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Swelling media (e.g. gels, tumors) are usually described by mechanical constitutive laws (e.g. Hooke or Darcy laws). However, constitutive relations of real swelling media are not well-known. Here, we take an opposite route and consider a simple packing heuristics, i.e. the particles can't overlap. We deduce a formula for the equilibrium density under a confining potential. We then consider its evolution when the average particle volume and confining potential depend on time under two additional heuristics: (i) any two particles can't swap their position; (ii) motion should obey some energy minimization principle. These heuristics determine the medium velocity consistently with the continuity equation. In the direction normal to the potential level sets the velocity is related with that of the level sets while in the parallel direction, it is determined by a Laplace-Beltrami operator on these sets. This complex geometrical feature cannot be recovered using a simple Darcy law.

1. Introduction. Swelling or drying media are encountered in many contexts such as chemistry or material science (swelling gels), biology (cancer tumors or growing tissues), geosciences (drying of wetting soil), cooking (dough being cooked), etc.

The modelling of swelling or drying media from first principles is difficult due to the complex nature of the materials (cells, mixtures, polymers, etc). Often, they have intermediate properties between solids and liquids or can have genuinely new properties (biological tissues). Modelling of swelling or drying material is very important in view of potential applications in health (tumor growth or tissue development) and other sciences.

Modelling of swelling material can be attempted through either solid or fluid mechanics models. In the first category, we refer to [START_REF] Amar | Swelling instability of surface-attached gels as a model of soft tissue growth under geometric constraints[END_REF] (and references therein) where a model of swelling gel is proposed in the framework of hyperelasticity theory. Interestingly, this model was developed as swelling gels are seen as a good laboratory model of certain tumors, such as malignant melanoma. Indeed, the instabilities that are observed at the boundary of the gel are reminiscent to the corrugated shape of the boundary of a melanoma. In the context of tumor growth modelling a solid mechanics models can be found e.g. in [START_REF] Chaplain | A mathematical model for the growth and classification of a solid tumor: a new approach via nonlinear elasticity theory using strain-energy functions[END_REF].

However, many of the models used in tumor growth rather use a fluid-dynamic approach, and specifically, Darcy's law or some elaboration of it [START_REF] Bertsch | A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth[END_REF][START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF][START_REF] Cristini | Nonlinear simulation of tumor growth[END_REF][START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF][START_REF] Colli | Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth[END_REF].

Mathematically, Darcy's law is expressed by v = -k ∇p, where v is the fluid velocity, p is the hydrostatic pressure, ∇ is the spatial gradient and k is a constant named 'hydraulic conductivity'. Darcy's law is derived from Navier-Stokes equation for a fluid subjected to strong friction such as flowing inside a porous medium. However, the use of Darcy's law is not obvious. The article [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF] is entirely devoted to the problem of determining the velocity in the mass balance equations (referred to as the "closure problem") and to a phenomenological justification of the use of Darcy's law in tumor growth.

Due to its importance in the clinic, one of the major questions explored in tumor growth modelling is the description of the tumor boundary and how it evolves in time. It naturally leads to the study of free boundary problems [START_REF] Friedman | A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth[END_REF] and many works have explored under which asymptotic limits the fluid model could lead to a freeboundary problem [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF][START_REF] Hilhorst | Formal asymptotic limit of a diffuse-interface tumor-growth model[END_REF]. Related to these, the analogy between tumor growth and the free-boundary problem of solidification (the so-called Hele-Shaw problem) has been developed in [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF][START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF]. In these last series of works, the tumor is regarded as the region of space where cells have reached the packing density. It presupposes that the cells have a finite size and cannot overlap, leading to a maximum packing density where cells occupy all the available space. The tumor is therefore an incompressible medium separated from the outer medium by a moving free boundary which can be calculated through the resolution of an elliptic problem for the pressure in the moving domain of the tumor.

All the previous studies rely on a continuum description of the tumor. However, at the microscopic level, a tumor is made of discrete entities, the cells and various types of "individual-based" microscopic models of tumor growth, where cells are described as discrete entities, have been developed: see in particular [START_REF] Drasdo | A single-cell-based model of tumor growth in vitro: monolayers and spheroids[END_REF]. We refer to [START_REF] Roose | Mathematical models of avascular tumor growth[END_REF] for a review of the various modelling approaches and to [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF] for a comparison of their merits. The connection of the microscopic approach to the macroscopic one through coarse-graining is investigated in [START_REF] Motsch | From short-range repulsion to Hele-Shaw problem in a model of tumor growth[END_REF].

In the present work, we revisit the closure problem and investigate what motion results from the combination of volume-exclusion (or non-overlapping) and growth.

In relation to this, we question the validity of Darcy's law once more. Our approach, rather than relying on constitutive relations like hyper-elasticity or Darcy's law, hypothesizes simple heuristic rules, more likely to be obeyed in generic situations. Here, the main heuristic rule is that particles cannot overlap. In other words, we directly place ourselves in a context akin to the Hele-Shaw limit as developed in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] and related works cited above. However, as we will see, our conclusions will be different.

We also point out that similar heuristic rules have been applied to other domains, such as crowd modelling (see in particular [START_REF] Maury | Handling congestion in crowd motion models[END_REF]). We consider a system made of finite-sized particles at equilibrium in a confining external potential constrained by the non-overlapping condition. We refer to [START_REF] Leroy-Lerêtre | Are tumor cell lineages solely shaped by mechanical forces?[END_REF] for a discussion of the biological situation described by this particular setting. We then assume that the particle volume and confinement potential may vary with time and that the particles follow this evolution adiabatically by remaining at any time at mechanical equilibrium. The question we want to address is what particle motion This manuscript is for review purposes only.

results from this situation.

Answering this question in full generality at the discrete level is probably out of reach. So, we formulate a similar problem at the continuum level. We assume a continuum density for a population of particles having finite average volume. The particles are confined by an external potential and we assume the particles at mechanical equilibrium. Our first result is to characterize the resulting equilibrium density. Like in the Hele-Shaw type models referred above, the particles occupy a domain of finite extension in space, limited by a level set of the potential. Inside this domain, the density is equal to the maximal (packing) density allowed by their finite size. Outside this domain the density is zero.

Then, we turn on the time variability of the average particle volume and of the confinement potential. Assuming that the system moves adiabatically and remains at any time at mechanical equilibrium, we can compute the continuum velocity. More precisely, we determine this velocity by applying two heuristic principles directly connected to the previous non-overlapping heuristics. The first heuristics is that particles can't swap their positions. Indeed, at the packing state, there is not enough space for two spherical particles to undertake the maneuver required to swap their position.

This heuristics provides the component of the velocity normal to the potential level sets.

To determine the component of the velocity tangent to the potential level sets, we invoke a second heuristics, namely that the sequence of minimization problems over time will favor a continuous particle motion rather than jumps which would generate large velocities. In continuum language, this means that the velocity should obey an energy minimization principle. We show that this principle determines the parallel velocity in a unique way as the parallel gradient along the potential level sets of a velocity potential (not to be confused with the confinement potential). This velocity potential is found by inverting a Laplace-Beltrami operator on each of the level sets.

We will show that in general, it is not possible to neglect the tangential component of the velocity. This means that the velocity at the boundary of the medium is not normal to the boundary. By contrast, the Hele-Shaw limit of the tumor models of [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] leads to a velocity at the boundary which is normal to that boundary. Our model provides a different conclusion and consequently, brings new elements in the debate about the validity of the Darcy law, at least in its simple form when the hydraulic conductivity is a scalar.

To close the model we need to specify how the average particle volume evolves in time. So far, it has been assumed given, but in reality, the ability of a volume element to grow depends on its location. In general, the material derivative of the volume is given by a growth rate depending on the location and some intrinsic properties of the volume element. For instance, in the case of a tumor, the growth rate of a cell is a function of its position in the tumor through the availability of nutrients, and of its internal characteristics such as its metabolic rate. We will assume a growth rate depending on space, time and volume. Then, the problem of finding the volume becomes coupled with the problem of finding the velocity as the latter is involved in the material velocity determining the former. It makes the problem nonlinearly coupled. We will not prove existence of solutions for this model but we will check its inner consistency. This will be done by showing that both the volume and the velocity can be searched in the space of C ∞ functions of time and space in the tumor volume deprived of the minimal point of the confining potential (assumed unique and immobile).

The medium under consideration bears analogy with a granular material. There
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has been considerable literature on granular media and we refer the reader to [START_REF] Aranson | Patterns and collective behavior in granular media: Theoretical concepts[END_REF] for a review. Continuum approaches for granular media are mostly based on thermodynamical considerations (see e.g. the seminal work [START_REF] Goodman | A continuum theory for granular materials[END_REF]). These approaches rely on the assumption that the system is at equilibrium. However, in complex media such as gels or tumors, there are momentum and energy exchanges with the environment through (bio)-chemical processes. It is very difficult to determine what these processes are and to measure their strength in vivo. Of course, cells in a tumor do obey the laws of physics, but the precise physics at play is mostly unknown. So, rather than focusing on physical first principles, we focus on their consequences in terms of cell behavior which we model through a heuristic approach based on the rules described above.

The goal of this article is to lay down the modelling principles and to give formal checks of the model's inner consistency. It is not to prove well-posedness of the full evolution problem nor to provide numerical simulations. Indeed, existence and uniqueness results are non trivial due to the coupling between the minimization problem and the evolution of the average particle volume. Furthermore, the non-classical form of the model will require the design of new specifically adapted numerical methods. These two important aspects are outside the scope of the present paper and will constitute results on their own. The article is structured as follows. In Section 2 we summarize the main results of our work and provide a detailed discussion and directions for future work. The following sections are devoted to the proofs. The case of the mechanical equilibrium is dealt with in Section 3. Then, the time dependent problem is investigated with first the determination of the normal velocity in Section 4 and then that of the tangential velocity in Section 5. Section 6 collects additional proofs, most importantly those about the regularity of the velocity field. A short conclusion is drawn in Section 7.

2. Framework, main results and discussion.

2.1. Motivation: microscopic background. In this section, we motivate our approach by proposing a model of an incompressible swelling medium at the particle level. We consider a system consisting of N incompressible spherical particles of positions x i ∈ R d , d ≥ 1, and radii R i > 0, for i = 1, . . . , N . The radii are known but the positions are the solutions of a minimization problem. Specifically, we consider that each particle is subject to a potential energy V (x i , R i ) for a given known energy function V (x, R). We now give two examples of such energy functions.

