpen in time [53]. This has been observed for many systems for instance in the
development of the wing imaginal disc in Drosophilia [33], in the developing nervous system [28] etc. So
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far, three types of mechanisms have been identified to have a role in segregation and border formation,
namely (i) differential adhesion, (ii) contact cell repulsion and (iii) cortical tension. Indeed, the segrega-
tion of cells derived from different tissues in vitro was initially suggested to occur through a combination
of directed cell migration and the selective adhesion of cells of the same type [48]. However, other studies
have shown that the contact inhibition of cell migration induced by contact repulsion of cells by Eph
receptor and ephrin signaling, and finally the induction of cortical tension by actomyosin contraction
are important mechanisms that can restrict intermingling between cell populations. However, it remains
unclear whether individually each of these mechanisms account for cell segregation or border sharpening,
and to what extent the interplay of these different mechanisms is required to achieve cell segregation.

Several modelling efforts have been done to identify the main mechanisms involved in cell segrega-
tion. The mathematical models for cell-cell interactions are usually agent-based models, where each cell
undergoes a random walk exclusion process and interacts with its neighbours. For instance the cellular
Potts model for segregation between two cell populations [32] predicts cell rearrangements in epithelia
based on the minimization of a free energy and has been widely used to explore the rate of cell sorting
due to differential adhesion, but does not include cell migration as a mechanism. The varying adhesive
and repulsive forces between different cell populations, which can result from Eph/ephrin interactions,
have also been modelled by representing cells as spheres which can attract or repel each other, giving
rise to empirically observed cell sorting pattern [53]. In [1], the authors develop a mathematical model
for Eph/ephrin regulated cell-cell segregation and tissue boundary formation, which features indepen-
dent random cell motion, Eph/ephrin-dependent attraction/repulsion interactions between neighbouring
cells, and cell division. The authors in [1] show that the dynamics of Eph/ephrin-mediated cell cluster
formation and cell segregation can be captured with these mechanisms. However, this model do not use
parameters from measurements of cell behaviour or examine whether cell repulsion is sufficient for bor-
der sharpening. Another approach, which simulates cell adhesion, de-adhesion and migration in greater
detail [51, 52], was used to model the time course of segregation of cells differing in cadherin expression.
The results from this model were acurate for describing cell segregation mediated by differential expres-
sion of cadherins but less accurate when simulating the significantly faster rate of Eph-ephrin mediated
cell segregation. However when modified to account for repulsive behaviors [53], the model correctly
reproduced the experiments and showed that heterotypic repulsion can account for cell segregation and
border sharpening, and is more efficient than decreased heterotypic adhesion.

All these results suggest that cell segregation and border sharpening is the result of a complex interplay
between homotypic/heterotypic cell adhesion, de-adhesion and repulsion. But how the balance of these
phenomena is precisely linked to the existence/size of the segregated zones remains unclear to this day.
In this paper, we aim to provide a mathematical framework which enables to quantitatively link the
segregation and border sharpening ability of the tissue to these cell-cell interaction phenomena of interest.
As agent-based models do not enable precise mathematical analysis of their solutions due to the lack of
theoretical results, we turn towards a continuous -macroscopic- model for which the theoretical study
gives precise criteria for phase transitions as functions of key model parameters. As a drawback contrary
to microscopic models, macroscopic models lose the information at the individual level. In order to
overcome this weakness, we aim to derive, as rigorously as possible, the macroscopic model from an
agent-based formulation to ensure the good correspondence between the two formulations as it was done
in [7, 26,27].

The starting point is an individual-based model inspired from [7,8] and which bears similarities with
the approach [53]. We consider two families of cells, each cell being modelled as a point particle which
interacts with its close neighbors via local cross-links. The links are modeled by springs that are randomly
created and destructed. This enables us to model cell-cell attraction and repulsion, with different spring
strengths according to the type of link (intraspecies or interspecies). We let the particles move randomly
in space to model random motion of cells. In the mean field limit, assuming large numbers of particles
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and links as well as propagation of chaos, the corresponding kinetic system consists of two equations for
the individual particle distribution functions and two equations for the link densities. In the large-scale
limit and in the regime where the link creation/destruction frequency is very large, it was shown in
[7,8,27] that the link density distributions become local functions of the particle distributions. The latter
evolve through aggregation diffusion equations. Similar macroscopic model, but with nonlinlinear porous
medium type of diffusion has been recently considered analytically and numerically in [19]. Although
the derivation of the macroscopic model in the hydrodynamic limit follows closely the steps of [8], the
originality of this work lies in the presence of two coupled families of cells which introduce a new level of
complexity and make the stability analysis more involved than in previous works. Inspired from the results
of [53], we mainly consider repulsive springs and aim to quantify the influence of heterotypic/homotypic
repulsion on cell segregation and border sharpening. By addressing the stability of a homogeneous
distribution of particles for Hookean repulsive potentials, we obtain a precise condition for the phase
transition, which links the system segregation ability to the model parameters and give further insight
into the cell segregation processes.

Our study shows that in a system composed of two-species repelling each other, the interspecies forces
must be large enough to compensate both for the diffusion and for the intra-species repulsion, which both
tend to homogeneize the system. Aggregation will therefore be ensured if and only if interspecies repulsion
wins over diffusion and intraspecies repulsion. In the case where attractive interactions are considered,
we have noted that a necessary condition for the aggregation of the species (or equivalently instability of
the homogeneous steady-state) is that the interspecies forces are of the same sign. To observe aggregates,
the two families must therefore either repulse or attract each other, but must have the same effect on
each other. On the contrary, if one family is attracted by the other and the other repulses it, we will
always observe a homogeneous distribution at equilibrium (intermingling of the two families). A third
remark concerns the size of the clusters when aggregation occurs. As the interspecies repulsion force
increases, the particles of a given family aggregate more together, leading to a decrease of the size of the
local aggregates of the compressed family. These conclusions were confirmed by simulations performed
for both the microscopic and macroscopic models and are pictured in Fig. 1. Numerical simulations show
that both the micro- and macro- models are in excellent agreement with the predictions of the stability
analysis performed on the continuous model. The quantitative agreement obtained between both models
show that the macroscopic model is a good approximation of the microscopic model as the number of
individuals goes to infinity, provided the interspecies repulsion forces are not too large. Indeed for large
interspecies repulsion forces, we find some structural discrepancies between the two models, where the
microscopic dynamics seems to favor the formation of rounder aggregates compared to the elongated
structures obtained with the macroscopic model. We find that the microscopic dynamics is comprised of
two time phases: the first phase consists of a fast segregation between the two families and is followed
later by a reorganisation of the clusters which get rounder at large times. The macroscopic dynamics does
not seem to contain the second phase (restructuring), suggesting that this phenomenon can be due to
finite size effects. We postulate that these discrepancies come from the microscopic noise due to thermal
fluctuations, which gives rise to instabilities and allows the agent-based system to reach new states which
are not available in the deterministic description, or produce spatial correlations which in turn dominate
the macroscopic system behavior. Several works have reported these phenomena [4,14,37,41], particularly
at onset for transitions from metastable or unstable phases, in which microscopic noise can be amplified
to macroscopic time and length scales. The exploration of these effects will be the subject of future works.
Finally, we remark that the segregation process is seen in the numerical simulations to be efficient even
close to the instability threshold: as soon as the homogeneous state becomes unstable, the system evolves
towards a well segregated configuration. This suggests the presence of a subcritical bifurcation [7,18,20],
the study of which we also leave for future work.

The paper is organized as follows. In Section 2, we first give the main ingredients of the microscopic
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Stable homogeneous state
Intermingling of the two families

Unstable homogeneous state Unstable homogeneous state
Segregation of the two families Condensated aggregates

Figure 1: Scheme of the predictions of the linear stability analysis by acting on the interspecies repulsion
force.

model, and then we sketch the main steps of the derivation of the macroscopic dynamics. We present
two approaches that involve taking limit of large number of individuals and large scale/fast network
remodelling limit of the microscopic model in the different orders; the details of one of them are moved to
Appendixes A and B. Section 3 is devoted to the stability analysis around the homogeneous steady-states
of the macroscopic model: in Section 3.1, we give the stability results in the whole space, Section 3.2
explores the case of periodic boundary conditions and Section 3.3 is devoted to the case of phase separated
initial conditions. Finally, Section 4 presents the numerical results, performed on the microscopic and
macroscopic models in different regime of parameters, with a particular focus on the qualitative and
quantitative comparison between the two models.

2 Mathematical modelling

2.1 Microscopic model

The model features two families of particles referred to as type A and type B. Each particle can
link/unlink with neighbors located in a ball of radius R from its center. Each particle can link with
a neighbor of its own family as well as with a neighbor of the other family, with no restriction on the
number of links per particle and with the same detection radius R no matter the type of link (intra-
or inter- species). In order to model tissue plasticity, the links are not permanent but supposed to be
created and suppressed via random processes. In this way, the model allows for constant remodelling
of the link network. Each link between two particles generates a spring-like interaction potential, which
depends on the link type (intra- or inter- species link). Finally, particle positions are subject to random
positional noise to model the movements of the tissue.

In this paper, we restrict ourselves to a two-dimensional model. We consider a set of NA particles of
type A and NB particles of type B described by their centers (XA

i , X
B
` ) ∈ R2×R2, i ∈ [1, NA], ` ∈ [1, NB]

respectively. The link creation and suppression are supposed to follow Poisson processes of frequencies
νAAc,N,ε, ν

AB
c,N,ε, ν

BB
c,N,ε and νAAd,ε , ν

AB
d,ε , ν

BB
d,ε , where the subscripts c and d refer to ’creation’ and ’deletion’

respectively, and the superscripts AA,BB and AB denote intraspecies links (AA, BB) and interspecies
links (AB); ε is a scaling parameter, and the subscripts ε, and N for the νc’s make the dependency of
these rates on NA, NB and ε explicit, as will be explained below. We suppose that the intraspecies links
generate pairwise symmetric potentials ΦAA(XA

i , X
A
j ) and ΦBB(XB

` , X
B
m), not necessarily equal, and

that the interspecies links generate non-symmetric potentials ΦAB(XA
i , X

B
` ) 6= ΦBA(XB

` , X
A
i ), modelling
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the fact that the two particle families act differently on each other. For the moment we do not specify
interaction potentials, trying to keep the derivation at maximal level of generality. Note that ΦAB refers
to the action a type B particle exerts on a type A particle while ΦBA is the action a type A particle
exerts on a particle of type B. We define the total ”energy” WA of the A-particles as the sum over all
pairwise link potentials acting on particles A, and WB is the sum over all pairwise link potentials acting
on particles B:

WA(XA, XB) =

KAA∑
k1=1

ΦAA(XA
i(k1), X

A
j(k1)) +

KAB∑
k3=1

ΦAB(XA
i(k3), X

B
`(k3)) (1)

WB(XA, XB) =

KBB∑
k2=1

ΦBB(XB
`(k2), X

B
m(k2)) +

KAB∑
k3=1

ΦBA(XB
`(k3), X

A
i(k3)), (2)

where KAA,KBB,KAB denote the (time-dependent) total number of links between particles of type A,
particles of type B, and interspecies links respectively. In the formulas above (i(k1), j(k1)) denote the
indices of particles of type A connected by the intraspecies link k1, (`(k2),m(k2)) the indices of particles
of type B connected by link k2. By a slight abuse of notation we denote by (i(k3), `(k3)) the indices of
particles of type A connected to particles of type B by link k3.

Particle motion during a time interval between two linking/unlinking events is supposed to occur in
the so-called overdamped regime. The resulting equations contain a drift term in the steepest descent
direction of the ”energies” WA and WB and a noise term: dXA

i = −µ∇XA
i
WA(XA, XB)dt+

√
2DAdBi, ∀i ∈ {1, . . . , NA},

dXB
i = −µ∇XB

`
WB(XA, XB)dt+

√
2DBdB`, ∀` ∈ {1, . . . , NB},

(3)

(4)

where µ > 0 is the mobility coefficient considered to be given, and Bi is a 2-dimensional Brownian motion
Bi = (B1

i , B
2
i ) of intensity DA > 0 for species A and DB > 0 for species B. Inserting (1)-(2) into (3)-(4),

we obtain

dXA
i =− µdt

[ KAA∑
k1=1

(
∇x1ΦAA(XA

i(k1), X
A
j(k1))δi(k1)(i) +∇x2ΦAA(XA

i(k1), X
A
j(k1))δj(k1)(i)

)
+

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3))δi(k3)(i)

]
+
√

2DAdBi (5)

dXB
` =− µdt

[KBB∑
k2=1

(
∇x1ΦBB(XB

`(k2), X
B
m(k2))δ`(k2)(`) +∇x2ΦBB(XB

`(k2), X
B
m(k2))

)
δm(k2)(`)

+

KAB∑
k3=1

∇x1ΦBA(XB
`(k3), X

A
i(k3))δ`(k3)(`)

]
+
√

2DBdB`, (6)

where δi(j) stands for the Kronecker delta.
This model bears similarities with the works of [51–53]. The main difference lies in the fact that cells are
modelled as individual spheres here, while in [53] each cell is supposed to be composed of a set of several
spheres maintained in a ring of a given radius. Therefore we do not take into account the role of cell
deformation in this paper. However, this simpler modelling choice enables us to reduce the complexity
of the system and to derive a macroscopic model as performed in the next section. The influence of
this modelling simplification on the result will be the subject of future works. In the next section, we
present the macroscopic model obtained in the limit of a large number of individuals and in the fast
linking-unlinking process.
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2.2 Macroscopic model

The derivation of a macroscopic model from the microscopic model defined by Eqs. (5)-(6) requires two
limits: (i) limit of large number of individuals and large number of links, denoted N,K →∞ and (ii) a
large scale or fast network remodelling limit, denoted ε→ 0.