In the first example, we consider a bowl with shape h(x) where x ∈ R 2 and h(x) is the position of the bottom of the bowl at x. Consider that the lowest point of the bowl is at x = 0 and set h(0) = 0. Put a bead of radius R and volumetric mass ρ at position x and suppose that the bead is only subject to gravity. Then, the potential energy of the bead will be V (x, R) = 4π 3 ρR 3 gh(x), where g is the acceleration of gravity.

The second example is a tumor. There, the potential energy is primarily produced by the elastic deformation of the extra-cellular matrix. But the biomechanical interactions of a tumor with the extra-cellular matrix are very complex and the subject of ongoing intense research (see e.g. the review [START_REF] Walker | Role of extracellular matrix in development and cancer progression[END_REF]). We make the assumption that the potential associated with the elastic deformation may be described by a given function V to avoid entering into the description of a complex and still partially unknown phenomenon. The deformation (and consequently the potential energy) is likely to be larger at the periphery of the tumor than inside, because the matrix displacement at a given point is correlated to the number of tumor cells that have intercalated themselves between the center of the tumor and this point. Obviously more cells
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have intercalated at the tumor periphery than at its core. Thus, we can model this potential energy h(|x|) by an increasing function of the distance |x| from the center of the tumor supposed located at x = 0. In this case, the potential energy is likely to be independent of the size of the cell, because it primarily depends on the deformation of the matrix and not on the shape of the cells. This leads to postulating

V (x, R) = h(|x|).
Back to the generic case, we denote by X = (x 1 , . . . , x N ) and R = (R 1 , . . . , R N ).

The total energy of the system is the function

(2.1) E R (X ) = N i=1 V (x i , R i ).
The first problem we are interested in consists of minimizing the energy (2.1) over a set of admissible configurations X corresponding to non-overlapping spheres. Specifically, we define the admissible set by

A R = X ∈ (R d ) N | |x i -x j | ≥ R i + R j , ∀i, j ∈ {1, . . . , N }, i = j .
The minimization problem consists of finding X ∈ (R d ) N which realizes

(2.2) min X ∈A R E R (X ).
This pictures the equilibrium configuration of a granular medium made of frictionless spheres in an external potential. Introducing friction or cohesion between the grains is discarded here and will be investigated in future works. Problem (2.2) has been considered numerically in [START_REF] Degond | Damped Arrow-Hurwicz algorithm for sphere packing[END_REF]. This is a non-convex problem with multiple solutions.

We would like to characterize the properties of a generic solution and to this end, we will consider a continuum version of it.

The second problem we consider is the introduction of time evolution dynamics in the system. This dynamics is generated by the changes over time of the particles radii R i (t), which can increase (case of a swelling material) or decrease (case of a drying material). We also allow the potential energy V to depend on time. Here we will suppose that both evolutions are given. Since, the vector of the particle radii R(t) changes over time, the admissible set A R(t) and the potential V (x, t, R) depend on time. Consequently, solutions of (2.2) will also depend on time. Indeed, we assume that the particles stay adiabatically at a minimum of the energy (2.1) and that we can extract a smooth (at least differentiable) trajectory X (t) among the possible solutions, at least for a small interval of time. The problem is then to find the particle velocities v i (t) = dxi dt , or in other words, the vector

V(t) = (v 1 (t), . . . , v N (t)) = dX dt (t).
Again, we discard any friction or cohesion forces between the grains which could alter the time dynamics.

A similar problem has been investigated numerically in [START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF]. In particular, one possible algorithm is to introduce a time discretization t k = k ∆t with a time step ∆t > 0 and assume that X k is a solution of (2.2) associated to radii R k = R(t k ) and potential function V k (x, R) = V (x, t k , R). Then, time is incremented by ∆t and a new minimization problem is considered associated to radii R k+1 and potential function V k+1 . Obviously, X k is not a solution of this new minimization problem. So, a new solution X k+1 is sought. To single out a unique solution among the many possible solutions of the minimization problem, we select the solution X k+1 which has the smallest distance to X k . In this way, a discrete configuration X k+1 is found, from which a set of discrete velocities

V k = X k+1 -X k ∆t ,
is found. The selection principle above leads to the velocity V k of smallest possible norm among the possible candidates. The question is whether we can find a simple expression to determine V k .

Finding a simple answer to this question seems unlikely in the discrete setting, but the problem may be easier to study at the level of a coarse-grained continuum model. So, the goal of this paper is to propose such a continuum model and to show that indeed, it is possible to determine these velocities in a unique way. We would like to stress here that it is not a goal of this paper to justify the coarse-graining procedure. Rather, we are going to postulate the problem at the continuum level as an analogue of the problem at the discrete level. The investigation of the passage from the discrete to the continuum problem will be the subject of future work (see also [START_REF] Motsch | From short-range repulsion to Hele-Shaw problem in a model of tumor growth[END_REF] for the coarse-graining of a related model).

2.2. General assumptions. We assume a medium made of discrete entities each having finite volume and minimizing a confinement energy subject to a nonoverlapping (incompressibility) constraint such as described in Section 2.1. Since we are aiming at a continuum description, we do not describe each particle individually but consider their number density n(x, t) and their average volume τ (x, t) > 0, where

x ∈ R d is the position in a d-dimensional space (in practice d = 1, 2 or 3) and t ≥ 0 is the time. The non-overlapping constraint (which, at the discrete level, was expressed by the fact that X must belong to the admissible set A R ) is now expressed by the fact that at any given point in space and time, the volume fraction occupied by the particles n(x, t)τ (x, t) cannot exceed 1, i.e.

(2.3) n(x, t) τ (x, t) ≤ 1.

Thus, τ -1 (x, t) is the maximal allowed (packing) density of the particles. In a first instance, we assume that τ (x, t) is a given function of space and time and that it is defined, positive and finite irrespective of the presence of particles at (x, t). The timedependence of τ mimics the time-dependence of the particle radii R in the discrete setting. However, we note a difference with the discrete case, in that τ imposes what the average particle size is at every location x, which was not the case at the discrete level. The reason is that, in a biological setting, the cell size is determined by the cell growth rate, itself depending on the local availability of nutrients which is a definite function of position and time. In a second instance, in Section 2.6, we will derive τ from an equation involving the particle growth rate, which a posteriori justifies this modelling choice We also impose that the particle density is nonnegative:

(2.4) n(x, t) ≥ 0.

Additionally, like in the discrete case, we assume that the total number of particles N is fixed, given and is constant in time, i.e.

(2.5)

R d n(x, t) dx = N.
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Again, in future work, this assumption will be removed and replaced by a model for the growth or shrinkage of the population.

Mechanical equilibrium.

We are first interested by the mechanical equilibrium. Freezing the time variable t for the moment, we assume that there exists a mechanical energy

(2.6) F t [n] = R d V (x, t, τ (x, t)) n(x, t)dx,
associated with a given potential V (x, t, τ ), which the particles try to minimize while satisfying the non-overlapping constraint (2.3), the nonnegativity constraint (2.4) and the total mass constraint (2.5). In other words, our goal is to solve the following minimization problem at any given time t:

Find n(•, t) : x ∈ R d → n(x, t) ∈ R a solution of: (2.7) min F t [n(•, t)] | n(•, t) ≥ 0, n(•, t)τ ≤ 1 and R d n(x, t)dx = N , for τ : (x, t) ∈ R d × [0, ∞) → τ (x, t) ∈ R + and N > 0 given. The potential V (x, t, τ )
is the continuum analog of the discrete potential V of Section 2.1 and Eq. (2.6) is nothing but an approximation of Eq. (2.1) when N is large, assuming that the particle positions x i are drawn randomly, independently and identically according to the probability N -1 n(x, t) dx. Obviously, whether this independence assumption holds needs to be proved but we will leave justifications of this question to future work.

Pursuing the examples of the bowl and beads given at the beginning of Section 2.1, if we assume microscopic beads, we get V (x, t, τ ) = ρ τ gh(x, t) where we have assumed that the bowl can deform and its bottom shape is defined by the time-dependent height h(x, t). In the case of extra-cellular matrix confining a tumor, we would simply have V (x, t, τ ) = h(|x|, t), where again, we assume that the confinement potential can vary with time with e.g. the remodelling of the extra-cellular matrix.

We assume that V ≥ 0. For the simplicity of notations, we define an "effective potential" W (x, t) by

(2.8) W (x, t) = V (x, t, τ (x, t)).
We assume that, for all t ≥ 0, we have

W (x, t) → +∞ as |x| → +∞.
The exact assumptions on potential W will be given at Section 3. We will show that the solution n N (x, t) of the minimization problem (2.7) (indexed by the number N of particles in the system) is given by (2.9)

n N (x, t) =    1 τ (x, t) , if x ∈ Ω N (t), 0, if x ∈ Ω N (t),
where the domain Ω N (t) is given by

(2.10) Ω N (t) = {x ∈ R d | 0 ≤ W (x, t) ≤ U N (t)},
and U N (t) is the unique solution of the equation with P : (u, t) ∈ [0, ∞) 2 → P (u, t) ∈ [0, ∞) given by (2.12)

(2.11) P (U N (t), t) = N,
P (u, t) = {x∈R d , 0≤W (x,t)≤u} τ -1 (x, t) dx.
Eq. (2.9) shows that, within its support, the density saturates the congestion constraint (2.3), i.e. the density is everywhere equal to the maximal allowed (packing) density τ -1 (x, t) (see Fig. 1). We refer to Section 2.9 for more comments. Now, let n p (x, t) be the solution associated with a different total number of particles p ≥ 0 with associated support Ω p (t). Since P is strictly increasing with respect to u, we have p < N ⇒ U p (t) < U N (t) and so, with (2.9):

p < N ⇒ Ω p (t) Ω N (t) and n N (•, t)| Ωp(t) = n p (•, t).
Additionally, we introduce the domain boundary Σ p (t) of Ω p (t). With (2.10), (2.11), we have

(2.13) Ω p (t) = W (•, t) -1 ([0, U p (t)]), Σ p (t) = ∂Ω p (t) = W (•, t) -1 ({U p (t)}),
where W (•, t) -1 (S) denotes the pre-image of a set S ⊂ [0, ∞) by the function

x → W (x, t) for fixed t.

Motion under volume growth in non-swapping condition (dimension d ≥ 2)

. Now, we turn our attention towards a dynamic situation where the average volume occupied by the particles τ (x, t) at point (x, t) may vary in time
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due to either their swelling or drying, described respectively by the rate-of-change q(x, t, τ ) of their average volume τ . We also allow for a possible time-dependence of the confinement potential function V (x, t, τ ). We assume that at any given time t,

the medium is at mechanical equilibrium as described in the previous section. So, the time variations of τ and V induce an evolution of the density n and of the material interface Ω N (t) in an adiabatic way, i.e. the system follows a trajectory which is a time-continuous sequence of mechanical equilibria, see Fig. 2. From this sequence of equilibria, we want to reconstruct the motion of the medium itself and define a continuum velocity v(x, t), x ∈ Ω N (t) satisfying the continuity equation

(2.14) ∂ t n + ∇ • (nv) = 0,
with n = n N given by (2.9), where ∇• indicates the divergence operator. Since n is known, Eq. (2.14) is an equation for v(x, t), namely:

(2.15) ∇ • (τ -1 (x, t) v(x, t)) = -∂ t τ -1 (x, t), x ∈ Ω N (t), t ≥ 0.
However, it is a scalar equation for the vector quantity v(x, t) and only fully determines v in dimension d = 1. We will treat the case of dimension d = 1 apart in Section 2.8. In dimension d ≥ 2, the full determination of v requires further assumptions. This is exactly the statement of the "closure problem" discussed in [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF]. Here our goal is to determine the velocity v(x, t) fully in dimension d ≥ 2, by following two principles inspired by the microscopic picture, namely, (i) the non-swapping condition and (ii) the principle of smallest displacements. Principle (i) will determine the component of v normal to the family of surfaces (Σ p (t)) p∈(0,N ] while Principle (ii) will determine its tangential component to these surfaces. We will investigate the consequences of Principle (i) in the present section and defer the use of Principle (ii)

to the next section.

Remark 2.1. To justify the assumption made earlier that W has a unique minimum and critical point, we note that, with several minima, the minimization problem would generate several connected components. To maintain a global minimum the particles would have to jump between isolated components, leading to large, unsmooth displacements which we discard as unrealistic.

The non-swapping principle (Principle (i)) postulates that the level sets of the potential constrain the dynamics of the particles. More precisely, it postulates that two neighboring particles that are on a same level set at one time will continue to be on the same level set at future times, while those on different level sets will continue to be on different level sets. This non-swapping assumption is a logical consequence of the fact that particles are at a packing state and cannot find enough free space to undertake a swapping maneuver in the normal direction. In dimension d = 1, we

show that this assumption is always satisfied (given the assumptions made on the data) and consequently, the dynamics is fully determined by the continuity equation.

By contrast, in dimension d ≥ 2, this assumption leads to a non-trivial condition that allows for the unique determination of the component of v normal to the boundary Σ p (t) of Ω p (t), for all p ≤ N . To do so, we introduce

(2.16) π(x, t) = P ( W (x, t) , t),
where W and P are given by (2.8) and (2.12) respectively. This function gives the number of particles in the volume enclosed by the level set of the effective potential
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(2.17) Ω p (t) = π(•, t) -1 ([0, p]), Σ p (t) = π(•, t) -1 ({p}),
so that the family (Σ p (t)) 0≤p≤N is nothing but the family of level sets of the function π(•, t). We assume a non-degeneracy condition: ∇π(x, t) = 0, for all (x, t) ∈

R d × [0, ∞). The vector (2.18) ν(x, t) = ∇π(x, t) |∇π(x, t)| ,
defines the outward unit normal to Σ p (t) at x with p = π(x, t). We can decompose the velocity vector v as follows:

(2.19) v(x, t) = v ⊥ (x, t) + v (x, t), v ⊥ (x, t) = (v • ν) ν (x, t), v (x, t) • ν(x, t) = 0, for all x ∈ Ω N (t), t ∈ [0, ∞).
In the sequel, v ⊥ will be referred to as the normal velocity (with respect to the surface Σ p with p = π(x, t)) and v as the tangential velocity.

The main consequence of the non-swapping assumption, as shown later in Lemma 4.2, is that in dimension d ≥ 2, it leads to the full determination of the the normal velocity by v ⊥ = w ⊥ ν where w ⊥ is given by:

(2.20)

w ⊥ (x, t) = - ∂ t π(x, t) |∇π(x, t)| , x ∈ Ω N (t), t ≥ 0.
This is nothing but the velocity of Σ p (t) in the normal direction. The interpretation is that, due to the non-swapping assumption, any particle located in the infinitesimal layer between Σ p (t) and Σ p+δp (t) with δp 1 must remain in this layer and therefore, has to move with the velocity of Σ p (t), see Fig. 3.

In Section 4, we prove that, for any velocity field satisfying (2.20), the left-hand side of the continuity equation (2.14) averaged on Σ p (t) is identically zero for any p ≤ N and any t ≥ 0, namely

(2.21) δ • π(•, t) -p , ∂ t n + ∇ • (nv) (•, t) = 0,
This manuscript is for review purposes only. Medium velocity in the normal direction is the velocity of Σp, i.e.

w ⊥ = 1 dt (X(t + dt) -X(t)) • ν(t).
Here, X(t + dt) is constructed from X(t) as the intersection of the line passing through X(t) directed by the normal vector ν(t) to Σp(t) and the surface Σp(t+dt) where dt is an infinitesimally small time increment. We also refer the reader to Definition 4.1 for a more precise statement.

where •, • is the duality bracket between a distribution and a smooth function. To interpret the Dirac delta in the expression above, we recall the following formula, a consequence of the so-called coarea formula: Eq. (2.21) will be an important condition for determining the tangential velocity v in the next section.

(2.22) δ • ψ , f = {ψ(x)=0} f (x) dS(x) |∇ψ(x)| , for any smooth functions x ∈ R d → f (x), ψ(x) ∈ R,

Tangential velocity (dimension d ≥ 2).

To determine the tangential velocity v , we apply the principle of smallest displacements (Principle (ii), see previous section). This principle suggests to determine the velocity v as the solution of a convenient energy minimization principle. It is the continuum counterpart of the principle set at the microscopic level in Section 2.1, which suggested to look for the smallest velocity V k among the possible ones. In the present section, we summarize the conclusions of this approach ; details and proofs can be found in Section 5.

First, we remark that we do need a non-zero tangential velocity v in general.

Indeed, even if the choice v = w ⊥ ν with w ⊥ as in (2.20) satisfies (2.21), it does not necessarily satisfy the continuity equation (2.14). In Section 5.1, we will give a two-dimensional counter-example where this is indeed not true, see Fig. 4.
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(2.23) ∇ • (τ -1 v ) = f, f := -∂ t τ -1 -∇ • (τ -1 w ⊥ ν), x ∈ Ω N (t), t ≥ 0,
and appears as a constraint on v . Eq. (2.21) tells us that for each t ≥ 0 and 0 ≤ p ≤ N , the average of f on the level set Σ p (t) defined by (2.17) is equal to zero, namely

(2.24) δ • π(•, t) -p , f (•, t) = 0, ∀(p, t) ∈ (0, N ] × [0, ∞).
In section 5.2, we show that (2.24) is a necessary condition for the existence of a solution to (2.23). It is also a sufficient condition. However, in order to guarantee the uniqueness of the solution, we need to impose an additional constraint.

Here, we add the condition that v corresponds to the minimal displacement on each of the level sets Σ p (t). In other words, we search for the vector fields v that minimize the parallel kinetic energy (for a given function g to be specified below):

(2.25) K p,t [v ] = δ • π(•, t) -p , g(τ (•, t)) |v (•, t)| 2 , ∀(p, t) ∈ (0, N ] × [0, ∞), on all surfaces Σ p (t), i.e. v ∈ arg min{ K p,t [w ], w tangent vector field to Σ p (t) s.t. ∇ • (τ -1 w ) = f }, ∀(p, t) ∈ (0, N ] × [0, ∞), (2.26)
where we denote by arg min the set of minimizers of the expression inside the curly brackets. The expression (2.25) is akin to the integral of the parallel kinetic energy density on the surface Σ p (t), where this energy may be weighted by an appropriate This manuscript is for review purposes only.

positive function of the mass, i.e. the volume, of the particles, g(τ ) > 0. For instance, returning to the example of the beads in a bowl at the beginning of Section 2.1, the parallel kinetic energy of a particle of volume τ is proportional to τ |v | 2 (as its mass is proportional to τ ) but the surface density of such particles is proportional to τ -(1-1/d) . So, in total, the parallel kinetic energy density is proportional to τ 1/d |v | 2 , hence in this case, g(τ ) = τ 1/d (with d = 2 in the example of the beads in a bowl).

In the case of cells in a tumor, we expect the same scaling but with d = 3. However, we may think of different effects that could affect the scaling function, so, here, we consider a generic scaling function g(τ ).

In section 5.2, we show that such vector fields are necessarily surface gradients on the level set Σ p (t) of scalar functions. Specifically, we will show that (2.25) and

(2.26) imply that there exists a scalar function θ(x, t), such that:

(2.27) v (x, t) = -(τ g(τ )) -1 (x, t) ∇ θ (x, t),
where ∇ , the tangential gradient parallel to the level sets Σ p (t), is defined by

∇ θ(x, t) = ∇θ(x, t) -∇θ(x, t) • ν(x, t) ν(x, t),
Note that (2.27) could be viewed as a Darcy law in the tangential direction. However, the proportionality coefficient (τ g(τ )) -1 only depends on the particle characteristics, and not on those of the surrounding porous medium as in the traditional Darcy law.

With (2.27), Eq. (2.23) becomes an elliptic equation for θ on each level set surface Σ p (t), written as

(2.28) -∇ • ((τ 2 g(τ )) -1 ∇ θ) = f, x ∈ Ω N (t), t ≥ 0,
In section 5.2, this equation will be shown to have a unique solution in an appropriate function space, provided that (2.24) holds and that θ is sought with average zero on each level surface, namely

(2.29) δ • π(•, t) -p , θ(•, t) = 0, ∀(p, t) ∈ (0, N ] × [0, ∞).
Indeed, (2.28) can be reformulated as the inversion of a Laplace-Beltrami operator on each of the level surfaces Σ p (t). Standard differential geometry (see [START_REF] Gallot | Riemannian geometry[END_REF], Section 4.D.2) asserts that if the solution is sought in the subspace H 1 0 (Σ p (t)) of the Sobolev space H 1 (Σ p (t)) consisting of functions satisfying the additional constraint (2.29), this inversion has a unique solution.