Performing the limit (i) first yields, after a mean-field assumption, a kinetic system, from which
the macroscopic dynamics can be derived in the ε → 0 limit. This approach will be referred to as the
Approach I.

Performing the limit (ii) first yields, after averaging over the network configurations, an effective
dynamics for the particles, from which the same macroscopic dynamics can be derived, in the N,K →∞
limit. This approach will be referred to as the Approach II.

This structure is summarized in the diagram:

Microscopic
{

(XA
i , X

B
j )
}

N,K→∞−−−−−→ Kinetic
{

(fS , gST , hST )S,T=A,B

}yε→0

yε→0

Averaged microscopic
{

(X̃A
i , X̃

B
j )
}

N,K→∞−−−−−→ Macroscopic
{

(fA, fB)
} (7)

The meaning of the fS , gST , hST , X̃S is explained below. Our final goal is a macroscopic model describing
the evolution in time of the particle distributions fA(x, t) and fB(x, t) of the type-A particles and type-B
particles respectively. Let us roughly discuss the two possible approaches mentioned above.

Sketch of Approach I

For finite NA, NB we define:

fAN (x, t) =
1

NA

NA∑
i=1

δXA
i (t)(x), fBN (x, t) =

1

NB

NB∑
`=1

δXB
` (t)(x), (8)

where δXS
i (t)(x) denotes the Dirac delta located at XS

i (t) for S being either A or B. In the large NS

limit it gives the probability to find a particle of type S at point x at time t.
To write the kinetic model, we need to define the (symmetric) empirical measures gSSN (x1, x2, t) of

the intraspecies links (S being either A or B) by:

gAAN (x1, x2, t) =
1

2NA

KAA∑
k1=1

δXA
i(k1)

,XA
j(k1)

(x1, x2) + δXA
j(k1)

,XA
i(k1)

(x1, x2),

gBBN (x1, x2, t) =
1

2NB

KBB∑
k2=1

δXB
`(k2)

,XB
m(k2)

(x1, x2) + δXB
m(k2)

,XB
`(k2)

(x1, x2),

(9)

with a similar definition of the Dirac deltas. Such a gSSN (x1, x2, t) gives in the large NS limit the density
of links connecting a particle of a given type and located within a volume dx1 about x1 with a particle
of the same type located within a volume dx2 about x2, normalized by NS ; note the integral of gSSN is
not 1. As will become clear below, we will be interested in a regime where KSS and NS have the same
order of magnitude; hence the chosen normalization ensures that gSSN is of order 1. Now, we define a
non-symmetric empirical measures for the interspecies links gABN (x1, x2, t):

gABN (x1, x2, t) =
1

NA

KAB∑
k3=1

δXA
i(k3)

,XB
`(k3)

(x1, x2), (10)
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and analogously

gBAN (x1, x2, t) =
1

NB

KAB∑
k3=1

δXB
`(k3)

,XA
i(k3)

(x1, x2) =
NA

NB
gABN (x2, x1, t). (11)

Note that gABN (x1, x2, t) gives in the large NA limit the density of interspecies links between a particle
of type A located within a volume dx1 about x1 and a particle of type B located within a volume dx2

about x2, normalized by NA.
Finally, the derivation of the kinetic model also involves the two-particle distribution functions defined

by:

hAAN (x1, x2, t) =
1

2NA(NA − 1)

NA∑
i=1

NA∑
j=1,j 6=i

(
δXA

i (t),XA
j (t)(x1, x2) + δXA

j (t),XA
i (t)(x1, x2)

)
(12)

hBBN (x1, x2, t) =
1

2NB(NB − 1)

NB∑
`=1

NB∑
m=1,m 6=`

(
δXB

` (t),XB
m(t)(x1, x2) + δXB

m(t),XB
` (t)(x1, x2)

)
(13)

hABN (x1, x2, t) =
1

NANB

NA∑
i=1

NB∑
m=1

δXA
i (t),XB

m(t)(x1, x2). (14)

Here, hAAN and hBBN give in the large NA, NB limit the probabilities of finding pairs of not necessarily
linked particles of the same species around x1 and x2, while hABN (x1, x2, t) gives the probability of finding
a particle of type A around x1 and a particle of type B around x2.

The kinetic system provides evolution equations for fA, fB, gAA, gBB, gAB, the large N -limits of the
corresponding empirical densities defined above. Since this derivation follows closely the works of [7, 27]
adapted to a two species system, we leave the details in Appendix A. The fast network remodelling limit
taken on this kinetic system then formally yields a macroscopic system of evolution equations involving
only fA and fB, i.e. the macroscopic evolution we are looking for, given by (24), below.

Sketch of Approach II

We denote by Aij(t), Bij(t), Cij(t) the adjacency matrices of particles A, B, and cross-links A − B
respectively. In particular, for i, j ∈ {1, . . . , NA}, Aij(t) = 1 (resp. = 0) if particles of type A i and j are
connected at time t (resp. not connected). The definition of matrix B is similar. For i ∈ {1, . . . , NA},
j ∈ {1, . . . , NB}, Cij(t) = 1 (resp. = 0) if particle i of type A and particle j of type B are connected at
time t (resp. not connected). A and B are square symmetric matrices, and C is an NA×NB rectangular
matrix.

The derivation of the reduced microscopic model relies on averaging. The diffusions of particles
positions XA

i , X
B
j (t) are slow processes, and the links Aij(t), Bij(t), Cij(t) are fast processes: they quickly

converge to stationary measures which depend on XA
i (t) and XB

i (t). We will then compute the evolution
of XA

i (t) and XB
i (t) by averaging the basic dynamical equations (3)-(4) over these stationary measures

of the link processes.
The process for the links is written

dAij(t) = −Aij(t)dNAA,d
ij (t) + [1−Aij(t)]χ{|XA

i (t)−XA
j (t)|≤R}dN

AA,c
ij (t) (15)

dBij(t) = −Bij(t)dNBB,d
ij (t) + [1−Bij(t)]χ{|XB

i (t)−XB
j (t)|≤R}dN

BB,c
ij (t) (16)

dCij(t) = −Cij(t)dNAB,d
ij (t) + [1− Cij(t)]χ{|XA

i (t)−XB
j (t)|≤R}dN

AB,c
ij (t) (17)

7



where the NAA,d
ij , NAA,c

ij , NBB,d
ij , NBB,c

ij , NAB,d
ij , NAB,c

ij , are independent Poisson processes with rates νSTd,ε
for destruction of the link connecting particles of type S and T , S, T ∈ {A,B}, and νSTc,N,ε for creation of
a link between particles of type S and T . We will moreover consider the following scaling of these rates

νAAd,ε = νAAd ε−2, νAAc,N,ε = νAAc,ε N
−1
A = νAAc N−1

A ε−2,

νBBd,ε = νBBd ε−2, νBBc,N,ε = νBBc,ε N
−1
B = νBBc N−1

B ε−2,

νABd,ε = νABd ε−2, νABc,N,ε = νABc,ε N
−1
B = νABc N−1

B ε−2.

(18)

The subscript ε (resp. NA, NB) signals a dependency on ε (resp. NA, NB), and the rates without
NA, NB, ε subscripts are assumed to be independent of NA, NB, ε. Relations (18) make the scaling with
ε and NA, NB needed to perform the limit procedures in (7) explicit. In particular, the scaling with
NA, NB ensures that the connectivity of any particle remains of order 1, and the scaling with ε controls
the speed of the linking/unlinking process.

Conditionally on the positions XA
i , X

B
j , all the processes Aij , Bij , Cij are independent. The stationary

measures of (15)-(16)-(17), for fixed positions XA
i , X

B
j are then simply product of Bernoulli measures (P

denotes the probability):

P(Aij(t) = 1) =

νAA
c
NA

χ{|XA
i (t)−XA

j (t)|≤R}
νAA
c
NA

+ νAAd

, P(Aij(t) = 0) = 1− P(Aij(t) = 1) (19)

P(Bij(t) = 1) =

νBB
c
NB

χ{|XB
i (t)−XB

j (t)|≤R}
νBB
c
NB

+ νBBd

, P(Bij(t) = 0) = 1− P(Bij(t) = 1) (20)

P(Cij(t) = 1) =

νAB
c
NB

χ{|XA
i (t)−XB

j (t)|≤R}
νAB
c
NB

+ νABd

, P(Cij(t) = 0) = 1− P(Cij(t) = 1) (21)

For NA, NB large, the above expressions simplify as the O(1/NA, 1/NB) terms in the denominators are
negligible. One can write the equations for the positions, averaged over the stationary measure for the
links; calling X̃A

i , X̃
B
j these new processes, we obtain (neglecting terms of order 1/NA, 1/NB)

dX̃A
i =− µ

 1

NA

νAAc
νAAd

NA∑
j=1

χ{|X̃A
i −X̃A

j |≤R}
∇ΦAA(X̃A

i − X̃A
j )

+
1

NB

νABc
νABd

NB∑
j=1

χ{|X̃A
i −X̃B

j |≤R}
∇ΦAB(X̃A

i − X̃B
j )

 dt+
√

2DAdBA
i

(22)

dX̃B
i =− µ

NA

NB

1

NA

νABc
νABd

NA∑
j=1

χ{|X̃B
i −X̃A

j |≤R}
∇ΦBA(X̃B

i − X̃A
j )

+
1

NB

νBBc
νBBd

NB∑
j=1

χ{|X̃B
i −X̃B

j |≤R}
∇ΦBB(X̃B

i − X̃B
j )

 dt+
√

2DBdBB
i .

(23)

Here we tacitly assumed the translation invariance of the potential ΦST (Xi, Xj) = ΦST (Xi−Xj), which
can be relaxed, see the Appendix. From Eqs. (22)-(23), one can deduce the following proposition,
describing the the dynamics of the particles density fA and fB in the large NA, NB limit:
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Proposition 1 Assume Eqs. (22)-(23) and that the potentials are radially symmetric ΦST (Xi −Xj) =
ΦST (|Xi−Xj |; then in the limit NA, NB →∞, NA/NB → rAB > 0, the one particle distribution functions
fA and fB are solution of the system

∂tf
A = DA∆xf

A +∇x ·
(
fA(x, t)∇x

(
Φ̃AA ∗ fA

)
(x, t)

)
+∇x ·

(
fA(x, t)∇x

(
Φ̃AB ∗ fB

)
(x, t)

)
,

∂tf
B = DB∆xf

B +∇x ·
(
fB(x, t)∇x

(
Φ̃BB ∗ fB

)
(x, t)

)
+∇x ·

(
fB(x, t)∇x

(
Φ̃BA ∗ fA

)
(x, t)

)
,

(24)

where the potentials Φ̃ST are given by:

Φ̃AA(x) =
νAAc
νAAd

(
ΦAA(x)χ{|x|≤R} + ΦAA(R)χ{|x|>R}

)
, (25)

Φ̃BB(x) =
νBBc
νBBd

(
ΦBB(x)χ{|x|≤R} + ΦBB(R)χ{|x|>R}

)
, (26)

Φ̃AB(x) =
νABc
νABd

(
ΦAB(x)χ{|x|≤R} + ΦAB(R)χ{|x|>R}

)
, (27)

Φ̃BA(x) = rAB
νABc
νABd

(
ΦBA(x)χ{|x|≤R} + ΦBA(R)χ{|x|>R}

)
, (28)

and ∗ denotes the convolution.

An alternate proof of this proposition based on Approach I is presented in the Appendix. The Hookean
potential considered in this paper satisfies the radial symmetry assumption. However, for purposes of
derivation of the macroscopic model, this assumption can be relaxed at the expense of more complex
formulas (see the Appendix).

The macroscopic model consists of an aggregation-diffusion equations with nonlocal terms, where
each particle interacts with its close neighbors of the same family (second term of the right hand side of
Eq. (24)) as well as with the ones of the other family (third term of the right hand side of Eq. (24)), and
where the diffusive term corresponds to the Brownian motion of individual particles. In the next section,
we perform the linear stability analysis to identify phase transitions of the homogeneous steady-state.

3 Analysis of the macroscopic system in the whole space

3.1 Linear stability in the whole space

In this section, we perform a linear stability analysis of the macroscopic model. We recall the macroscopic
equations for fA, fB:

∂tf
A = DA∆xf

A +∇x ·
(
fA∇x

(
Φ̃AA ∗ fA

))
+∇x ·

(
fA∇x

(
Φ̃AB ∗ fB

))
∂tf

B = DB∆xf
B +∇x ·

(
fB∇x

(
Φ̃BB ∗ fB

))
+∇x ·

(
fB∇x

(
Φ̃BA ∗ fB

))
,

where the factors νST
c

νST
d

and rAB have been included in the potential functions Φ̃ST . We first linearize

around the homogeneous steady states, i.e fA∗ = const., fB∗ = const.. Writing

fA = fA∗ + f̃A, fB = fB∗ + f̃B,
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we have , at the first order:

∂tf
A = fA∗ ∆

[
fA ∗ Φ̃AA + fB ∗ Φ̃AB

]
+DAfA

∂tf
B = fB∗ ∆

[
fB ∗ Φ̃BB + fA ∗ Φ̃BA

]
+DBfB.