If the problem has spherical symmetry, i.e. if there exists

V : (r, t, τ ) ∈ [0, ∞) 3 → V(r, t, τ ) ∈ [0, ∞) and T : (r, t) ∈ [0, ∞) 2 → T (r, t) ∈ [0, ∞) such that V (x, t, τ ) = V(|x|, t, τ ), τ (x, t) = T (|x|, t)
, then the unique solution of (2.28), (2.29) is θ = 0, which shows that in this case v = 0 and v = w ⊥ ν.

2.6. Determination of the average volume τ . In practice, the swelling or drying rate q of a given particle depends on local environmental cues, such as the evaporation rate for a drying material or the availability of nutrients for a growing tumor. Therefore, the average volume τ is not a priori known. Instead, we have to assume that it evolves as a Lagrangian quantity through the convection equation

(2.30)

∂ t + (v • ∇)τ (x, t) = q x, t, τ (x, t) ,
where the rate q is assumed depending on the position x, time t and the particule volume τ itself. Clearly, this equation generates a nonlinear coupling between τ and This manuscript is for review purposes only.

v. More importantly, to make mathematical sense, the vector field v has to satisfy a certain degree of smoothness. In this section, we show that this is actually the case.

More precisely, we show that if τ is smooth enough, then the resulting velocity v is well-defined and smooth. Conversely, if v is smooth enough, then the resulting τ is well defined and smooth. The proofs of all the lemmas below can be found in Section 6.1. We consider the case d = 1 first and then, the case d ≥ 2.

Lemma 2.2. (dimension d = 1). We assume that ∃T > 0 such that V and q belong to C ∞ (R × [0, T ] × (0, ∞)). We also assume that τ 0 and 1/τ 0 belong to C ∞ (R).

(i) Suppose τ and

1/τ belong to C ∞ (R × [0, T ]). Then, v ∈ C ∞ (R × [0, T ]). (ii) Assume v ∈ C ∞ (R × [0, T ]
) and that the flow Φ t s (x) of the differential equation

(2.31) ∂ ∂t Φ t s (x) = v(Φ t s (x), t), Φ s s (x) = x, is such that (x, s, t) → Φ t s (x) belongs to C ∞ (R × [0, T ] 2 ).
Then, τ and 1/τ belong to

C ∞ (R × [0, T ]). Lemma 2.3. (dimension d ≥ 2)
. We assume that ∃T > 0 such that V and q be-

long to C ∞ (R d × [0, T ] × (0, ∞)).
We also assume that τ 0 and 1/τ 0 belong to C ∞ (R d ).

(i) Suppose τ and

1/τ belong to C ∞ ((R d \ {0}) × [0, T ]). Then, v ∈ C ∞ ((R d \ {0}) × [0, T ]). (ii) Assume that v is in C ∞ ((R d \{0})×[0, T ]) and that the flow Φ t s (x) of the differen- tial equation (2.31) (now understood in dimension d ≥ 2) is such that (x, s, t) → Φ t s (x) belongs to C ∞ ((R d \{0})×[0, T ] 2 ). Then, τ and 1/τ belong to C ∞ ((R d \{0})×[0, T ]).
The assumption that Φ

t s (x) belongs to C ∞ (R × [0, T ] 2 ) (in dimension d = 1) or to C ∞ ((R d \ {0}) × [0, T ]) (in dimension d ≥ 2)
can only be shown under convenient assumptions on the growth rate q. Indeed, if the medium dries extremely fast (q is negative and large in magnitude), then some characteristics may reach 0 in finite time.

If the medium swells very fast, some characteristics may escape to infinity in finite time as well. The next lemma presents a case where this assumption can be proven.

Lemma 2.4. Assume that W (•, t) satisfies the assumptions of Theorem 3.1 below for all time. Assume q has the form q(x, t, τ ) = q(x, t)τ and there exists q * > 0, τ * 0 > 0 such that |q(x, t)| < q * and 0

< (τ * 0 ) -1 ≤ τ (x, 0) ≤ τ * 0 < ∞, for all (x, t) ∈ R d ×(0, ∞).
Then, no characteristics issued from x = 0 can reach x = 0 or can tend to ∞ in finite time.

The above lemmas do not prove the existence of a solution to the coupled problem for τ and v. They only show that there is a well-defined map from Here we only want to point out the consistency of the whole set of equations, i.e. that this map is well-defined. The assumption q(x, t, τ ) = q(x, t)τ in Lemma 2.4 can be generalized to any growth rate of the form q(x, t, τ ) = q(x, t)τ α with an exponent α ∈ R such that the blow-up time of the nonlinear differential equation which would replace the linear equation (6.2) (see Section 6.1) is infinite. This manuscript is for review purposes only.

C ∞ ((R d \ {0}) × [0, T ]) into itself,
presented in Section 2.8). The data are: (i) the average volume occupied by the particles at position x and initial time τ 0 (x); (ii) the total number of particles N which is constant with time; (iii) the confinement potential V (x, t, τ ) and (iv) the particle growth rate q(x, t, τ ), with both V and q being given functions of space, time and of the particle average volume τ ; (v) the weight g(τ ) relating the parallel kinetic energy of a particle to its volume τ . Given these data, the average volume τ (x, t) at time t is obtained through the particle growth rate equation (2.30) by:

(2.32)

∂ t + (v • ∇)τ (x, t) = q x, t, τ (x, t) , τ (x, 0) = τ 0 (x),
where v is the velocity field given below. The particle density n(x, t) is given through the mechanical equilibrium problem (2.7) whose solution is given by the bathtub principle (2.9):

(2.33) n(x, t) =    1 τ (x, t) , if x ∈ Ω N (t), 0, if x ∈ Ω N (t),
where, for all p ≥ 0, Ω p (t) is defined by (see (2.17)):

(2.34)

Ω p (t) = {x ∈ R d | 0 ≤ π(x, t) ≤ p},
and the function π is defined by (see (2.12) and (2.16)):

π(x, t) = {x ∈R d , 0≤W (x ,t)≤W (x,t)} τ -1 (x , t) dx , (2.35) 
with W (x, t) = V (x, t, τ (x, t)) being the 'effective potential'. Now the velocity is decomposed into its parallel and normal components through (2.19) giving rise to

v(x, t) = v ⊥ (x, t) + v (x, t), v ⊥ (x, t) = (w ⊥ ν)(x, t), (2.36)
with the normal ν and w ⊥ given by (see (2.18) and (2.20)):

ν(x, t) = ∇π(x, t) |∇π(x, t)| , w ⊥ (x, t) = - ∂ t π(x, t) |∇π(x, t)| . (2.37)
The parallel velocity is given in terms of the potential θ by (see (2.27)):

v (x, t) = -(τ g(τ )) -1 (x, t) ∇ θ (x, t), (2.38)
with θ being the solution of the elliptic problem (2.28), (2.29):

-∇ • (((τ 2 g(τ )) -1 ∇ θ) = -∂ t τ -1 -∇ • (τ -1 w ⊥ ν), (2.39) δ • π(•, t) -p , θ(•, t) = 0. (2.40)
2.8. Summary of the model (dimension d = 1). In dimension d = 1, the non-swapping constraint is an empty constraint (see Remark 4.6) and there is no tangential velocity. The consequence is that the dynamics of the medium is not governed by the potential (save for the determination of an integration constant), which is an important difference with the higher dimensional case. In dimension one, the continuity equation for n provides a scalar differential equation for the velocity v, which This manuscript is for review purposes only.

defines it up to a constant, and this constant is determined by the boundary conditions, which indirectly involve the potential. Altogether, the model is as summarized below.

The data (i) to (iv) are the same as in the case d ≥ 2 (except for the dimensional change). The data (v) (the weight g(τ )) is not needed. Given these data, the average volume τ (x, t) at time t is a solution of the one-dimensional version of (2.30), i.e.

(2.41)

∂ t + v∂ x τ (x, t) = q x, t, τ (x, t) , τ (x, 0) = τ 0 (x),
while the density n and velocity v are given by the following proposition, whose proof can be found in Section 6.2.

Proposition 2.5. We suppose d = 1. Under the assumptions of Theorem 3.1, there exists a unique velocity v that satisfies the continuity equation (2.14) and which is compatible with n being a solution of the energy minimization problem, given by the conditions

(2.42) W (a(t), t) = W (b(t), t), b(t) a(t) n(x, t)dx = N,
where

Ω(t) = [a(t), b(t)]
. This velocity is given by

(2.43) v(x, t) = 1 n(x, t) n(a(t), t)a (t) - x a(t) ∂ t n(y, t)dy ,
where a (t) denotes the time derivative of a(t) and is given by

(2.44) a (t) = n(b, t) ∂ t W (b, t) -∂ t W (a, t) -∂ x W (b, t) b a ∂ t n(x, t) dx n(b, t) ∂ x W (a, t) -n(a, t) ∂ x W (b, t) .
For clarity, the dependences of a and b on t have been dropped. The expression of b (t), the time derivative of b(t), is given by (2.44) after exchanging a and b.

2.9. Discussion. First, we discuss the stationary equilibrium exposed at Section 2.3. The result given in (2.9), (2.10) proves that the solution of the minimization problem is unique, contrary to the discrete case exposed in Section 2.1. However, the two problems are not equivalent (see beginning of Section 2.2), which could explain this difference. The particles gradually fill the energy level sets of the effective potential W by increasing values while keeping the non-overlapping condition saturated. They do so until the total number of particles has been exhausted. When this happens, the medium has reached its outer boundary and is therefore limited by the level set that encloses a number of particles exactly equal to the total number N of available particles in the system (see Eq. (2.11) and Fig. 1). This is the "bathtub principle" [START_REF] Lieb | Analysis[END_REF], p. 28.

We now comment on the time-dependent case and the determination of the velocity in Sections 2.4 and 2.5. In these two sections, we provide an answer to the "closure problem" [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF] which is different from the classical one relying on Darcy's law.

As a consequence of the use of Darcy's law for incompressible swelling materials [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF],

the continuum velocity is normal to the boundary of the medium. In the present framework, the velocity at the medium boundary is not normal to the boundary in general, due to the presence of a non-trivial tangential velocity component . The presence of this tangential component which allows the material to move along regions of This manuscript is for review purposes only.

constant energy. Of course, whether the Darcy law or the present model is the most appropriate needs to be documented by numerical simulations carefully calibrated and compared with actual data. The answer probably depends on the situation.