(29)

For any integrable function F and a vector y ∈ R2 we recall the definition of the spatial Fourier transform

F̂ (y) =
1

2π

∫
R2

exp−ix·y F (x)dx.

Applying it to both sides of (29), we obtain the following system:

∂t

(
f̂A

f̂B

)
(y, t) =

−fA∗ |y|2(2π ˆ̃ΦAA(y) + DA

fA∗

)
−fA∗ |y|22π ˆ̃ΦAB(y)

−fB∗ |y|22π ˆ̃ΦBA(y) −fB∗ |y|2
(
2π ˆ̃ΦBB(y) + DB

fB∗

)
(f̂A

f̂B

)
(y, t)

:= M(y)

(
f̂A

f̂B

)
(y, t).

(30)

Therefore, (
f̂A

f̂B

)
(y, t) = c1(y) expλ1(y)t ~u1(y) + c2(y) expλ2(y)t ~u2(y),

where λ1(y), λ2(y) are the eigenvalues of the matrix M(y) and ~u1(y), ~u2(y) are the corresponding eigen-
vectors.

General case

In the general case, the homogeneous steady state will be unstable if at least one of the eigenvalues of
matrix M(y) is positive. By computing the determinant of M:

∆(M) = |y|4fA∗ fB∗
[(

2π ˆ̃ΦAA +
DA

fA∗

)(
2π ˆ̃ΦBB +

DB

fB∗

)
− (2π)2 ˆ̃ΦAB ˆ̃ΦBA

]
,

we can see that, for general interaction potentials, the constant steady states will be unstable if one of
the two conditions is met:

• 1. ∆(M) < 0: (2π ˆ̃ΦAA + DA

fA∗
)(2π ˆ̃ΦBB + DB

fB∗
) < 4π2 ˆ̃ΦAB ˆ̃ΦBA

• 2. ∆(M) ≥ 0 and Tr(M) > 0:

(2π ˆ̃ΦAA + DA

fA∗
)(2π ˆ̃ΦBB + DB

fB∗
) ≥ 4π2 ˆ̃ΦAB ˆ̃ΦBA

fA∗ (2π ˆ̃ΦAA + DA

fA∗
) + fB∗ (2π ˆ̃ΦBB + DB

fB∗
) < 0.

Hookean interaction potentials

In order to explicit these conditions as functions of the model parameters, we now suppose that the intra-
and inter- species links act as springs of rest length R between the particles. As the detection radius
for the interaction is also R, this amounts to consider that particles only repulse each other up until
distance R. To keep enough generality, we consider different interaction intensities between the type A
and type B intra- and inter- species springs:

ΦAA(x1, x2) =
κAA

2
(|x1 − x2| −R)2, ΦBB(x1, x2) =

κBB

2
(|x1 − x2| −R)2

ΦAB(x1, x2) =
κAB

2
(|x1 − x2| −R)2, ΦAB(x1, x2) =

κBA

2
(|x1 − x2| −R)2,
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and not necessarily mutually equal. We have:∫
fT (x′)χ{|x−x′|≤R}∇xΦST (x, x′)dx′ = κST

∫
fT (x′)(|x− x′| −R)

x− x′

|x− x′|
χ{|x−x′|≤R}dx

′.

Remembering that the factors νST
c

νST
d

were included in the potential functions Φ̃ST and following derivation

(70)-(73) from the Appendix B.2, we may introduce:

Φ̃ST (x) =
νSTc
νSTd

κST

2

{
(|x| −R)2 for |x| ≤ R
0 for |x| > R

, (31)

which ensures that the equations for fA, fB are of the form (24) and the linearized system is of the form
(29). The form of the new potential is plotted in Fig. 2. We can now compute the Fourier transform of

Figure 2: Form of the potential Φ̃ST (x) for R = 2 and νST
c

νST
d

κST

2 = 1. The potential is repulsive on its

support.

Φ̃ST . Using the radial symmetry of Φ̃ST and denoting Υ = |y| we can show that

ˆ̃ΦST (Υ) =
νSTc
νSTd

κST
(
J0(ΥR)

R2

Υ2
− J1(ΥR)

2R

Υ3
+
πR2

2Υ2

[
J1(ΥR)H0(ΥR)− J0(ΥR)H1(ΥR)

])
,

where J0, J1 are the Bessel functions of the first kind of order 0 and 1:

Ji(x) =

∞∑
m=0

(−1)m

m!Γ(m+ 1 + i)

(x
2

)2m+i

and H0, H1 are the Struve functions defined by:

Hi(x) =

∞∑
m=0

(−1)m

Γ(m+ 3/2)Γ(m+ 3/2 + i)

(x
2

)2m+i+1
.

We refer the reader to [7] for the computation of these terms. Replacing the Fourier transforms of the
potentials by their expressions in M(y), we can write

M(y) = −
(
cAAH(y) +DA|y|2 cABH(y)

cBAH(y) cBBH(y) +DB|y|2
)
,

11



with cST = 2πκST fS∗ ν
ST
c R2

νST
d

for all S, T ∈ {A,B} and

H(y) = J0(|y|R)− J1(|y|R)
2

|y|R
+
π

2

[
J1(|y|R)H0(|y|R)− J0(|y|R)H1(|y|R)

]
=
π

2

[
J1(|y|R)H0(|y|R)− J0(|y|R)H1(|y|R)

]
− J2(R|y|).

Writing z = |y|R, the determinant of M can now be written:

∆(M) =
1

R4
(DAz2 + c′AAH̃(z))(DBz2 + c′BBH̃(z))− c′ABc′BAH̃(z)2,

where c′ST = R2cST = 2πκST fS∗ ν
ST
c R4

νST
d

and

H̃(z) =
π

2

[
J1(z)H0(z)− J0(z)H1(z)

]
− J2(z).

Now, lengthy but straightforward computations show that for z close to the origin we have:

H̃(z) =
1

24
z2 +O(z4), (32)

and so, close to the origin z = 0, we have

∆(M) =
z4

R4

(
(DA +

c′AA

24
)(DB +

c′BB

24
)− c′ABc′BA

242

)
=
z4

R4

(
DADB +

1

24
(DAc′BB +DBc′AA) +

c′AAc′BB − c′ABc′BA

242

)
.

(33)

In order to simplify the analysis, we suppose the following hypothesis:

Hypothesis 1 The intraspecies links generate repulsive potentials, i.e κAA, κBB > 0.

We first note that under Hypothesis 1, the trace of M

Tr(M) = − z
2

R2

[
DA +DB +

c′AA + c′BB

24

]
+ o(z4),

is negative for small z. Therefore, the homogeneous steady states will be unstable for small z only
if ∆(M) ≤ 0. Note also that the parameters c′AB and c′BA should have the same sign to allow the
determinant of M to be negative, otherwise the homogeneous steady state will be a stable case. Now,
we scale the interspecies link potential intensities with a parameter s ∈ R such that κAB = sκ̃AB, κBA =
sκ̃BA. It corresponds to the relevant scaling of the parameters c′AB and c′BA, to simplify the notation
we denote the corresponding reference values by the same symbols c′AB and c′BA, then

∆(M) =
z4

R4

(
DADB +

1

24
(DAc′BB +DBc′AA) +

c′AAc′BB − s2c′ABc′BA

242

)
,

and we immediately note that s must be large enough to allow ∆(M) to be negative. More precisely, the
two eigenvalues of M are written:

λ1 =
1

2

(
Tr(M) +

√
Tr(M)2 − 4∆(M)

)
=

z2

2R2

(
− C+ +

√
C2
− + s2

c′ABc′BA

144

)
λ2 =

1

2

(
Tr(M)−

√
Tr(M)2 − 4∆(M)

)
=

z2

2R2

(
− C+ −

√
C2
− + s2

c′ABc′BA

144

)
,

(34)
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Figure 3: Values of λ1 (blue curve), λ2 (orange curve) and their mean (yellow dotted line) near z = 0
(z=0.1), plotted as functions of the scaling parameter s for R = 1, DA = DB = 1, c′AA = c′AB = c′BA =
1, c′BB = 10.

where C+ = DA +DB + c′AA+c′BB

24 and C− = DA −DB + c′AA−c′BB

24 . We can therefore plot their values
as functions of s near z = 0 (see Fig. 3 for z = 0.1 and parameter values DA = DB = 1, c′AA = c′AB =
c′BA = 1, c′BB = 10). As shown by Fig. 3, there exists a critical value s∗ of s such that for s > s∗ the
homogeneous state will be unstable (i.e we will observe cell aggregates). From the definition of s, this
means that the interspecies repulsion force must be large enough to compensate the intraspecie repulsion
and diffusion and enable the two species to separate into clusters. These first results are in accordance
with the observations of [53]. Note that, by equating (33) to 0, we can directly compute the value of s∗

as a function of the model parameters:

s∗ =

√
576

c′ABc′BA
(
DA +

c′AA

24

)(
DB +

c′BB

24

)
. (35)

In Fig. 4, we aim to plot the values of λ1(z), λ2(z) in the unstable regime s > s∗, s∗ being determined on
Fig.3 (critical value of s such that λ1(z ≈ 0) becomes positive). We select four values of s > s∗ and for
each of them we compute the functions λ1(z), λ2(z) using matrix M(z) before Taylor expanding it near
0. The Bessel and Struve functions are approximated numerically.

As one can see in Fig. 4 (I), λ1 is an increasing function of s at fixed z. Furthermore, the most
unstable parameter z, i.e. the value z∗ for which λ1(z) reaches its maximal value, defined by:

z∗(s) = argmax
z∈R+

λs1(z), (36)

increases with s (see Fig. 4 (III)). Hence, at small times, the instability should be dominated by Fourier
modes with parameter around z∗(s). Assuming this remains qualitatively true in the time asymptotic
regime, one then expects that larger values of s will lead to more aggregated (smaller) patterns.

3.2 Linear stability in the periodic box

For the sake of numerical simulations, we now interpret the above results in the case of a space-periodic
domain. In practice, instead of the whole plane we consider the two-dimensional square periodic domain
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(I) (II) (III)

R=1,

*

s

Figure 4: (I): Values of λ1(z) as functions of z for R = 1, DA = DB = 1, cAA = cAB = cBA = 1, cBB = 10
and for different values of s in the instability regime: s = 30 (blue curve), s = 50 (orange curve), s = 70
(yellow curve), and s = 90 (red curve). (II): same plots for λ2(z). (III) Plot of z∗ defined in (36) as a
function of parameter s.

[−L,L]× [−L,L], however, for L sufficiently large the results change quantitatively but not qualitatively.
Introducing the shorthand notation for the Fourier modes

ek1,k2 = exp

[
iπ

L
(k1x1 + k2x2)

]
, (37)

we may write for S = A,B:

fS(x1, x2) =
∑

k1,k2∈Z
f̂Sk1,k2ek1,k2 ,

where the Fourier coefficients f̂Sk1,k2 are given by

f̂Sk1,k2 =
1

4L2

∫ L

−L

∫ L

−L
fS(x1, x2)e−k1,−k2 dx1 dx2.

The periodic analog of the macroscopic system after Fourier transform is (see (30) for comparison):

∂t

(
f̂Ak1,k2
f̂Bk1,k2

)
=

−fA∗ π2(k21+k22)
L2

(
4L2 ˆ̃ΦAA

k1,k2
+ DA

fA∗

)
−fA∗

π2(k21+k22)
L2 4L2 ˆ̃ΦAB

k1,k2

−fB∗
π2(k21+k22)

L2 4L2 ˆ̃ΦBA
k1,k2

−fB∗
π2(k21+k22)

L2

(
4L2 ˆ̃ΦBB

k1,k2
+ DB

fB∗

)
(f̂Ak1,k2

f̂Bl1,l2

)

:= Mk1,k2

(
f̂Ak1,k2
f̂Bk1,k2

)
.

(38)

Since fA, fB are both probability measures, we take

fA∗ = fB∗ =
1

4L2
,

which means that the matrix M from (38) has now the form

Mk1,k2 =

(
−π2(k21+k22)

L2

( ˆ̃ΦAA
k1,k2

+DA
)

−π2(k21+k22)
L2

ˆ̃ΦAB
k1,k2

−π2(k21+k22)
L2

ˆ̃ΦBA
k1,k2

−π2(k21+k22)
L2

( ˆ̃ΦBB
k1,k2

+DB
)) . (39)
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This form of the system can be again studied for general potentials. Here we immediately focus on the
Hookean case (31), for which the Fourier transform equals

ˆ̃ΦST
k1,k2 =

νSTc
νSTd

πκST

2L2

R4

z2
k1,k2

(π
2

[
J1(zk1,k2)H0(zk1,k2)− J0(zk1,k2)H1(zk1,k2)

]
− J2(zk1,k2)

)
, (40)

where we denoted

zk1,k2 =
πR

L

√
k2

1 + k2
2. (41)

As explained in [7], due to specific shape of the potential, we only need to check the stability of the first
mode (k1, k2) = ±(1, 0) or (k1, k2) = ±(0, 1) in order to find whether the whole system is stable. This is
the point where the analysis in the space-periodic domain differs from the whole space case. Note that
in (32) we took z → 0, which cannnot be assumed for the discrete values (41). Exactly as before, we
compute:

Tr(M1,0) = −π
2

L2

(
DA +DB +

R2

2π

(
νAAc
νAAd

κAA +
νBBc
νBBd

κBB
)
H̃

(
πR

L

))
,

∆(M1,0) =
π4

L4

[
DADB +

R2

2π

(
DB ν

AA
c

νAAd
κAA +DA ν

BB
c

νBBd
κBB

)
H̃

(
πR

L

)
+
R4

4π2

(
νAAc
νAAd

νBBc
νBBd

κAAκBB − s2 ν
AB
c

νABd

νBAc
νBAd

κABκBA
)
H̃

(
πR

L

)2 ]
.

(42)

Recall however, that assuming Hypothesis 1 we still have that Tr(M1,0) is always negative. Based
on numerical simulations close to z = 0 for the whole space case (see Fig. 4 I) we observe that the
constant steady state is unstable again only for sufficiently small z1,0 and iff ∆(M1,0) < 0. This leads
to two eigenvalues λ1, λ2 of different signs, that can be computed using the formulas (34). The value
of parameter s that corresponds to the phase transition can be computed by equating (42) to 0 and
therefore

s∗ =
1

R2

2π H̃
(
πR
L

)
√√√√√
(
DA + R2

2π
νAA
c

νAA
d

κAAH̃
(
πR
L

))(
DB + R2

2π
νBB
c

νBB
d

κBBH̃
(
πR
L

))
νAB
c

νAB
d

νBA
c

νBA
d

κABκBA
. (43)

3.3 On phase separated initial conditions

The authors of [53] report segregation experiments between two types of cells. In particular, in some
experiments (see Fig.1 i)-k) in [53]) the initial condition is perfectly segregated: at t = 0 there is a sharp
interface between a subdomain with only cells of type A and a subdomain with only cells of type B.
Depending on various parameters, the experiments show different possible evolutions of the interface (see
Fig.1 i)-k) in [53]):

• the interface remains sharp and does not move;

• the interface remains sharp, does not deform, and moves in one direction;

• the interface becomes blurred: the two species start to mix.

Our goal here is to try to relate these different outcomes to different parameter ranges in our model. The
heuristic remarks of this paragraph will be backed by numerical simulations in Section 4. We consider
here a bounded domain Ω ⊂ R2, and make some further hypotheses in order to simplify the system:
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i) the inter-species interaction is symmetric ΦAB = ΦBA;

ii) the interaction radius R is much smaller than the scale of the experiments;

iii) the diffusion is neglected.

Under hypothesis i), the macroscopic system of equation admits a free energy, or Lyapunov functional

F [fA, fB] =

∫
Ω

(
1

2
Φ̃AA(x− y)fA(x)fA(y) +

1

2
Φ̃BB(x− y)fB(x)fB(y) + Φ̃AB(x− y)fA(x)fB(y)

)
dxdy

+

∫
Ω

(
DAfA(x) ln fA(x) +DBfB(x) ln fB(x)

)
dx.

The macroscopic dynamics is a gradient flow of the functional F , with respect to the Wasserstein distance
W2 [56]. Owing to hypothesis ii), we will replace the potentials Φαβ by Dirac delta functions with weights
equal to their integrals, which we call γαβ, respectively. Owing to hypothesis iii), we neglect diffusion,
which all together leads to the simplified functional E :

E [fA, fB] =

∫
Ω

(
1

2
γAA(fA)2(x) + γABfA(x)fB(x) +

1

2
γBB(fB)2(x)

)
dx. (44)

Under hypotheses i)-iii) we expect that the system evolves in order to minimize (44), with constraints of
constant total mass and positivity (we assume that at t = 0, there is the same amount of A and B cells):∫

Ω
fA(x)dx =

∫
Ω
fB(x)dx =

1

2
, fA(x) ≥ 0 , fB(x) ≥ 0. (45)

This problem is easily solved if γAA < 0 or γBB < 0. Then the minimum energy is −∞ and it corresponds
to one or both species infinitely concentrated. From now on we assume that γAA > 0 and γBB > 0,
i.e. the intraspecies interactions are repulsive. Another singular case corresponds to the range γAB <
−
√
γAAγBB; then there is a pair of constants (nA > 0, nB > 0) such that

γAA(nA)2 + 2γABnAnB + γBB(nB)2 < 0.

Now, building a sequence of configurations where A and B cells have concentration nA/ε, nB/ε on the
same domain of measure ε, we see that the associated energy tends to −∞ when ε tends to 0. Therefore,
we also assume from now on that γAB > −

√
γAAγBB.

Lemma 2 Assume that γAA > 0, γBB > 0, and −
√
γAAγBB < γAB <

√
γAAγBB. Then minimum

energy is reached by the homogeneous system with constant densities fA(x) = fB(x) = 1/(2|Ω|).

Proof: Since γAAγBB − (γAB)2 > 0, the function

(u, v) 7→ 1

2
γAAu2 + γABuv +

1

2
γBBv2

is convex. Hence, for any functions fA(x), fB(x):

1

|Ω|
E [fA, fB] ≥ 1

2
γAA

(
f̄A

|Ω|

)2

+ γAB
(
f̄A

|Ω|

)(
f̄B

|Ω|

)
+

1

2
γBB

(
f̄B

|Ω|

)2

,

where |Ω| is the volume of the domain and f̄S =
∫

Ω f
S(x)dx = 1/2, S = A,B. This shows immediately

that for any function fA(x), fB(x)

E [fA, fB] ≥ E [f̄A, f̄B] =
1

8|Ω|
(γAA + 2γAB + γBB).
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The minimum energy is then reached for a homogeneous system, with constant densities, fA(x) =
fB(x) = 1/(2|Ω|). 2

We will now assume that γAB >
√
γAAγBB. We want to show that the minimal configuration is

perfectly phase separated, ie Ω divided in two subdomains Ω = ΩA ∪ΩB with fA = 0 on ΩB and fB = 0
on ΩA. Note that the geometry of the subdomains is of no relevance within this simplified model, only
their measure matters.

Lemma 3 Among all perfectly phase separated configurations, the following is optimal:

fA(x) = nA = const. on ΩA , fB(x) = nB = const. on ΩB (46)

with |ΩA| = lopt
A = |Ω|

(
γ

1/2
AA

γ
1/2
AA + γ

1/2
BB

)
(47)

The associated energy is

Eopt
inhom =

1

8|Ω|
(
√
γAA +

√
γBB)2 (48)

In other words: for any (fA, fB) perfectly phase separated configuration,

E [fA, fB] ≥ Eopt
inhom

with equality if and only if (46)-(47) hold.

Proof: First note that the functions

u 7→ 1

2
γAAu2 , u 7→ 1

2
γBBu2

are convex; hence any perfectly phase separated configuration must be piecewise homogeneous in order
to be optimal. Let us now consider a general piecewise homogeneous phase separated configuration:

∀x ∈ ΩA fA(x) = nA , fB(x) = 0 , ∀x ∈ ΩB fB(x) = nB , fA(x) = 0 (49)

with
|ΩA| = lA , |ΩB| = lB , lA + lB = |Ω|.

Then nA = 1/(2lA), nB = 1/(2|Ω| − 2lA), and the configuration is characterized by the parameter lA,
which we can optimize. The associated energy is

E =
1

8

(
γAA
lA

+
γBB
|Ω| − lA

)
.

Minimizing over lA, one finds

lopt
A = |Ω|

(
γ

1/2
AA

γ
1/2
AA + γ

1/2
BB

)
(50)

with associated energy given by (48). 2

Lemma 4 Assume γAA > 0 and γBB > 0, and γAB >
√
γAAγBB. Then the optimal configuration is

the perfectly phase separated one described in the previous lemma, ie for any configuration (fA, fB), we
have

E [fA, fB] ≥ Eopt
inhom
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Proof: Take any configuration fA, fB. Using
∫

Ω f
A,B = 1/2 and (48), we have

E [fA, fB]− Eopt
inhom =

1

2
γAA

∫
(fA)2 +

1

2
γBB

∫
(fB)2 + γAB

∫
fAfB

− 1

2

γAA

|Ω|

(∫
fA
)2

− 1

2

γBB

|Ω|

(∫
fB
)2

−
√
γAAγBB

|Ω|

(∫
fA
)(∫

fB
)

=
1

2

∫ (√
γAAfA −

√
γAA

|Ω|

∫
fA

)2

+
1

2

∫ (√
γBBfB −

√
γBB

|Ω|

∫
fB

)2

−
∫ (√

γAAfA −
√
γAA

|Ω|

∫
fA

)(√
γBBfB −

√
γBB

|Ω|

∫
fB

)

+ (γAB −
√
γAAγBB)

∫
fAfB

≥1

2

∫ [(√
γAAfA −

√
γAA

∫
fA
)
−
(√

γBBfB −
√
γBB

∫
fB
)]2

where we have used (γAB) > [γAAγBB]1/2 for the last inequality. Hence the inequality is strict unless
fAfB = 0, ie unless the configuration is phase separated. We have proved that the optimal configuration
is phase separated, and given by (47). 2

To summarize, assuming γAA > 0, γBB > 0, γAB > −
√
γAAγBB and putting together Lemmas 2,3,4,

one expects the following phenomenology:

• If |γAB| < γAAγBB, then the homogeneous solution is favoured. The two types of cells should then
start to mix and the interface should be blurred.

• If γAB >
√
γAAγBB, then the phase separated solution is favoured; in this case the initially sharp

interface should stay sharp. There are two subcases:

– γAA ' γBB: then the optimal l is close to 1/2, which is the initial condition. Hence the
interface should not move.

– γAA and γBB significantly different: then the optimal l is not close to the initial 1/2, and one
expects the sharp interface to move, as the system tries to approach the energy minimum.

These three scenarios are qualitatively similar to the ones reported in [53] (see their Figure 1), and are
seen in numerical simulations, as shown on Fig.6; a quantitative comparison is difficult, since hypothesis
i)-iii) are not necessarily satisfied in numerical simulations.

4 Numerical results

The microscopic model described in Section 2.1 is very demanding numerically; it is one reason to
introduce the macroscopic model (24), which relies on the double limit (NA, NB) → ∞, ε → 0. The
averaged microscopic model (22)-(23), obtained in the limit ε→ 0 with NA, NB fixed, can be simulated
at a reasonable numerical cost, which makes comparisons with the macroscopic model possible.

Numerical simulations for the averaged microscopic model (22)-(23) as well as macroscopic model
(24) are performed on a 2D periodic domain [−7.5, 7.5] × [−7.5, 7.5]. All simulations are performed
with cell detection radii RA = RB = 1. We fix the diffusion constants DA = DB = 10−4 and explore
different values of the inter- and intra- species repulsion intensities κAA, κBB, κAB = sκ̃AB, κBA = sκ̃BA.
We explore four different cases:
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• case 1: For the same intraspecies repulsion κAA = κBB and symmetric inter-species repulsion
κ̃AB = κ̃BA

• case 2: For the same intraspecies repulsion κAA = κBB and non-symmetric inter-species repulsion
κ̃AB < κ̃BA (A-cells repulse B-cells more strongly than the reverse)

• case 3: For different intraspecies repulsion κAA > κBB (A-cells repulse each other more strongly
than B-cells), and symmetric inter-species repulsion κ̃AB = κ̃BA

• case 4: For different intraspecies repulsion κAA > κBB (A-cells repulse each other more strongly
than B-cells) and non-symmetric inter-species repulsion κ̃AB < κ̃BA (A-cells repulse B-cells more
strongly than the reverse)

For each case, we consider two types of initial conditions, (i) when cells are initially randomly distributed,
which approaches the homogeneous stationary state, and (ii) when B-cells are initially randomly placed
on the left-half of the domain and A-cells randomly distributed on the right part, which corresponds to
the phase separated initial conditions considered in Section 3.3, and we explore two different regimes
(stable regime, when s < s∗ for the interspecies repulsion and unstable regime, when s > s∗). Table 1
sums up the model parameters used for inter- and intra- species repulsion forces.

value of s comment

Case I: κAA = κBB = 2, κ̃AB = κ̃BA = 2.

IA 0.5 Stable regime (s < s∗ ≈ 1.01)
IB 4 Unstable regime (s > s∗ ≈ 1.01)

Case II: κAA = κBB = 2, 1 = κ̃AB < κ̃BA = 2.

IIA 0.5 Stable regime (s < s∗ ≈ 1.43)
IIB 4 Unstable regime (s > s∗ ≈ 1.43)

Case III: 2 = κAA > κBB = 1, κ̃AB = κ̃BA = 2.

IIIA 0.5 Stable regime (s < s∗ ≈ 0.72)
IIIB 4 Unstable regime (s > s∗ ≈ 0.72)

Case IV: 2 = κAA > κBB = 1, 1 = κ̃AB < κ̃BA = 2.

IVA 0.5 Stable regime (s < s∗ ≈ 1.02)
IVB 4 Unstable regime (s > s∗ ≈ 1.02)

Table 1: Model parameters for the inter- and intra- species forces. The value of parameter s∗ has been
computed numerically from the formula (43).

In Fig. 5, we show the final states of the simulations for each case and each regime previously
described for the microscopic model. A-cells are represented as red disks, B-cells as green ones and we
use NA = NB = 250 particles for each family of cells. The visualisation of the macroscopic results also
uses disks to resemble the microscopic ones, for more details we refer to the Appendix C.