The model presented here could be viewed as a null model in the statistical sense:

a model where almost no assumptions on the biology is made (only simple rules deduced from the packing heuristics are). There are many ways to make it more realistic.

For instance, cell division could be introduced. A potential V that involves a contribution from particle interactions such as attachment between nearby cells could also be considered. The following sections provide the mathematical foundations of the results exposed so far.

Equilibrium through confinement subject to volume exclusion con-

straint. In the present section, we provide the mathematical background to the conclusions exposed in Section 2.3, i.e. we determine the equilibrium configuration of the particles at a given time t. Throughout this section, t is only a parameter, and so we will omit it in the expression of all the variables. The equilibrium configuration corresponds to minimizing the confinement energy F [n] given by (2.6) subject to the volume exclusion constraint (2.3), the nonnegativity constraint (2.4) and the total number of particles constraint (2.5). Therefore, we are led to solving the minimization problem (2.7) which we rewrite as follows since we omit the time-dependence:

Find n : x ∈ R d → n(x) ∈ R a solution of: min F [n] | n ≥ 0, nτ ≤ 1 and R d n(x)dx = N , (3.1) 
for τ : x ∈ R d → τ (x) ∈ R + and N > 0 given. We recall the expressions (2.8) of the effective potential W and write W = W (x) as we ignore the dependence with respect to t. The solution of this problem is a variant of the "bathtub principle" [START_REF] Lieb | Analysis[END_REF], p. 28. However, since it is a key element of the theory, we will state it and prove it below. The hypotheses made are not the minimal ones, but they will be needed in the forthcoming sections and will provide a unified setting throughout the paper. In this section we prove the following: Theorem 3.1. Assume the following:

(i) the functions x ∈ R d → W (x) ∈ R and x ∈ R d → τ -1 (x) ∈ R are in C ∞ (R d \{0}); (ii) W (x) ≥ 0, ∀x ∈ R d ; (iii) 0 < τ (x) < ∞ for all x ∈ R d ; (iv) |∇W (x)| < ∞, for all x ∈ R d ;
(v) for all u > 0, the level sets W -1 ({u}) are compact and have strictly positive d -1

Lebesgue surface measure;
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(vi) x = 0 is the only critical point of W and W (0) = 0;

(vii) W (x) → +∞ as |x| → +∞ ; (viii) R d τ -1 (x) dx > N ;
then, the solution of the minimization problem (3.1) is unique and given by (2.9) with the set Ω given by (2.10)-(2.12).

Remark 3.2.

(i) That W -1 ({u}) is compact for all u ≥ 0 (see Assumption (v)) follows from Assumption (vii). However, that they have strictly positive d -1 dimensional measure for all u > 0 does not follow from Assumption (vii). Conversely, Assumption (vii) does not follow from the compactness of W -1 ({u}).

(ii) Differentiating expression (2.16) with respect to x, we obtain:

(3.2) ∇π(x) = dP du (W (x)) ∇W (x).
By assumption (vi), ∇W (x) = 0 for x = 0. Using Eq. (3.11) below and (3.2), we get

(3.3) ∇π(x) = 0, for x = 0.
This non-degeneracy condition will be used later. Moreover, by Assumption (i), using Eq. (2.16), we have that π is also smooth.

We first prove the following: Proof: Let n be a solution to the minimization problem. Then, there exist three Lagrange-Kuhn-Tucker multipliers (see [9, Sec. 9.2]) λ, µ and ν, where µ ∈ R and λ = λ(x) ≥ 0 and ν = ν(x) ≥ 0 are functions satisfying: (i) λ(x) = 0 for all x such that n(x) τ (x) < 1 ; and (ii) ν(x) = 0 for all x such that n(x) > 0 ; such that the Euler-Lagrange equations hold:

W (x) δn(x) dx = -λ(x) τ (x) δn(x) dx + ν(x) δn(x) dx + µ δn(x) dx,
for all small variations δn(x) of n(x). The last term corresponds to the constraint on the total mass being equal to N . It follows that

W (x) = -λ(x) τ (x) + ν(x) + µ.
Now, suppose that n(x ) τ (x ) < 1 and n(x ) > 0 for x in a neighborhood U of a point x. Then, λ = 0 and ν = 0 in U and

W (x) = µ = Constant, ∀x ∈ U.
This occurrence is ruled out by Assumption (vi) of Theorem 3.1. Therefore, Eq. (3.4) must be satisfied, which ends the proof of the Lemma.
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Before turning to the proof of Theorem 3.1, we recall the coarea formula in its general form (formula (2.22) is a particular case involving the Dirac delta):

(3.5)

R d f (x) dx = ψ(R d ) {ψ(x)=u} f (x) dS u (x) |∇ψ(x)| du,
where x ∈ R d → ψ(x), f (x) ∈ R are smooth functions and dS u (x) is the Euclidean surface element on the codimension-1 manifold {ψ(x) = u} and ∇ψ is nowhere zero (these assumptions can be relaxed, see [START_REF] Federer | Geometric measure theory[END_REF]). With (2.22), we can also write (3.5) as

(3.6) R d f (x) dx = ψ(R d ) δ • (ψ -u) , f du.
In particular, we have

(3.7) R d f (x) (g • ψ)(x) dx = ψ(R d ) δ • (ψ -u) , f g(u) du,
where g :

ψ(R d ) → R is a smooth function.
Proof of Proposition 3.1. Thanks to Lemma 3.3, any solution of (3.1) is of the form (2.9) where the only unknown is the set Ω. We denote by χ Ω the indicator function of the set Ω (we recall that the indicator function of a set A is the function that takes the value 1 on A and the value 0 on its complement set). Then, by the coarea formula (3.7) applied with f = τ -1 χ Ω , g(u) = u and ψ = W , we get, since n(x) = τ -1 (x) on Ω:

F [n] = R d W (x) τ -1 (x) χ Ω (x) dx = +∞ 0 δ • (W -u) , τ -1 χ Ω u du. (3.8)
Here the integration with respect to u can be taken over [0, ∞) thanks to Assumption (ii) of Theorem 3.1. We recall that, following (2.22)

δ • (W -u) , τ -1 χ Ω = W -1 ({u}) τ -1 (x) χ Ω (x) dS u (x) |∇W (x)| ,
where dS u (x) is the Euclidean surface element on W -1 ({u}). Consequently, the only values of χ Ω (x) that enter the integral (3.8) for a fixed value of u are those taken on W -1 ({u}). We claim that the minimum of F [n] is reached if and only if the following is satisfied: (i) χ Ω (x) (which is equal to 0 or 1) is constant (i.e. either constantly 0 or constantly 1) on any level set W -1 ({u}) for all u ≥ 0; (ii) there exists U > 0 such that χ Ω (x) = 1 on W -1 ({u}) for all u such that 0 ≤ u ≤ U and χ Ω (x) = 0 for u ≥ U .

Equivalently, these two conditions put together mean that χ Ω (x) can be written:

(3.9) χ Ω (x) = χ [0,U ] (W (x)), i.e. χ Ω = χ [0,U ] • W.
It follows that (thanks to (3.7)

δ • (W -u) , τ -1 χ Ω = χ [0,U ] (u) δ • (W -u) , τ -1 ,

and

(3.10)

F [n] = U 0 δ • (W -u) , τ -1 u du.
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Assuming this result for a while, i.e., that U satisfying (3.9) exists, we show that U is uniquely determined by the total number of particles constraint (2.5). Using (3.9) and the fact that on Ω, n(x) = τ -1 (x), we can compute the total mass as follows:

N = R d τ -1 (x) χ Ω (x) dx = R d τ -1 (x) χ [0,U ] (W (x)) dx = {x∈R d , 0≤W (x)≤U } τ -1 (x) dx = P (U ),
where the function P (for fixed time t) is defined by (2.12). This leads to Eq. (2.11) for the determination of U . Note that P (U ) < ∞ for any U ≥ 0 by Assumption (vii). Now, Eq. ( 2.11) has a unique solution. Indeed, using the coarea formula again, we have

P (u) = u 0 δ • (W -u ) , τ -1 du .
Therefore, using (2.22), we have

dP du (u) = δ • (W -u) , τ -1 = W -1 ({u}) τ -1 (x) dS u (x) |∇W (x)| .
From Assumptions (i) and (iii) to (iv) and (vi) of Theorem 3.1, there exists

C u > 0 such that τ -1 (x) |∇W (x)| -1 ≥ C u > 0 on W -1 ({u}). Thus, by Assumption (v) of Theorem 3.1, dP du (u) ≥ C u W -1 ({u}) dS u (x) > 0. (3.11)
Consequently, P is a strictly increasing function. Moreover since W -1 ({0}) = {0} and τ -1 is bounded, we have P (0) = 0 (see (2.12)). Finally, thanks to condition (viii) in Th. 3.1,

lim u→∞ P (u) = R d τ -1 (x) dx > N.
So, there exists a unique u = U such that (2.11) holds.

We now show (2.10). Denote by Ω 0 the set defined by (2.10) and by n 0 the corresponding density given by (2.9). Taking χ Ω not of the form (2.10), we show that the corresponding density n has energy strictly larger than that of n 0 , i.e. F [n] > F [n 0 ]. This incidentally shows the uniqueness of the solution of the minimization problem as from Lemma 3.3, it must be of the form (2.9) for some set Ω and if Ω = Ω 0 , then, its energy is strictly larger than that obtained with Ω 0 .

Taking Ω = Ω 0 means that at least one of the subsets

ω 1 = W -1 ([0, U )) \ Ω or ω 2 = W -1 ((U, ∞))
∩ Ω contains a non-zero number of particles (i.e. has non-zero measure for the measure τ -1 (x) dx). We now show that they both contain a non-zero number of particles and that these numbers are the same by the total number of particles constraint (2.5). Indeed, we note that

Ω 0 \ ω 1 = Ω \ ω 2 = {x ∈ R d , such that W (x) ≤ U and χ Ω = 1}. (3.12)
Denote this set by ω. Then, by the constraint (2.5), we can write:

N = Ω0 τ -1 (x) dx = Ω τ -1 (x) dx.
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Decomposing the first integral on ω 1 and ω (which form a partition of Ω 0 by (3.12)) and the second one on ω 2 and ω (which similarly form a partition of Ω), we get:

ω1 τ -1 (x) dx + ω τ -1 (x) dx = ω2 τ -1 (x) dx + ω τ -1 (x) dx, and consequently (3.13) ω1 τ -1 (x) dx = ω2 τ -1 (x) dx,
showing that the number of particles contained in ω 1 and ω 2 are the same. Note that, by the coarea formula (3.6), we can re-write (3.13) according to:

+∞ 0 δ • (W -u) , (χ ω2 -χ ω1 ) τ -1 du = 0. (3.14)
Now, we have, thanks to (3.8)

F [n] -F [n 0 ] = +∞ 0 δ • (W -u) , (χ Ω -χ Ω0 ) τ -1 u du. (3.15) We note that χ Ω0 = χ ω1 + χ ω , χ Ω = χ ω2 + χ ω . So, (3.15) is written F [n] -F [n 0 ] = +∞ 0 δ • (W -u) , (χ ω2 -χ ω1 ) τ -1 u du. But we have ω 2 ⊂ W -1 ((U, ∞)), ω 1 ⊂ W -1 ([0, U )). So, we can write +∞ 0 δ • (W -u) , χ ω2 τ -1 u du = +∞ U δ • (W -u) , χ ω2 τ -1 u du (3.16) > U +∞ U δ • (W -u) , χ ω2 τ -1 du = U +∞ 0 δ • (W -u) , χ ω2 τ -1 du,
and similarly

+∞ 0 δ • (W -u) , χ ω1 τ -1 u du = U 0 δ • (W -u) , χ ω1 τ -1 u du ≤ U U 0 δ • (W -u) , χ ω1 τ -1 du = U +∞ 0 δ • (W -u) , χ ω1 τ -1 du, Therefore, F [n] -F [n 0 ] > U +∞ 0 δ • (W -u) , (χ ω2 -χ ω1 ) τ -1 du. (3.17)
But the integral at the right-hand side of (3.17) is equal to zero by (3.14). Consequently, we get F [n] > F [n 0 ], which is the result to be proved. Note that the proof relies on the fact that the inequality in (3.16) is strict. This is only true if the support of the function u → δ • (W -u) , χ ω2 τ -1 , is not reduced to {U }. But if this is the case, since the involved function is smooth, this means that it is identically equal to zero. This implies that

∞ 0 δ • (W -u) , χ ω2 τ -1 du = 0,
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3.1.

4. Continuum velocity under non-swapping constraint. In this section, we prove the results described in Section 2.4. We restore the time-dependence of all the quantities involved in the minimization problem of Section 3. We note that the non-degeneracy condition (3.3) allows us to define the outward unit normal ν(x, t)

to Ω π(x,t) (t) at x by (2.18) and makes the decomposition (2.19) of the velocity welldefined. We now recall the definition of the speed of a surface (or more generally of a co-dimension 1 manifold) and apply it to Ω p (t). Definition 4.1. Consider a time-dependent smooth regular domain Ω(t) and a point x ∈ ∂Ω(t). Then, the speed w ⊥ (x, t) of the surface ∂Ω(t) at x is defined as follows: let ν(x, t) be the outward unit normal to ∂Ω(t) at x. Then, for t close to t, the line drawn from x in the direction of ν(x, t) intersects ∂Ω(t ) at a unique point

X(t ). Then (4.1) w ⊥ (x, t) = d dt X(t ) | t =t • ν(x, t). Lemma 4.2.
Let Ω(t) = Ω p (t). Then the speed w ⊥ of Σ p (t) is given by

(4.2) w ⊥ (x, t) = - ∂ t π |∇π| (x, t).
Proof. We can write π(X(t ), t ) = p, for all t in a small neighborhood of t, with X(t) = x. Therefore, using (2.18) and (4.1):

0 = d dt (π(X(t ), t )) t =t = ∂ t π(x, t) + d dt X(t ) | t =t • ∇π(x, t) (4.3) = ∂ t π(x, t) + d dt X(t ) | t =t • ν(x, t) |∇π(x, t)| = ∂ t π(x, t) + w ⊥ (x, t) |∇π(x, t)|,
which leads to (4.2) and ends the proof of the Lemma.

We now define the flow of the velocity v:

Definition 4.3. Given a vector field v = v(x, t) which we assume continuous, bounded and C 1 with respect to x, the flow of v is the unique map Φ s t : Ω N (t) → Ω N (s) such that for any x ∈ Ω N (t), the function η : s → Φ s t (x) satisfies

η(t) = x, η (s) = v(η(s), s) ∀s ≥ 0.
We can now define the non-swapping constraint for the velocity.
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satisfying the same assumptions as in Def. 4.3 is said to be consistent with the nonswapping constraint if and only if for all (x, t) such that x is a regular point of W (t, •), belong to the neighborhood U. Then, if at time t, y 1 and y 2 belong to the same level set, i.e. p = π(y 1 , t) = π(y 2 , t) (respectively do not belong to the same level set i.e. π(y 1 , t) = π(y 2 , t)), then at time s they belong to the same level set given by π(Φ s t (y 1 ), s) = π(Φ s t (y 2 ), s) = H s t (p) (respectively they do not belong to the same level set i.e. p = π(Φ s t (y 1 ),

there exists a neighborhood U × V × I of (x, π(t, x), t) in R d × [0, N ] × [0, ∞)
s) = H s t (π(y 1 , t)) = p = π(Φ s t (y 2 ), s) = H s t (π(y 2 , t)) because of the injectivity of H s t ).
Remark 4.6. In dimension 1 the non-swapping constraint is always satisfied and therefore carries no content. Indeed, since we suppose in Def. 4.4 that x is a regular point of W (•, t), then it is also a regular point of π(•, t), and we can locally invert π(•, t) |U : U → V. Thus we can always find a function H t satisfying Eq. (4.4) as

H s t (p) := π Φ s t • π |U (•, t) -1 (p), s .
Next, we give a necessary condition for v to fulfill the continuity equation.

Proposition 4.7. Suppose that v satisfies the assumptions of Def. 4.3, satisfies the non-swapping constraint as given by Def. 4.4 for d ≥ 2, and is such that

(4.5) ∂ t n + ∇ • (vn) = 0.
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Then, we have

(4.6) v • ν = w ⊥ ,
where w ⊥ is given by Eq. (4.2) and ν by (2.18).

To prove this proposition, we first prove the 

(∂ t + v • ∇ x )π(x, t) = h(π(x, t), t). (4.7) 
Proof. For all (t, x) such that x is not a critical point of W (•, t), the non-swapping constraint in Def. 4.4 gives a function H t that satisfies (4.4) for all y in a neighborhood U x of x. Differentiating (4.4) along s and evaluating at s = t we have:

(∂ t + v • ∇)π(y, t) = ∂ s H s t (π(y, t))| s=t ,
for all y ∈ U x . We define h x (p, t) = ∂ s H s t (π(y, t))| s=t , with π(y, t) = p. We will show that this definition is independent of x. Indeed, if x, y are in Ω N (t) (and are not critical points), and z ∈ U x ∩ U y , then it must hold

(4.8) h x (π(z, t), t) = (∂ t + v • ∇)π(z, t) = h y (π(z, t), t).
Now, since d ≥ 2 and W (•, t) has a unique critical point (at x = 0), the level sets of π are diffeomorphic to connected (d -1)-spheres. Using the relation (4.8) and the connectivity of the level sets (since d ≥ 2), we get that h x (p, t) = h y (p, t) for any x, y such that h x (•, t) and h y (•, t) are defined at p. Thus the functions h x can be glued to a single function h = h(p, t) that satisfies (4.7). Since the functions h x are continuous, h is continuous as well.

Proof of Prop. 4.7. By lemma 4.8 there exists a function h satisfying Eq. (4.7). This equation is equivalent to

v • ν(x, t) = h(π(x, t), t) -∂ t π(x, t) |∇π(x, t)| = h(π(x, t), t) |∇π(x, t)| + w ⊥ (x, t),
where w ⊥ is the normal velocity of Σ p (t) as computed in (4.2). Since Ωp(t) n dx = p by the definition of Ω p (t), we deduce that

0 = d dt Ωp(t) n dx = Ωp(t) ∂ t n dx + Σp(t) nw ⊥ dS(x) (4.9) = Ωp(t) -∇ • (nv) dx + Σp(t) nw ⊥ dS(x) = Σp(t) n(w ⊥ -v • ν)dS(x) = -h(p, t) Σp(t) n |∇π| dS(x).
In the second line, we used the standard formula for the derivative of an integral on a time-dependent domain. The continuity equation was used in the third line, and Stokes' theorem in the fourth line. Since n > 0 on Σ p (t), and since Σ p (t) has positive
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d -1 measure (because p is not a critical value of the potential), the integral on the last line is strictly positive. We conclude that h(p, t) = 0 for all p > 0, and so for all (t, x), we have

(4.10) 0 = (∂ t + v • ∇)π = ∂ t π + (v • ν)|∇π|,
which is exactly (4.6) and finishes the proof.

As a consequence of the previous proof, we have Proposition 4.9. Suppose n satisfies the continuity equation (4.5), v satisfies the non-swapping constraint as expressed in Def. 4.4 and d ≥ 2. Then there exists a constant p ≥ 0, such that Φ t 0 (x) ∈ Σ p (t), ∀t ≥ 0.

Proof. Let p = π(x, 0), it follows from 4.7 that

d dt {π(Φ t 0 (x), t)} = (∂ t π + v • ∇π)(Φ t 0 (x), t) = 0.
And so π(Φ t 0 (x), t) = p for all t ≥ 0, which proves the proposition. This also shows that constancy of π along the trajectories is not equivalent to the non-swapping condition. The latter is the physically relevant one and it implies the former in specific situations only.

We now show the Theorem 4.11. Under the assumptions of Theorem 3.1, let n(x, t) be given by (2.9). Let v be a vector field such that

v • ν = w ⊥ ,
where ν and w ⊥ are given by Eqs. (2.18) and (4.2) respectively. Then, such vector field satisfies

δ • (π(•, t) -p) , ∂ t n + ∇ • (nv) (•, t) = 0, ∀t > 0, ∀p ∈ (0, N ).
Remark 4.12. Notice that we exclude the case p = N since then n becomes discontinuous and the derivatives cannot be defined.