As one can note in the stable regime (s < s∗) and for initially randomly distributed particles, we
observe a homogeneous distribution of particles as expected, with no aggregation. When starting from
a front-like intial distribution in the stable regime, B- and A- cells intermingle at the front. However
in the unstable regime (cases s > s∗), one can observe a segregation of cells by type. In case 1 and 2
(when intraspecies repulsion is the same), we observe the formation of mazes of B-cells when starting
from an initial homogeneous distribution, and the maintenance of a sharp front when starting from a
non-homogeneous initial distribution (Fig. 5 (IB, IIB)). Note that the B-cell clusters are smaller in case
2 than in case 1 (i.e when A-cells act more strongly on B-cells than the reverse compared with the case
where inter-species repulsion is symmetric). When starting from a segregated initial condition we observe
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a slight compression of the green cells by the red ones. This suggests that nonsymmetric interspecies
repulsion can favor cell aggregation and domination of a population over the other.

The same observations as in case 2 can be done for case 3 (i.e when intra-species repulsion is stronger
in cell A type than in B type and with symmetric interspecies forces, (IIIB)): smaller clusters than in
case 1 and slight compression of B-family in the case of segregated initial condition. This suggests that
inter- and intra- specie repulsion act in the same manner: decreasing the intra-species force for one family
has the same impact on the final structures as decreasing the repulsion force of one family onto the other
one.

Finally for case 4 (intra-species repulsion is stronger in cell A type than in B type and stronger
repulsion of B-cells by A-cells than the reverse), we observe the emergence of small clusters of B-cells in
a medium composed of A-cells, and a large compression of the B-cells with maintenance of sharp borders
when starting from a non-homogeneous distribution (IV B).

It is noteworthy that the numerical simulations of the microscopic model in the limit ε → 0 are in
good accordance with the predictions of the macroscopic model. We indeed observe homogeneous or
non-homogeneous distributions of particles depending on the model parameters, for values of s in the
range predicted by the linear stability analysis.

Figure 5: Microscopic simulations for Cases 1-4 for parameters described in Table 1. A-cells are repre-
sented as red disks, B-cells as green disks. For each subsection, the left figure is obtained starting from
a homogeneous distribution of particles, the right one from a segregated initial distribution (B-cells on
the half-left of the domain, A-cells on the right).
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Case number VF green cells (microscopic model) VF green cells (macroscopic model)

Homogeneous IC Front-like IC Homogeneous IC Front-like IC
case (IB) 48.2% 50.0% 49.7% 50.0%
case (IIB) 40.2% 42.3% 38.5% 42.0%
case (IIIB) 40.6% 42.4% 44.0% 46.0%
case (IVB) 34.8% 35.0% 35.9% 38.0%

Table 2: Volume fraction of the green family computed on the simulations of FigS. 5-6 at equilibrium for
the microscopic model (left column) and for the macroscopic model (right column).

Figure 6: Macroscopic simulations for Cases 1-4 for parameters described in table 1 for the final time of
simulations equal to T = 8000.

In Table 2, we show the Volume Fraction (VF) of type B cells (green family) computed on the
simulation images of Figs. 5 for the microscopic model and of Fig. 6 for the macroscopic model, starting
from homogeneous Initial Conditions (IC) or front-like Initial Conditions. Given a numerical image such
as depicted in Fig. 5, the volume fraction corresponds to the number of green pixels over the total amount
of pixels in the image. As one can see in Table 2, the volume fraction at equilibrium does not depend
on the type of initial conditions, as suggested by the analysis performed in Section 3.3. As expected, we
obtain a volume fraction of 50% when the two cell types have the same inter- and intra- species forces,
and the volume fraction occupied by specie B decreases as type B cells’ inter- and/or intra- species forces
decrease (maintaining the type A cells inter- and intra- species forces constant), due to the compression
exerted by the stronger family (type A) on the weaker cells (type B). These results are in accordance
with the theoretical predictions of the macroscopic model, showing that the microscopic and macroscopic
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model have the same properties. The next section is devoted to deeper numerical comparisons between
the two models.

In Figs. 7 (I), we show simulations of the microscopic and macroscopic models for κAA = 4, κBB =
κ̃AB = κ̃BA = 1 for which s∗ ≈ 2.1 can be computed using the formula (43). Simulations of the micro-
scopic model are performed with NA = NB = 500 (IA) and NA = NB = 2000 (IB) particles. Simulations
of the macroscopic model correspond to (IC). We consider 7 values of the interspecies repulsion intensity,
from left to right: for 2.05 = s < s∗, for s∗ < s = {2.15, 2.2, 2.5, 4, 6, 10}. (II) In (IIA-C), we show the
values of the quantifiers at time equilibrium as functions of s. Fig. (IA) shows the mean elongation of
the green clusters, (IIB) shows the number of green clusters and (IIC) shows the Overlapping amount
Q described by (74). Black curves are obtained with the microscopic model for NA = NB = 500 (cor-
responding to Figures (IA)), yellow curves are for NA = NB = 2000 and correspond to Figures (IB)
and red curves are obtained with the macroscopic model (Figures (IC)). As one can observe in Fig. 7
(IA-C), we obtain a very good agreement between the microscopic model and the macroscopic simula-
tions. Before the transition from mixed to segregated states (for s < s∗, first column), the system at
equilibrium corresponds to a perfectly mixed state both for the micro- and for the macro- models, while
right after the transition (for s = 2.15), segregation of the two families is observed for both models. As
s increases, clusters get more numerous, smaller and rounder. This qualitative observation is supported
by the values of the quantifiers plotted in Figs. (IIA-C). For the different values of s, we obtain a very
good quantitative agreement between the two models, even more so when the number of particles of
the micro- model is increased from NA = NB = 500 to NA = NB = 2000 (compare black and yellow
curves to red ones in Figs. (IIA-C)). These results tend to show that the macroscopic model is a good
approximation of the microscopic dynamics as the number of individuals becomes large. However, it is
noteworthy that some discrepancy is observed for very large values of s. Indeed for s = 10 (last column
of (IA-C)), one can note that the clusters obtained by the macro- model are significantly more elongated
than those obtained with the micro- model (compare black/yellow curves to the red one in Fig.7 (IIA)).
For the details of image processing used to prepare the figures we refer to the Appendix C.2.

In order to document the discrepancies between the micro- and macro- structures in the case s = 10,
we plot in Fig. 8 the values of the quantifiers computed on the simulation images as functions of time
for κAA = 4, κBB = κ̃AB = κ̃BA = 1 for the microscopic model with NA = NB = 500 (green curves),
NA = NB = 2000 (blue curves), NA = NB = 4000 (yellow curves) and for the macro model (red curves).
Fig. 8 (I) shows the evolution of green cluster elongation, (II) gives the number of cell clusters and (III)
shows the overlapping amount Q as function of the simulation time. Figs. 8 reveal that the structures
observed with the microscopic model undergo two transitions as function of the time, enabling us to
conclude that the dynamics of the microscopic model exhibits two phases:

• Very quickly after initialisation (t ∈ [0, 100]), the system segregates the two cell types and reaches
an equilibrium value for the number of clusters and the overlapping amount Q (see Figs. 8 (II) and
(III). At the time of the segregation, numerous and well-separated elongated clusters are created
and then maintained for a long time.

• A second transition occurs later in time (around t ≈ 3.103), where the clusters change shape to
attain a new equilibrium composed of rounder clusters (see the drop in the value of the elongation in
Fig. 8 (I)). In this second phase, the number of clusters and their border properties are maintained,
but the shape gradually changes to produce very round clusters.

It is noteworthy that this two-phase process is not observed with the macroscopic dynamics (see
the red curves of Figs. 8 (I-III). On the contrary for the macroscopic model, the segregation between
the two families and the production of clusters appear later than with the microscopic model (around
t ∈ [100, 300]), and the shape of the clusters (elongated) seems to be at equilibrium. These results tend to
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(IA)

(IB)

(IC)

(IIA) (IIB) (IIC)

Figure 7: (I) Simulations of the microscopic and macroscopic models for κAA = 4, κBB = κ̃AB = κ̃BA = 1
for which s∗ ≈ 2.1. Simulations of the microscopic model are performed with NA = NB = 500 (IA)
and NA = NB = 2000 (IB) particles. Simulations of the macroscopic model correspond to (IC). We
consider 7 values of the interspecies repulsion intensity, from left to right: for 2.05 = s < s∗, for
s∗ < s = {2.15, 2.2, 2.5, 4, 6, 10}. Type B cells are represented in green, type A cells in red. (II) In
(IIA-C), we show the values of the quantifiers at time equilibrium as functions of s. Fig. (IA) shows
the mean elongation of the green clusters, (IIB) shows the number of green clusters and (IIC) shows
the overlapping amount Q described by (74). Black curves are obtained with the microscopic model for
NA = NB = 500 (corresponding to Figures (IA)), yellow curves are for NA = NB = 2000 and correspond
to Figures (IB) and red curves are obtained with the macroscopic model (Figures (IC)). The two bottom
figures correspond to a zoom of the corresponding curves close to the transition region for s.
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(I) (II) (III)

Figure 8: Quantifiers computed on the simulation images as functions of the logarithm of the simulation
time for κAA = 4, κBB = κ̃AB = κ̃BA = 1 for the microscopic model with NA = NB = 500 (green curves),
NA = NB = 2000 (blue curves), NA = NB = 4000 (yellow curves) and for the macro model (red curve).
(I) Green cluster elongation, (II) Number of cell clusters and (III) Overlapping amount Q. On Figure
(I), we superimpose linear fits (dotted lines) for short times and large times, showing the two timescales
(two slopes) of the micro model compared to the unique timescale of the macro dynamics (single slope).

show that the macroscopic model fails to capture the second time phase (reorganisation of the clusters)
exhibited by the microscopic model.

The good qualitative and quantitative agreement between the micro- and the macro- models has been
also confirmed for another set of parameters κAA = 4, κBB = 3, κ̃AB = κ̃BA = 1 for which the critical
value of s is s∗ ≈ 3.52. We do not include the corresponding figures here, as they are very similar to
Figs. 8.

5 Conclusions and perspectives

Along the recent biological studies [52] our paper demonstrates that contact cell repulsion on its own can
generate pattern formation and cell-sorting in tissues composed of different categories of cells. The present
paper provides evidence of this by means of both a microscopic and a consistently derived macroscopic
model. The advantage of the macroscopic approach is that it provides a mathematical way to investigate
the stability of the equilibria and consequently quantitative criteria for the appearance of these patterns.
The validity of this analysis is assessed by numerical comparison between microscopic and macroscopic
models. We also show that the model is able to capture the border sharpening observed in the biological
study [52]. In the future better quantitative comparison with experiments will allow for more systematic
choice of model parameters.

Clearly the macroscopic model captures the behaviour of the mean, and it would be interesting to
investigate what fluctuations around these means are induced by the finiteness of the number of cells. Our
analysis provides only local information around the threshold for instability, further analysis as in [7] could
inform on the type of bifurcation involved, for instance if it is supercritical or subcritical. The consistent
derivation of the macroscopic model from the microscopic dynamics is still only formal and it would be
desirable to have a rigorous mathematical proof of convergence when the number of particles goes to
infinity. Finally, the biological context could be enriched and applied to clinically relevant situations such
as cancer for which the type of bifurcation involved could be critically important.
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A Derivation of a kinetic model from the microscopic model

In this section, the derivation of a kinetic model from the Individual Based Model of Section 2.1 is
performed, following the Approach I. Using the expressions for the individual particle distribution, link
distribution and two-particle distribution function defined by Eqs. (8),(9),(10), (12)-(14) and in the limit
of a large number of individuals, we have the following formal derivation:

Proposition 5 Assume that in the limit

N = (NA, NB)→∞, NA/NB → rAB > 0,

the following convergences hold:

fAN , f
B
N → fA, fB, gAAN , gBBN , gABN , gBAN → gAA, gBB, gAB, gBA,

hAAN,hBBN , hABN → hAA, hBB, hAB.