Proof. Note that we have dropped the subscript N to n N for simplicity. Let t ≥ 0, since the function

p → δ • (π(•, t) -p) , ∂ t n + ∇ • (nv) (•, t)
is continuous, we only need to show that for all p ≥ 0,

I(p) := p 0 δ • (π(•, t) -p ) , ∂ t n + ∇ • (nv) (•, t) dp = 0.
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Using Stokes' theorem, we have:

I(p) = {x | π(t,x)≤p} ∂ t n + ∇ • (nv ⊥ ) (x, t) dx = Ωp(t) ∂ t n(x, t) dx + Σp(t) nv ⊥ • ν(x, t) dS(x),
where dS(x) is the canonical measure on ∂Ω(t). By hypothesis, v ⊥ • ν(x, t) is exactly the velocity of Σ p (t) at (x, t), and so:

Ωp(t) ∂ t n(x, t) dx + Σp(t) nv ⊥ • ν(x, t) dS(x) = d dt Ωp(t) n(x, t) dx = dp dt = 0,
where we used Eq. (4.3). So I(p) = 0 for all p, which ends the proof.

5. Determination of the tangential velocity. In this section, we provide the detailed mathematical discussion of the results summarized in Section 2.5.

5.1. Dimension d ≥ 2: tangential velocity is not zero in general. In this section, we show that in dimension d ≥ 2 the velocity field must have a non-zero tangential component v to be consistent with the continuity equation in general.

For this purpose, we provide a counter-example where the velocity field defined by v = w ⊥ ν with w ⊥ given by (4.6) does not fulfill the continuity equation (2.14). Indeed, consider the following potential V and average volume τ for x = (x 1 , x 2 ) ∈ T × R and t ∈ [0, ∞):

(5.1)

V (x) = W (x) = x 2 2 2 := W (x 2 ), τ (x, t) = |x|t, .
Here T = (-1, 1] ≈ R/2Z is the torus, i.e. we assume that all functions are 2-periodic with respect to x 1 and when integrals with respect to x 1 are involved, they are meant over the torus T. Then, by Prop. 3.1 it holds that

n(x, t) = 1 τ (x, t) = 1 |x|t . Firstly notice that π(x, t) = { W (y2)≤ W (x2)}
τ -1 (y, t) dy := π(x 2 , t).

So π is x 1 -independent. The choice of x 1 lying in the torus T ensures that this integral is finite. Denoting by (e 1 , e 2 ) a cartesian basis associated to the coordinate system (x 1 , x 2 ), we get that ν(x, t) is parallel to e 2 , i.e.

ν(x, t) = e 2 for x 2 > 0, ν(x, t) = -e 2 for x 2 < 0.

We also have that

w ⊥ (x, t) = -(∂ t π/|∇π|)(x, t) = -(∂ t π/|∂ x2 π|)(x 2 , t) := w⊥ (x 2 , t),
also only depends on x 2 . This implies

0 = ∂ t n + ∇ • (nv) = ∂ t n + ∂ x2 (n w⊥ ).
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For the considered value of τ in (5.1) and x 2 > 0, we have

∂ t n + ∂ x2 (n w⊥ ) = |x| 2 (-1 + t ∂ x2 w⊥ (x 2 , t)) -w⊥ (x 2 )x 2 t |x| 3 t 2 .
If this last expression was zero, it would imply that

t |x| 2 = -1 + t ∂ x2 w⊥ (x 2 , t) w⊥ (x 2 , t) x 2 ,
but this cannot hold since the left-hand side depends on x 1 but the right-hand side does not. Hence, we must conclude that the continuity equation is not satisfied.

Remark 5.1. This example does not satisfy the assumptions of Th. 3.1. However it can be seen as a limiting case of τ ε (x, t) = (|x| 2 + ε) 

A • ∇π = 0, in Ω N ,
and solving the equation

(5.3) ∇ • A = f, in Ω N ,
then f must be of zero-average on all level sets Σ p , i.e. f must satisfy

(5.4) δ • π -p , ∇ • A = 0, ∀p ∈ (0, N ].
Proof. Let g: R → R be a smooth function with compact support. Using (3.7) and Green's formula, we get:

∞ -∞ g(p) δ • π -p , ∇ • A dp = R d (g • π)(x) (∇ • A)(x) dx = - R d ∇(g • π)(x) • A(x) dx = - R d (g • π)(x) (∇π • A)(x) dx = 0,
where the cancellation comes from (5.2). This shows (5.4) and ends the proof.

Next, we consider the resolution of (2. 

∞ 0 R d (τ 2 g(τ )) -1 (x, t) ∇ θ(x, t) • ∇ ψ(x, t) dx dt = ∞ 0 R d f (x, t) ψ(x, t) dx dt,
and using (3.5), we deduce: We now show that (5.8) is equivalent to the same problem when we restrict ξ to satisfy the additional constraint δ • π(•, t) -p , ξ = 0, i.e.

∞ 0 N 0 x∈Σp(t) (τ 2 g(τ )) -1 (x, t) ∇ θ(x, t) • ∇ ψ(x,
(5.9)

y∈Σp(t) ξ(y) dS p,t (y) |∇π(I p,t (y), t)| = 0.
Indeed, if (5.8) is satisfied for all smooth ξ, it is satisfied in particular for those which satisfy the additional constraint (5.9). Conversely, suppose that (5.8) is satisfied for This manuscript is for review purposes only.

all smooth ξ that satisfy (5.9) and take now a smooth ξ that does not satisfy (5.9). We define ξ(y) = ξ(y) -z∈Σp(t) ξ(z) But since ξ differs from ξ by a constant on Σ p (t), the left-hand side of (5.10) is equal to the same expression with ξ instead of ξ. Using the assumption (2.24) that f is of zero-average on Σ p (t), the right-hand side of (5.10) is also equal to the same expression with ξ instead of ξ. So, we deduce that (5.8) is satisfied for all smooth ξ, not only those which satisfy (5.9).

So, now, we are left with solving (5.7) for all smooth ξ that satisfy (5.9). It is time to set up functional spaces. We consider the space L 2 (Σ p (t)) of square integrable functions on Σ p (t) endowed with the norm

u L 2 (Σp(t)) = y∈Σp(t) |u(y)| 2 dS p,t (y) |∇π(I p,t (y), t)| 1/2
, and the Sobolev space H 1 (Σ p (t)) of functions u of L 2 (Σ p (t)) which have first order distributional derivatives ∇ y u in L 2 (Σ p (t)), endowed with the norm

u H 1 (Σp(t)) = u 2 L 2 (Σp(t)) + ∇ y u 2 L 2 (Σp(t)) 1/2
.

Finally, we introduce the space H the problem of finding a solution of (5.7) for all ξ satisfying (5.9) can be recast in the functional setting:

Find θ ∈ H 1 0 (Σ p (t)) such that (5.11) a(θ, ξ) = L, ξ , ∀ξ ∈ H 1 0 (Σ p (t)).
It is clear that a and L are respectively a continuous bilinear form and a continuous linear form on H 1 0 (Σ p (t)). The only missing hypothesis to apply Lax-Milgram theorem is the coercivity of a on H 1 0 (Σ p (t)). For this, we remark that since (τ 2 g(τ )) -1 is smooth and positive, and since Σ p (t) is compact, there exists C > 0 such that (τ 2 g(τ )) -1 (I p,t (y), t) ≥ C > 0 for all y ∈ Σ p (t). Then, for all ξ ∈ H 1 0 (Σ p (t))

(5.12)

a(ξ, ξ) ≥ C y∈Σp(t) |∇ y ξ(x)| 2 dS p,t (y) |∇π(I p,t (y), t)| := C ã(ξ, ξ).
The quadratic form ã(ξ, ξ) at the right-hand side of (5.12) is nothing but the quadratic form associated to the Laplace Beltrami operator on Σ p (t) endowed with the metric g(y) = |∇π(I p,t (y), t)| -2 d-1 g e (y), where g e (y) is the Euclidean metric of Σ p (t) at point y. We know from the properties of the Laplace Beltrami operator on closed (i.e. without boundary) manifolds (see [START_REF] Gallot | Riemannian geometry[END_REF], Section 4.D.2) that its leading eigenvalue is zero, is simple and that the associated eigenfunctions are the constants. Furthermore, the eigenfunctions of this Laplace-Beltrami operator form a complete ortho-normal basis of the space L 2 (Σ p (t)). Therefore, from standard spectral theory, since H 1 0 (Σ p (t)) is the orthogonal space to the constants for the inner product of L 2 (Σ p (t)), we have min

ξ∈H 1 0 (Σp(t)) ã(ξ, ξ) ξ L 2 (Σp(t)) = λ 1 > 0,
where λ 1 is the first non-zero eigenvalue of the Laplace-Beltrami operator, which is strictly positive. Therefore, we have

a(ξ, ξ) ≥ C λ 1 ξ 2 L 2 (Σp(t)) , ∀ξ ∈ H 1 0 (Σ p (t)),
with Cλ 1 > 0, which shows the coercivity of a. Applying Lax-Milgram's theorem, we deduce that there exists a unique solution to (5.11). Moreover, by the regularity (in H 1 ) of the solution with respect to the data, and owing to the fact that all data are smooth, we deduce that the solution θ has the regularity C 0 (0, N ) × (0, ∞), H 1 (Σ p (t)) , which ends the proof of Theorem 5.3.

We note that if the problem has spherical symmetry, the solution θ has also spherical symmetry, and the level sets Σ p (t) are spheres. Therefore, θ is constant on Σ p (t) but on the other hand, condition (2.29) implies that its average must be zero. Therefore, the constant value of θ on Σ p (t) is necessarily zero. Thus, when the problem has spherical symmetry, the unique solution of (2.28), (2.29) is zero, the tangential velocity v = 0 and the velocity v is purely normal v = w ⊥ ν.

Now we show that the solution of minimization problem (2.26) is given by (2.27).

More precisely, we have the following:

Proposition 5.4. Let v be a solution of (2.26). Then, there exists a function θ such that (2.27) holds.