If we assume the scalings (18) for the rates, and if we assume additional assumptions ( (58),(59) and
(66),(67) below), then fA, fB formally solve:{

∂tf
A(x, t) = 2µ∇x · FAA[gAA](x, t) + µ∇x · FAB[gAB](x, t) +DA∆fA,

∂tf
B(x, t) = 2µ∇x · FBB[gBB](x, t) + µ∇x · FBA[gBA](x, t) +DB∆fB,

(51)

where:

FAA[g](x, t) =

∫
g(x1, x2, t)∇x1ΦAA(x1, x2)dx2, FBB[g](x, t) =

∫
g(x1, x2, t)∇x1ΦBB(x1, x2)dx2,

FAB[g](x, t) =

∫
g(x1, x2, t)∇x1ΦAB(x1, x2)dx2, FBA[g](x, t) =

∫
g(x1, x2, t)∇x1ΦBA(x1, x2)dx2,

and gAA, gBB and gAB formally solve:

∂tg
AA(x1, x2, t) = DA

(
∆x1g

AA(x1, x2, t) + ∆x2g
AA(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAB[gAB](x1, t)

)
(52)

+ 2µ∇x2 ·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)

fA(x2, t)
FAB[gAB](x2, t)

)
+
νAAc,ε

2
hAA(x1, x2, t)χ(|x1 − x2| ≤ R)− νAAd,ε gAA(x1, x2, t),

∂tg
BB(x1, x2, t) = DB

(
∆x1g

BB(x1, x2, t) + ∆x2g
BB(x1, x2, t)

)
+ 2µ∇x1 ·

(
gBB(x1, x2, t)

fB(x1, t)
FBB[gBB](x1, t)

)
+ µ∇x1 ·

(
gBB(x1, x2, t)

fB(x1, t)
FBA[gBA](x1, t)

)
+ 2µ∇x2 ·

(
gBB(x1, x2, t)

fB(x2, t)
FBB[gBB](x2, t)

)
+ µ∇x2 ·

(
gBB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+
νBBc,ε

2
hBB(x1, x2, t)χ(|x1 − x2| ≤ R)− νBBd,ε gBB(x1, x2, t),
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∂tg
AB(x1, x2, t) =

(
DA∆x1g

AB(x1, x2, t) +DB∆x2g
AB(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAB(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAB(x1, x2, t)

fA(x1, t)
FAB[gAB](x1, t)

)
+ 2µ∇x2 ·

(
gAB(x1, x2, t)

fB(x2, t)
FBB[gBB](x2, t)

)
+ µ∇x2 ·

(
gAB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+ νABc,ε h

AB(x1, x2, t)χ(|x1 − x2| ≤ R)− νABd,ε gAB(x1, x2, t),

gBA(x1, x2, t) = rABg
AB(x2, x1, t).

Proof.

A.1 Evolution equation for the individual particles

For all observable functions φ(x), we define:

〈fAN , φ〉 =

∫
φ(x)fAN (t, x)dx =

1

NA

NA∑
i=1

φ(XA
i (t)),

〈fBN , φ〉 =

∫
φ(x)fBN (t, x)dx =

1

NB

NB∑
`=1

φ(XB
` (t)).

Similarly, for all two-particle observable functions ψ(x1, x2), we define:

〈〈gAAN , ψ〉〉 =

∫
ψ(x1, x2)gAAN (x1, x2)dx1dx2 =

1

2NA

KAA∑
k1=1

(
ψ(XA

i(k1), X
A
j(k1)) + ψ(XA

j(k), X
A
i(k))

)
,

〈〈gBBN , ψ〉〉 =

∫
ψ(x1, x2)gBBN (x1, x2)dx1dx2 =

1

2NB

KBB∑
k2=1

(
ψ(XB

`(k2), X
B
m(k2)) + ψ(XB

`(k), X
B
m(k))

)
,

〈〈gABN , ψ〉〉 =

∫
ψ(x1, x2)gABN (x1, x2)dx1dx2 =

1

NA

KAB∑
k3=1

ψ(XA
i(k3), X

B
`(k3)),

〈〈gBAN , ψ〉〉 =

∫
ψ(x1, x2)gBAN (x1, x2)dx1dx2 =

1

NB

KAB∑
k3=1

ψ(XB
`(k3), X

A
i(k3)),

where integrals over x are carried over R2. Then:

d

dt
〈fAN , φ〉 =

1

NA

NA∑
i=1

∇xφ(Xi(t)) ·
dXA

i (t)

dt
,

d

dt
〈fBN , φ〉 =

1

NB

NB∑
i=1

∇xφ(Xi(t)) ·
dXB

i (t)

dt
.

For the sake of simplicity, the computations for fAN only are developed here. Using (3) and Itô’s formula,
we obtain formally:

d

dt
〈fAN , φ〉 = − 1

NA

NA∑
i=1

µ∇xφ(XA
i ) · ∇XA

i
WA(XA, XB) +

DA

NA

NA∑
i=1

∆φ(XA
i ) +

√
2DA

NA

NA∑
i=1

∇xφ(XA
i ) · dB

A
i

dt
.

(53)
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As the dBA
i are independent and independent of ∇xφ(XA

i ), it can be shown that in the limit of a large
number of particles this term can be neglected [7]. We get:

d

dt
〈fAN , φ〉 = − µ

NA

NA∑
i=1

∇xφ(XA
i )·
( KAA∑
k1=1

(∇x1ΦAAδi(k1)(i) +∇x2ΦAAδj(k1)(i))(X
A
i(k1), X

A
j(k1))

+

KAB∑
k3=1

∇x1ΦABδi(k3)(i)(X
A
i(k3), X

B
`(k3))

)
+
DA

NA

NA∑
i=1

∆φ(XA
i ).

Now, exchanging the sums in i and k1 and i and k3 in the previous equation, one obtains:

d

dt
〈fAN , φ〉 = − µ

NA

KAA∑
k1=1

(
∇xφ(XA

i(k1)) · ∇x1ΦAA(XA
i(k1), X

A
j(k1)) +∇xφ(XA

j(k1)) · ∇x2ΦAA(XA
i(k1), X

A
j(k1))

)

− µ

NA

KAB∑
k3=1

∇xφ(XA
i(k3)) · ∇x1ΦAB(XA

i(k3), X
B
`(k3)) +

DA

NA

NA∑
i=1

∆φ(XA
i ).

From the symmetry of ΦAA, we have:

∇x2ΦAA(XA
i(k1), X

A
j(k1)) = ∇x1ΦAA(XA

j(k1), X
A
i(k1)),

leading to:

d

dt
〈fAN , φ〉 = − µ

NA

KAA∑
k1=1

(
∇xφ(XA

i(k1)) · ∇x1ΦAA(XA
i(k1), X

A
j(k1)) +∇xφ(XA

j(k1)) · ∇x1ΦAA(XA
j(k1), X

A
i(k1))

)

− µ

NA

KAB∑
k3=1

∇xφ(XA
i(k3)) · ∇x1ΦAB(XA

i(k3), X
B
`(k3)) +

DA

NA

NA∑
i=1

∆φ(XA
i ).

or again:

d

dt
〈fAN , φ〉 =− 2µ〈〈gAAN ,∇x1ΦAA(x1, x2) · ∇xφ(x1)〉〉

− µ〈〈gABN ,∇x1ΦAB(x1, x2) · ∇xφ(x1)〉〉+DA〈fAN ,∆φ〉
=2µ〈〈∇x1 ·

(
gAAN (x1, x2)∇x1ΦAA(x1, x2)

)
, φ(x1)〉〉

+ µ〈〈∇x1 ·
(
gABN (x1, x2)∇x1ΦAB(x1, x2)

)
, φ(x1)〉〉+DA〈∆fAN , φ〉,

where we have formally integrated by parts to obtain the second equality. We then exchange the order
of integration and pass to the limit NA, NB →∞. If fAN → fA, gAAN → gAA, gABN → gAB, then:

dfA

dt
= 2µ∇x · FAA[gAA](x, t) + µ∇x · FAB[gAB](x, t) +D∆fA, (54)

where:

FAA[g](x, t) =

∫
gAA(x1, x2, t)∇x1ΦAA(x1, x2)dx2

FAB[g](x, t) =

∫
gAB(x1, x2, t)∇x1ΦAB(x1, x2)dx2.
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Similarly, we can show that if fBN → fB, gBBN → gBB, gBAN → gBA as NA, NB →∞ with NA/NB → rAB,
we get:

dfB

dt
= 2µ∇x · FBB[gBB](x, t) + µ∇x · FBA[gBA](x, t) +D∆fB, (55)

with:

FBB[g](x, t) =

∫
g(x1, x2, t)∇x1ΦBB(x1, x2)dx2

FBA[g](x, t) =

∫
g(x1, x2, t)∇x1ΦBA(x1, x2)dx2.

We now turn towards the computation of the inter- and intra- species link distributions.

A.2 Evolution equation for the particle links

Here we develop only the computations for one intraspecies link distribution, namely gAAN , the compu-
tation of gBBN being similar. From its asymmetry, the computation of the interspecies link distribution
needs special treatment and we will develop the computation of gABN further. We remark that the noise
in (3) transforms directly into a linear diffusion term for fA, all other contributions, analogously as in 53,
vanish in the large NA limit. It is not difficult to see that the same simplification takes place for gAAN in
the NA →∞ limit. Thus, to reduce the computations we will first use (3) without noise, and reintroduce
the diffusion term in the end.

Intraspecies link distribution

Following the same principle as for fAN , one can write:

d

dt
〈〈gAAN ,Ψ〉〉 =

1

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

dXA
i(k)

dt
+∇x1Ψ(XA

j(k), X
A
i(k)) ·

dXA
j(k)

dt

+∇x2Ψ(XA
i(k), X

A
j(k)) ·

dXA
j(k)

dt
+∇x2Ψ(XA

j(k), X
A
i(k)) ·

dXA
i(k)

dt

]
= E1 + E2,

(56)

where Ek corresponds to the k-th line of (56). For the sake of simplicity, the computation of E1 only is
developed here. The computation of the other ones are similar and omitted.

From Eq. (3), one obtains:

E1 =
1

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

dXA
i(k)

dt
+∇x1Ψ(XA

j(k), X
A
i(k)) ·

dXA
j(k)

dt

]

=− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

KAA∑
k1=1

(
∇x1ΦAAδ(i(k1),i(k)) +∇x2ΦAAδ(j(k1),i(k))

)
(XA

i(k1), X
A
j(k1))

− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

KAB∑
k3=1

∇x1ΦABδ(i(k3),i(k))(X
A
i(k3), X

B
j(k3))

]

− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

j(k), X
A
i(k)) ·

KAA∑
k1=1

(
∇x1ΦAAδ(i(k1),j(k)) +∇x2ΦAAδ(j(k1),j(k))

)
(XA

i(k1), X
A
j(k1))

− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

j(k), X
A
i(k)) ·

KAB∑
k3=1

∇x1ΦABδ(i(k3),j(k))(X
A
i(k3), X

B
j(k3))

]
.
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Now, exchanging the sums in k and k1 and k and k3 and using the symmetry of ΦAA, one obtains:

E1 = − µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) ·

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),i(k1)) +∇x1Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k1))

)
− µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),j(k1)) +∇x1Ψ(XA

j(k), X
A
i(k))δ(j(k),j(k1))

)
− µ

2NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
j(k3)) ·

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),i(k3)) +∇x1Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k3))

)
(57)

In the first two lines of the above expression, k = k1 in the internal sums play a special role: indeed we
know that the k = k1 term, at variance with the other terms, always contribute to the sum. On the
contrary, k = k3 in the last line above should not be distinguished. So, we get:

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),i(k1)) +∇x1Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k1))

)
= ∇x1Ψ(XA

i(k1), X
A
j(k1)) +

∑
k 6=k1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),i(k1)) +∇x1Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k1))

)
Because there is no restriction on the number of links per particle, the sums over k cannot be simplified
in this case. In order to express the terms in the k 6= k1 sum, we define the number of intra-species links
connected to a particle:

Ck1i = Card({k | i(k) = i(k1) or j(k) = i(k1)}),

where Card denotes the cardinal of a set. Then, as NA → ∞, we assume that the following mean-field
approximation holds for any chosen link k1:

1

2Ck1i

∑
k 6=k1

(
Ψ(XA

i(k), X
A
j(k))δi(k),i(k1) + Ψ(XA

j(k), X
A
i(k))δj(k),i(k1))

)
→

NA→∞

∫
(ΨPAA)(XA

i(k1), x2)dx2, (58)

where

PAA(XA
i(k1), x2) =

gAA(XA
i(k1), x2)∫

gAA(XA
i(k1), x2)dx2

, (59)

is the conditional probability of finding an intraspecies link conditioned on the fact that one of the
particles of this link has the same location as i(k1). Then, as NA → ∞ , Ck1i is the mean number
of intraspecies links per particle. The mean number of intraspecies links AA in the volume dXA

i(k1) is

NA

∫
gAA(XA

i(k1), x2)dx2 and the mean number of particles of type A in dXA
i(k1) is NAf

A(XA
i(k1)). Thus:

Ck1i −→
NA→∞

∫
gAA(XA

i(k1), x2)dx2

fA(XA
i(k1))

.

So, we get:∑
k 6=k1

(
Ψ(XA

i(k), X
A
j(k))δi(k),i(k1) + Ψ(XA

j(k), X
A
i(k))δj(k),i(k1))

)
→

NA→∞

2

fA(XA
i(k1))

∫
(ΨgAA)(Xi(k1), x2)dx2.
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Inserting these expressions in Eq. (57), one obtains, when NA, NB are large:

lim
NA,NB→∞
NA/NB→rAB

E1 = − lim
NA,NB→∞

NA/NB→rAB>0

µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) · ∇x1Ψ(XA

i(k1), X
A
j(k1))

− lim
NA,NB→∞

NA/NB→rAB>0

µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) · ∇x1Ψ(XA

j(k1), X
A
i(k1))

− lim
NA,NB→∞

NA/NB→rAB>0

µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) · ψ

1
AA(XA

i(k1)) +∇x1ΦAA(XA
j(k1), X

A
i(k1)) · ψ

1
AA(XA

j(k1))

− lim
NA,NB→∞

NA/NB→rAB>0

µ

NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
j(k3)) · ψ

1
AA(XA

i(k3))

where

ψ1
AA(x1) =

1

fA(x1)

∫ (
gAA∇x1Ψ

)
(x1, x2)dx2.

Finally, we find:

E1 →
NA,NB→∞
NA
NB

,→rAB>0

− 2µ〈〈gAA,∇x1ΦAA(x1, x2) · ψ1
AA(x1)〉〉 − µ〈〈gAB,∇x1ΦAB(x1, x2) · ψ1

AA(x1)〉〉

− µ〈〈gAA,∇x1ΦAA(x1, x2) · ∇x1Ψ(x1, x2)〉〉

After the same treatment for E2 of Eq. (56) and in the limit NA, NB →∞, NA
NB
→ rAB > 0, one obtains

the final equation for gAA:

d

dt
〈〈gAA(x1, x2),Ψ(x1, x2)〉〉

= −2µ〈〈gAA,∇x1ΦAA(x1, x2) · ψ1
AA(x1)〉〉 − µ〈〈gAB,∇x1ΦAB(x1, x2) · ψ1

AA(x1)〉〉 (60)

− 2µ〈〈gAA,∇x1ΦAA(x1, x2) · ψ2
AA(x1)〉〉 − µ〈〈gAB,∇x1ΦAB(x1, x2) · ψ2

AA(x1)〉〉 (61)

− µ〈〈gAA,∇x1ΦAA(x1, x2) · ∇x1Ψ(x1, x2)〉〉 − µ〈〈gAA,∇x2ΦAA(x1, x2) · ∇x2Ψ(x1, x2)〉〉, (62)

where,

ψ2
AA(x1) =

1

fA(x1)

∫ (
gAA∇x2Ψ

)
(x2, x1)dx2.
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Integrating by parts, changing the variables and order of integrals we easily obtain:

d

dt
〈〈gAA(x1, x2),Ψ(x1, x2)〉〉

= 2µ〈〈∇x1 ·
(
gAA(x1, x2)

fA(x1)

∫ (
gAA∇x1ΦAA

)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x1 ·
(
gAA(x1, x2)

fA(x1)

∫ (
gAB∇x1ΦAB

)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ 2µ〈〈∇x2 ·
(
gAA(x1, x2)

fA(x2)

∫ (
gAA∇x1ΦAA

)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x2 ·
(
gAA(x1, x2)

fA(x2)

∫ (
gAB∇x1ΦAB

)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x1 ·
(
gAA(x1, x2)∇x1ΦAA(x1, x2)

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x2 ·
(
gAA(x1, x2)∇x2ΦAA(x1, x2)

)
,Ψ(x1, x2)〉〉.

Finally, restoring the noise, we obtain the final equation for gAA:

∂tg
AA(x1, x2, t) = DA

(
∆x1g

AA(x1, x2, t) + ∆x2g
AA(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAB[gAB](x1, t)

)
(63)

+ 2µ∇x2 ·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)

fA(x2, t)
FAB[gAB](x2, t)

)
+µ∇x1 ·

(
gAA(x1, x2)∇x1ΦAA(x1, x2)

)
+ µ∇x2 ·

(
gAA(x1, x2)∇x2ΦAA(x1, x2)

)
,

where

FAA[gAA](x1, t) =

∫
gAA(x1, x2)∇x1ΦAA(x1, x2)dx2,

FAB[gAB](x1, t) =

∫
gAB(x1, x2)∇x1ΦAB(x1, x2)dx2.

Eq. (63) does not take into account the phenomena of creation and destruction of intraspecies links.
According to the description at the beginning of this paper, our model describes a process of creation of
links with rate νAAc,N,ε, provided the two type A particles are sufficiently close to each others. Hence, the
number of new intraspecies links will be proportional to the number of pairs of particles such that one
of them is close to x1 and the other one is close to x2, whose distance is less than R:

NA(NA − 1)

2
hAA(x1, x2, t)χ{|x1−x2|≤R}dx1dx2dt,

where hAA(x1, x2, t) = limNA→∞ h
AA
N (x1, x2, t) and where hAAN (x1, x2, t) is the two particle distribution

function for particles of type A defined by Eq.(12). This number has to be decreased by the number of
pairs of particles of the same type that are already connected by existing links

NAg
AA(x1, x2, t)dx1dx2.
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Therefore, the average number of new intraspecies links created in the interval [t, t+ ∆t[ is equal to

νAAc,N,ε

(
NA(NA − 1)

2
hAA(x1, x2, t)χ{|x1−x2|≤R} −NAg

AA(x1, x2, t)

)
dx1dx2∆t

Dividing this expression by NA and using (18), the rate of creation of new intraspecies link at (x1, x2) is
in the limit NA →∞:

νAAc,ε
2
hAA(x1, x2, t)χ{|x1−x2|≤R}.

Notice the scaling of νAAc,N,ε in (18): it ensures that among the O(N2
A) possible links, only O(NA) are

effectively present, and the total number of AA links KAA = O(NA). The rate of destruction of existing
intraspecies link at (x1, x2) is:

νAAd,ε g
AA(x1, x2, t).

Including these source terms in (63), we obtain

∂tg
AA(x1, x2, t) = DA

(
∆x1g

AA(x1, x2, t) + ∆x2g
AA(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAB[gAB](x1, t)

)
(64)

+ 2µ∇x2 ·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)

fA(x2, t)
FAB[gAB](x2, t)

)
+µ∇x1 ·

(
gAA(x1, x2)∇x1ΦAA(x1, x2)

)
+ µ∇x2 ·

(
gAA(x1, x2)∇x2ΦAA(x1, x2)

)
+
νAAc,ε

2
hAA(x1, x2, t)χ{|x1−x2|≤R} − ν

AA
d,ε g

AA(x1, x2, t).

Quite straightforwardly, we can show that in the limit NA, NB → ∞, NA
NB
→ rAB > 0, gBB(x1, x2, t)

solves:

∂tg
BB(x1, x2, t) = DB

(
∆x1g

BB(x1, x2, t) + ∆x2g
BB(x1, x2, t)

)
+ 2µ∇x1 ·

(
gBB(x1, x2, t)

fB(x1, t)
FBB[gBB](x1, t)

)
+ µ∇x1 ·

(
gBB(x1, x2, t)

fB(x1, t)
FBA[gBA](x1, t)

)
+ 2µ∇x2 ·

(
gBB(x1, x2, t)

fB(x2, t)
FBB[gBB](x2, t)

)
+ µ∇x2 ·

(
gBB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+µ∇x1 ·

(
gBB(x1, x2)∇x1ΦBB(x1, x2)

)
+ µ∇x2 ·

(
gBB(x1, x2)∇x2ΦBB(x1, x2)

)
+
νBBc,ε

2
hBB(x1, x2, t)χ{|x1−x2|≤R} − ν

BB
d,ε g

BB(x1, x2, t),

where we have assumed the scaling (18) for νBBc,N,εNB, and

FBB[gBB](x1, t) =

∫
gBB(x1, x2)∇x1ΦBB(x1, x2)dx2,

FBA[gBA](x1, t) =

∫
gBA(x1, x2)∇x1ΦBA(x1, x2)dx2.

We stress the fact that ΦAB(x1, x2) (force of a particle of type B close to x2 exerted on a particle A
close to x1) is not necessarily equal to ΦBA(x2, x1) (force of a particle of type A close to x1 exerted on a
particle B close to x2).
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Computations of the interspecies link distribution

Here, we develop the computations for the interspecies link distribution gAB(x1, x2, t). Proceeding as
before, we write:

d

dt
〈〈gABN ,Ψ〉〉 =

1

NA

KAB∑
k=1

[
∇x1Ψ(XA

i(k), X
B
`(k)) ·

dXA
i(k)

dt
+∇x2Ψ(XA

i(k), X
B
`(k)) ·

dXB
`(k)

dt

]
= E1 + E2,

(65)

where, ignoring the noise and using Eq.(3):

E1 =
1

NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

dXA
i(k)

dt

=
−µ
NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

[ KAA∑
k1=1

(
∇x1ΦAA(XA

i(k1), X
A
j(k1))δi(k1),i(k) +∇x2ΦAA(XA

i(k1), X
A
j(k1))δj(k1),i(k)

)]
−µ
NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3))δi(k3),i(k)

Exchanging the sums in the first two terms and using the symmetry of ΦAA, we have

− µ

NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))·

[ KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1))δi(k1),i(k) +∇x1ΦAA(XA

j(k1), X
A
i(k1))δj(k1),i(k)

]
= − µ

NA

[ KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) ·

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k1)

+

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),j(k1).

]
Now, in the same spirit as before we define the number of interspecies links linked to a particle of type
A:

Ck3i,A = Card({k|i(k) = i(k3)}),

and we make the following mean-field assumption

1

Ck3i,A

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k3) →

NA,NB→∞,
NA
NB
→rAB

∫ (
∇x1ΨPAB

)
(XA

i(k3), x2)dx2, (66)

where PAB(XA
i(k3), x2) is the conditional probability of finding an interspecies link conditioned on the

fact that the type A particle of the link has the same location as i(k3):

PAB(XA
i(k3), x2) =

gAB(XA
i(k3), x2)∫

gAB(XA
i(k3), x2)dx2

. (67)

Now as NA, NB → ∞, Ck3i,A is the mean number of interspecies links per particle of type A. The

mean number of interspecies links the type A particle of which belonging to the volume dXA
i(k3) is
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NA

∫
gAB(XA

i(k3), x2)dx2, and the mean number of particles of type A is NAf
A(XA

i(k3)). Therefore,

Ck3i,A →
NA,NB→∞,

NA
NB
→rAB

∫
gAB(XA

i(k3), x2)dx2

fA(XA
i(k3))

,

leading, when NA, NB are large, to

− µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) ·

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k1)

= − µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) ·

(NA

∫
gAB(XA

i(k1), x2)∇x1Ψ(XA
i(k1), x2)dx2

NAfA(XA
i(k1))

)
.

and

− µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),j(k1).

= − µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

(NA

∫
gAB(XA

j(k1), x2)∇x1Ψ(XA
j(k1), x2)dx2

NAfA(XA
j(k1))

)
.

and altogether:

− µ

NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

[ KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1))δi(k1),i(k) +∇x1ΦAA(XA

j(k1), X
A
i(k1))δj(k1),i(k)

]
→

NA,NB→∞,
NA
NB
→rAB

−2µ〈〈gAA,∇x1ΦAA(x1, x2) ·
(∫

(∇x1ΨgAB)(x1, x2)dx2

fA(x1)

)
〉〉.

Now, exchanging the sums in the last term of E1, we obtain

−µ
NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3))δi(k3),i(k)

=− µ

NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) · ∇x1Ψ(XA

i(k3), X
B
`(k3))

− µ

NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) ·

∑
k 6=k3

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k3),

where, as previously, we distinguish the link k3, that always contributes to the inner sum. Using the
theory previously developed, we can write, when NA, NB are large:

−µ
NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) ·

∑
k 6=k3

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k3)

=
−µ
NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) ·

(
1

fA(XA
i(k3))

∫ (
∇x1ΨgAB

)
(XA

i(k3), x2)dx2

)
→

NA,NB→∞,
NA
NB
→rAB

−µ〈〈gAB,∇x1ΦAB(x1, x2) ·
(

1

fA(x1)

∫ (
∇x1ΨgAB

)
(x1, x2)dx2

)
〉〉,
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while

− µ

KAB

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3))∇x1Ψ(XA

i(k3), X
B
`(k3))

→
NA,KAB→∞

−µ〈〈gAB,∇x1ΦAB(x1, x2)∇x1Ψ(x1, x2)〉〉.
(68)

Altogether, performing the same computations for E2 in (65), we obtain:

d

dt
〈〈gAB,Ψ〉〉 =− 2µ〈〈gAA,∇x1ΦAA(x1, x2) ·

(
1

fA(x1)

∫ (
∇x1ΨgAB

)
(x1, x2)dx2

)
〉〉

− µ〈〈gAB,∇x1ΦAB(x1, x2) ·
(

1

fA(x1)

∫ (
∇x1ΨgAB

)
(x1, x2)dx2

)
〉〉

− 2µ〈〈gBB,∇x1ΦBB(x1, x2) ·
(

1

fB(x1)

∫ (
∇x2ΨgAB

)
(x2, x1)dx2

)
〉〉

− µ〈〈gBA,∇x1ΦBA(x1, x2) ·
(

1

fB(x1)

∫ (
∇x2ΨgAB

)
(x2, x1)dx2

)
〉〉

−µ〈〈gAB,∇x1ΦAB(x1, x2) · ∇x1Ψ(x1, x2)〉〉
−µ〈〈gAB,∇x2ΦBA(x1, x2) · ∇x2Ψ(x1, x2)〉〉.

By carefully performing integration by parts and change of order of integrals, we can obtain:

d

dt
〈〈gAB,Ψ〉〉 =2µ〈〈∇x1 ·

(
gAB(x1, x2)

fA(x1)

∫ (
gAA∇x1ΦAA

)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x1 ·
(
gAB(x1, x2)

fA(x1)

∫ (
gAB∇x1ΦAB

)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ 2µ〈〈∇x2 ·
(
gAB(x1, x2)

fB(x2)

∫ (
gBB∇x1ΦBB

)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x2 ·
(
gAB(x1, x2)

fB(x2)

∫ (
gBA∇x1ΦBA

)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x1 ·
(
gAB(x1, x2)∇x1ΦAB(x1, x2)

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x2 ·
(
gAB(x1, x2)∇x2ΦBA(x1, x2)

)
,Ψ(x1, x2)〉〉.

Finally, note that in the case of interspecies links, the average number of new links created in the interval
[t, t+ ∆t[ is equal to

νABc,N,ε

(
NANBh

AB(x1, x2, t)χ(|x1 − x2| ≤ R)−NAg
AB(x1, x2, t)

)
dx1dx2∆t.
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Assuming for νABc,N,ε the scaling (18) as the number of particles tends to infinity and adding the noise, we

obtain the final equation for gAB:

∂tg
AB(x1, x2, t) =

(
DA∆x1g

AB(x1, x2, t) +DB∆x2g
AB(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAB(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAB(x1, x2, t)

fA(x1, t)
FAB[gAB](x1, t)

)
+ 2µ∇x2 ·

(
gAB(x1, x2, t)

fB(x2, t)
FBB[gBB](x2, t)

)
+ µ∇x2 ·

(
gAB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+µ∇x1 ·

(
gAB(x1, x2)∇x1ΦAB(x1, x2)

)
+ µ∇x2 ·

(
gAB(x1, x2)∇x2ΦBA(x1, x2)

)
+ νABc,ε h

AB(x1, x2, t)χ(|x1 − x2| ≤ R)− νABd,ε gAB(x1, x2, t),

where hAB(x1, x2, t) = limNA,NB→∞ h
NAB (x1, x2, t) with hNAB (x1, x2, t) defined by Eq. (14).

B Scaling of the kinetic model

B.1 Dimensionless Equations

In order to express the problem in dimensionless variables, we denote by t0 the unit of time and x0,
fS0 = 1

x20
, gST0 = 1

x40
, gST0 = 1

x40
the units of space and distribution functions, where S and T can be either

A or B and refer to the particle type. The scaling of fS(x, θ), gST (x1, x2) and hST (x1, x2) comes from
the fact that they are probability distribution functions on a 2D domain. The following dimensionless
variables are defined:

t̄ =
t

t0
, x̄ =

x

x0
, f̄S =

fS

f0
= fSx2

0, ḡ
ST =

gST

g0
= gSTx4

0, h̄
ST =

hST

h0
= hSTx4

0.

and the following dimensionless parameters are introduced:

µ′ =
µ

t0
, ν ′STc,∞ = t0ν

ST
c,∞, ν

′ST
d,∞ = t0ν

ST
d,∞, R

′ =
R

x0
, D′ =

Dt0
x2

0

,Φ′ST =
ΦST t20
x2

0

,

where we assumed that the potential scales as the potential energy
x20
t20

. We first have:

∂tf
S(x, t) =

1

t0x2
0

∂t̄f̄
S(x̄, t̄), ∂tg

ST (x1, x2, t)

=
1

t0x4
0

∂t̄ḡ
ST (x̄1, x̄2, t̄), ∂th

ST (x1, x2, t) =
1

t0x4
0

∂t̄h̄
ST (x̄1, x̄2, t̄)

and:

∇x ·
(
FST [gST ](x)

)
=

1

x0
∇x′ ·

( ∫
gST∇x1ΦSTdx2

)
=

1

x0
∇x′ ·

( ∫ ḡST

x4
0

x0

t20
∇x′1Φ′STx2

0dx̄2

)
=

1

x2
0t

2
0

∇x′ ·
(
F ′ST [ḡST ](x)

)
.

In this new set of variables, choosing S = A, T = A (the same scaling apply for the other equations) and
omitting the primes and bar for clarity, Eqs. (51)-(52) become :

∂tf
A(x, t) = 2µ∇x · FAA[gAA](x, t) + µ∇x · FAB[gAB](x, t) +DA∆fA,
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and

∂tg
AA(x1, x2, t) = DA

(
∆x1g

AA(x1, x2, t) + ∆x2g
AA(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAB[gAB](x1, t)

)
+ 2µ∇x2 ·

(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)

fA(x2, t)
FAB[gAB](x2, t)

)
+µ∇x1 ·

(
gAA(x1, x2, t)∇x1ΦAA(x1, x2)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)∇x2ΦAA(x1, x2)

)
+
νAAc,ε

2
hAA(x1, x2, t)χ(|x1 − x2| ≤ R)− νAAd,ε gAA(x1, x2, t).

Finally, we choose the space and time scales x0, t0 such that µ = 1.

B.2 Scaled equations

In order to describe the system at a macroscopic scale, a small parameter ε � 1 is introduced and the
space and time units are set to x̃0 = ε−1/2x0, t̃0 = ε−1t0. The variables x, t, R and unknowns f and
g are then correspondingly changed to x̃ =

√
εx, t̃ = εt, R̃ =

√
εR. Therefore, f̃S(x̄) = ε−1fS(x),

g̃ST (x̃1, x̃2, t̃) = ε−2g(x1, x2, t) and h̃ST (x̃1, x̃2, t̃) = ε−2h(x1, x2, t). The diffusion constant is supposed
to be of order 1, DS = D̃S , and we suppose that the interaction potentials scale as ΦST (x1, x2) =
Φ̃ST (x̃1, x̃2). Then,

∇x ·
(
FST [gST ](x)

)
=

1√
ε
∇x̃ ·

( ∫
ε2g̃ST

1√
ε
∇x̃1Φ̃ST εdx̃2

)
= ε2∇x̃ ·

( ∫
g̃ST∇x̃1Φ̃STdx̃2

)
= ε2∇x̃ ·

(
F̃ST [g̃ST ](x̃)

)
,

and with µ = 1, we obtain the same equation for f̃S (for S=A for instance):

∂t̃f̃
A(x̃, t̃) = 2∇x̃ · F̃AA[g̃AA](x̃, t̃) +∇x̃ · F̃AB[g̃AB](x̃, t̃) +DA∆f̃A.

In order to simplify the analysis of the system, the process of linking/unlinking is supposed to occur at a
very fast time scale: this is the meaning of the ε-scaling of the rates in (18). As χ|x1−x2|≤R = χ|x̃1−x̃2|≤R̃,
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we have (for S, T =(A,A)):

ε3∂t̃g̃
AA = ε3DA∆x̃1 g̃

AA + ε3DA∆x̃2 g̃
AA

+ 2
√
ε∇x̃1 ·

(
ε2g̃AA

εf̃A
ε3/2F̃AA[g̃AA]

)
+
√
ε∇x̃1 ·

(
ε2g̃AA

εf̃A
ε3/2F̃AB[g̃AB]

)
+ 2
√
ε∇x̃2 ·

(
ε2g̃AA

εf̃A
ε3/2F̃AA[g̃AA]

)
+
√
ε∇x̃1 ·

(
ε2g̃AA

εf̃A
ε3/2F̃AB[g̃AB]

)
+
νAAc
2ε2

ε2h̃AAχ(|x̃1 − x̃2| ≤ R̃)−
νAAd
ε2

ε2g̃AA

+
√
ε∇x̃1 ·

(
ε2g̃AA

√
ε∇x̃1Φ̃AA

)
+
√
ε∇x̃2 ·

(
ε2g̃AA

√
ε∇x̃2Φ̃AA

)
= ε3

[
D∆x̃1 g̃

AA +D∆x̃2 g̃
AA

+ 2∇x̃1 ·
(
g̃AA

f̃A
F̃AA[g̃AA]

)
+∇x̃1 ·

(
g̃AA

f̃A
F̃AB[g̃AB]

)
(69)

+ 2∇x̃2 ·
(
g̃AA

f̃A
F̃AA[g̃AA]

)
+∇x̃1 ·

(
g̃AA

f̃A
F̃AB[g̃AB]

)]
,

+ε3∇x̃1 ·
(
g̃AA∇x̃1Φ̃AA

)
+ ε3∇x̃2 ·

(
g̃AA∇x̃2Φ̃AA

)
+
νAAc

2
h̃AAχ(|x̃1 − x̃2| ≤ R̃)− νAAd g̃AA.

Now, we aim to pass to the limit ε → 0. Denoting fSε = f̃S , gSTε = g̃ST and hSTε = h̃ST , we want to
derive the same system of macroscopic equations as in Proposition 1 of section 2.2.
Proof. From Eq.(69) generalized to S, T and using the assumption hSTε (x1, x2, t) = fSε (x1, t)f

T
ε (x2, t),

and dropping the tildas, we have:

νSSc
2
fS(x1, t)f

S(x2, t)χ|x1−x2|≤R − ν
SS
d gSS(x1, x2, t) = O(ε3),

νSTc fS(x1, t)f
T (x2, t)χ|x1−x2|≤R − ν

ST
d gST (x1, x2, t) = O(ε3).

Therefore in the limit ε→ 0, we have that

gSS(x1, x2, t) =
νSSc
2νSSd

fS(x1, t)f
S(x2, t)χ|x1−x2|≤R

gST (x1, x2, t) =
νSTc
νSTd

fS(x1, t)f
T (x2, t)χ|x1−x2|≤R

for all S, T = A,B. Plugging the expression of gST into the equation for fS , we have

∂tf
S(x1, t) = 2∇x · FSS [gSS ](x, t) +∇xFST [gST ](x, t) +D∆fS , (70)

where

FSS [gSS ](x, t) =
νSSc
2νSSd

fS(x, t)

∫
fS(y, t)∇xΦSS(x, y)χ|x−y|≤Rdy

FST [gST ](x, t) =
νSTc
νSTd

fS(x, t)

∫
fT (y, t)∇xΦST (x, y)χ|x−y|≤Rdy.

(71)
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Therefore, if the potentials ΦST (x1, x2) = UST (|x1 − x2|), we can write

FSS [gSS ](x, t) =
1

2
fS(x, t)

∫
fS(y, t)∇xΦ̃SS(|x− y|)dy

FST [gST ](x, t) = fS(x, t)

∫
fT (y, t)∇xΦ̃ST (|x− y|)dy,

(72)

for some potentials Φ̃ST such that:

∇iΦ̃ST (x) =
νSTc
νSTd

(
UST

)′
(|x|)χ|x|≤R~ei, i = 1, 2. (73)

Recall that due to the scaling of linking frequencies with NA, NB we obtain in the limit that νBA
c

νBA
d

=

rAB
νAB
c

νAB
d

. With this observation the proof of Proposition 1 is complete.

C Numerical data visualisation

C.1 Macroscopic model

For the numerical simulations of the macroscopic model we consider a periodic square [−7.5, 7.5] ×
[−7.5, 7.5] discretized with a space step ∆x = 0.3 and the time step ∆t = 5 ·10−3. As in the microscopic
case, we fix the radii of all types of interactions to R = 1 and consider the same diffusion coefficient for
the species D = 10−4. We use the numerical scheme introduced in [17] that was developed in our recent
work [8] to study aggregation-diffusion equation for single species.

We consider all four cases of interaction intensities κST as in the microscopic case, as summarized in
Table 1. The initial densities for species A and species B are random perturbations of constant functions,
The constants are chosen such that the total mass is equal to 1, i.e.

fS0 (x, y) =
1 + 0.01 ·XS(x, y)∫ 7.5

−7.5

∫ 7.5
−7.5(1 + 0.01 ·XS(x, y))dx dy

, S = A,B,

where XS(x, y) is uniformly distributed random variable between 0 and 1.
To visualise the macroscopic simulations we plot green or red balls in the regions where the densities

of green or red cells, respectively, dominate. The balls are of radius 0.3 with a center at the center of
the corresponding pixel perturbed by uniformly distributed random number from interval [−0.2, 0.2] in
x and y direction. We determine that the concentration of green cells dominates over the red ones if
the difference between their densities is larger than parameter tres1. It is equal to 5.0e − 4 times the
maximum of the densities of green or red cells at the final time of simulation. If the difference between
the densities of cells is less than tres1 but more than tres2 = tres1 − 5.0e − 6 we plot randomly red or
green ball. The ”empty” black regions on the figures (see for example Figure 6 and last row of Figure 7)
correspond to the case when the difference between the densities of the cells is less than tres2.

C.2 Image processing

In order to compare quantitatively the microscopic and macroscopic simulations, we use image processing
tools to define quantifiers of the structures observed in the simulation images. As we will restrict ourselves
to regimes where the B-family clusterize (represented in green), the developed tools aim to describe type
B clusters but can easily be adapted to detect red clusters. Given a RGB image transformed into a
binary image via thresholding of the intensity, we use morphological operators to erase the isolated pixels
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and dilate the image using a binary gradient mask. Interior gaps are then filled and the new image is
smoothed via morphological operations. The boundaries of the isolated clusters are then detected using
the Moore-Neighbor tracing algorithm modified by Jacob’s stopping criteria, implemented in the intrinsic
matlab function bwconncomp that we couple with a function that appropriately converts the output of
bwconncomp to take into account periodic boundary conditions. Once the clusters are appropriately
separated and borders are detected, we finally use the matlab intrinsic function regionprops to measure
each 8-connected object (region) of the image. This image processing enables us to compute the number
Ng of green clusters in the image. The elongation of each cluster is given by the eccentricity of the ellipse
that has the same second-moments as the region (cluster). Finally, we define the overall overlapping
amount Q as:

Q =

∑NP
i=1 P

i
gP

i
r + (1−max(P ig, P

i
r))

NP
, (74)

where P ig (resp. P ir) is equal to 1 if pixel i has a non-zero green component (resp. red) and NP is the
total number of pixels in the image. Thus defined, Q ≈ 1 when the two families are perfectly mixed
(corresponding to all pixels having both red and green components), and Q = 0 correspond to completely
separated phases (where each pixel is either green or red). Therefore, parameter Q enables to distinguish
between homogeneous and segregated states. However, note that Q does not give any information on the
form of the clusters.
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