Proof. Suppose v = v (x, t) is a solution of (2.26). Let β = β(x, t) be a variation of v . Then β is a tangent vector field to all level surfaces Σ p (t), for all (p, t) ∈ (0, N ) × (0, ∞) and satisfies the constraint

∇ • (τ -1 β) = 0, ∀(x, t) ∈ t∈(0,∞) Ω N (t) × {t}.
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Taking smooth functions ϕ: (x, t) ∈ ∪ t∈(0,∞) Ω N (t) × {t} → ϕ(x, t) ∈ R, and γ: p ∈ (0, N ) → γ(p) ∈ R, we have, successively using Green's formula, the fact that β is tangent to Σ p (t), and that ∇ (γ • π) = 0:

0 = Ω N (t) ∇ • (τ -1 β)(x, t) ϕ(x, t) γ(π(x, t)) dx = - Ω N (t) τ -1 β(x, t) • ∇(ϕ γ • π)(x, t) dx = - Ω N (t) τ -1 β(x, t) • ∇ (ϕ γ • π)(x, t) dx = - Ω N (t) τ -1 β(x, t) • ∇ ϕ(x, t) γ(π(x, t)) dx = - N 0 δ • (π(•, t) -p), τ -1 β • ∇ ϕ γ(p) dp,
where the last identity follows from (3.7). Now, since this identity is true for all smooth functions γ(p), we deduce that

(5.13) δ • (π(•, t) -p), τ -1 β • ∇ ϕ = 0, ∀(p, t) ∈ (0, N ) × (0, ∞), ∀ϕ.
Now, the Euler-Lagrange equations of the minimization problem (2.26) are writ-

ten δ • (π(•, t) -p), g(τ (•, t)) v • β(•, t) = 0, ∀ β tangent vector field to Σ p (t) satisfying (5.13) , ∀(p, t) ∈ (0, N ) × (0, ∞).
Equivalently, setting z = τ -1 β, z is a tangent field to Σ p and v satisfies, 

δ • (π(•, t) -p), (τ g)(τ (•, t)) v • z(•, t) = 0, ∀ z tangent vector field to Σ p (t) satisfying δ • (π(•, t) -p), z • ∇ ϕ = 0, ∀(p, t) ∈ (0, N ) × (0, ∞),
(z • ∇ y φ)(p, t, y) dS p,t (y) |∇π(I p,t (y), t)| = 0, ∀(p, t) ∈ (0, N ) × (0, ∞), ∀ϕ.
Eq. (5.14) shows that on each surface Σ p (t), (τ g)(τ (I p,t (•), t)) v (p, t, •) is a tangent vector field orthogonal (for the L 2 (Σ p (t)) inner product) to all tangent vector fields z(p, t, •) themselves orthogonal to all gradient vector fields. But the space of gradients of functions of H 1 (Σ p (t)) is the same as the space of gradients of functions of H 1 0 (Σ p (t)). And this latter space is closed in L 2 (Σ p (t)). This follows easily again from the coercivity of the quadratic form ã proved in the proof of Theorem 5.3 (details are left to the reader). Therefore, (τ g)(τ (I p,t (•), t)) v (p, t, •) being orthogonal to the orthogonal space to the gradients (and the space of gradients being closed), is itself a gradient. So, there exists a function θ(p, t, •) (parametrized by (p, t) ∈ (0, N )×(0, ∞)) such that (τ g)(τ (I p,t (y), t)) v (p, t, y) = ∇ y θ(p, t, y), ∀y ∈ Σ p (t), ∀(p, t) ∈ (0, N ) × (0, ∞).
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Defining θ(x, t) through the change of variables (5.5), we get (2.27), which ends the proof.

6. Regularity of the velocity field and one-dimensional case. 

Assuming that the potential V is in C ∞ (R d × [0, T ] × (0, ∞)), then W is in C ∞ ((R d \ {0}) × [0, T ]
). We will also assume that W itself has not other critical point than 0 (see Assumption (vi) of Theorem 3.1). Then, as soon as u > 0, the manifold W (•, t) -1 ({u}) does not contain {0} (since {0} itself is the manifold W (•, 0) -1 ({u})) and is C ∞ . Therefore, all quantities involved in (6.1) are C ∞ which means that ∂P ∂u itself is in C ∞ ((0, ∞) × [0, T ]). It results that π itself is in C ∞ ((R d \ {0}) × [0, T ]) and since ∇π(x, t) = 0 as soon as x = 0, then ν and w ⊥ are in C ∞ ((R d \ {0}) × [0, T ]). Proof of Lemma 2.4: Let x 0 ∈ R d \ {0} and x(t) = Φ t 0 (x 0 ). Then, by (2.30), as long as x(t) ∈ R d \ {0}, we have (6.2) d dt τ (x(t), t) = q(x(t), t) τ (x(t), t), and so, τ (x(t), t) = τ (x 0 , 0) exp t 0 q(x(s), s) ds .

Therefore, (6.3) 0 < 1 τ * 0 e -q * t < τ (x(t), t) ≤ τ * 0 e q * t .

This manuscript is for review purposes only.

Besides, from (2.37) we get that

∂ t π + v • ∇π = 0,
from which we deduce that (6.4) π(x(t), t) = π(x 0 , 0) := p 0 .

We recall that p 0 = {W (x ,0)≤W (x0,0)} τ -1 (x , 0) dx , and we show that 0 < p 0 < ∞. Indeed, if p 0 = 0, since τ -1 (x , 0) > (τ * 0 ) -1 > 0, we need Meas({0 < W (x , 0) < W (x 0 , 0)}) = 0 where Meas stands for the d-dimensional Lebesgue measure. But because W (•, 0) is smooth on R d \ {0}, that 0 is the minimum of W on R d , and that x 0 = 0, then {0 < W (x , 0) < W (x 0 , 0)} is a non-empty open set and cannot be of zero Lebesgue measure. On the other hand if p 0 = ∞, this implies that Meas({0 < W (x , 0) < W (x 0 , 0)}) = ∞, which is not allowed since the level surfaces of the potential W (x 0 , 0) are assumed compact. Now, by (6.4), we have 0 < p 0 = π(x(t), t) = {W (x ,t)≤W (x(t),t)} τ -1 (x , t) dx < ∞.

Since τ satisfies (6.3), we can reproduce the same reasoning as we just did: we have 0 < p 0 = π(x(t), t) = {W (x ,t)≤W (x(t),t)} τ -1 (x , t) dx ≤ τ * 0 e q * t Meas({W (x , t) ≤ W (x(t), t)}).

So Meas({W (x , t) ≤ W (x(t), t)}) > 0. This shows that W (x(t), t) > 0 and so x(t) = 0 as, if x(t) = 0, this would imply that W (x(t), t) = 0 and so, {W (x , t) ≤ W (x(t), t)} = {0} and consequently Meas({W (x , t) ≤ W (x(t), t)}) = 0. The same reasoning applies with the other bound to show that x(t) cannot be infinite. This

shows that x(t) ∈ R d \ {0} for all times, and ends the proof.

Dimension one.

In this section, we prove Prop. 2.5. This manuscript is for review purposes only.

Proof of

Together with (6.5), this forms a 2 × 2 linear system for (a , b ) whose solution leads to 

Fig. 1 .

 1 Fig. 1. Schematics of the filling of the potential level sets. The level set U N (t) corresponds to the filling of the potential level sets by the entire population of particles N .

Fig. 2 .

 2 Fig. 2. Schematics of the motion of the medium between two instants t 1 , t 2 where τ (•, τ 2 ) > τ (•, τ 1 ).

Fig. 3 .

 3 Fig. 3.Medium velocity in the normal direction is the velocity of Σp, i.e.w ⊥ = 1 dt (X(t + dt) -X(t)) • ν(t).Here, X(t + dt) is constructed from X(t) as the intersection of the line passing through X(t) directed by the normal vector ν(t) to Σp(t) and the surface Σp(t+dt) where dt is an infinitesimally small time increment. We also refer the reader to Definition 4.1 for a more precise statement.

Fig. 4 .

 4 Fig. 4. Illustration of a need for a non-zero tangential velocity v .

2. 7 .

 7 Summary of the model (dimension d ≥ 2). In this section, we summarize the equations of the model in dimension d ≥ 2 (the model in dimension d = 1 is

Lemma 3 . 3 .

 33 Suppose the assumptions of Theorem 3.1 hold. Then, a solution n of the minimization problem (3.1) is such that, for all x ∈ R d , (3.4) either n(x) τ (x) = 1 or n(x) = 0.

Fig. 5 . 4 Definition 4 . 4 .

 5444 Fig. 5. Schematics of the non-swapping condition in Def. 4.4

  and a function H t : (p, s) ∈ V × I → H s t (p) ∈ R which is continuous and C 1 with respect to s, such that for any s ∈ I the map p ∈ V → H s t (p) ∈ R is injective and such that for all (y, s) ∈ U × I, we have (4.4) π(Φ s t (y), s) = H s t (π(y, t)). Remark 4.5. Def. 4.4 and Eq. (4.4) are illustrated in Fig. 5: let y 1 and y 2

Lemma 4 . 8 .

 48 Let v satisfy the assumptions of Defs. 4.3 and 4.4. We assume d ≥ 2. Then, there exists a continuous function h = h(p, t) such that for all t, x,

Remark 4 .

 4 [START_REF] Colli | Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth[END_REF]. Eq.(4.10) shows that the non-swapping condition in dimension d ≥ 2 implies the constancy of π along the trajectories of the particles. This stems from the connectedness of Σ p (t) for p > 0, which is used in the proof of Lemma 4.8. In dimension d = 1, Lemma 4.8 does not hold because Σ p (t) for p > 0 is not connected and consists of two disjoint points. Likewise, without the assumptions in Theorem 3.1 that guarantee that Σ p (t) is connected, the conclusions of Prop. 4.7 are false.

6. 1 .

 1 Regularity of the velocity field v.Proof of Lemma 2.2: (i) is a direct consequence of the explicit formulae given in Section 6.2.(ii): from the assumptions, Eq. (2.30) can be solved by characteristics on [0,T] and provides a solution such that τ and τ-1 belong to C ∞ (R × [0, T ]).Proof of Lemma 2.3: (i) From Eqs. (2.36)-(2.40), we realize that v is inC ∞ ((R d \ {0}) × [0, T ]), i.e. is smooth everywhere except possibly at x = 0, provided that τ and τ-1 are in C ∞ ((R d \ {0}) × [0, T ]) and that g is a C ∞ function from [0, ∞) onto (0, ∞). Indeed,differentiating (2.35) with respect to u leads to ∂P ∂u (u, t) = W (•,t) -1 ({u}) τ -1 (x , t) dS u (x ) |∇W (x , t)| . (6.1)

Finally, ( 2 .

 2 39) is an elliptic equation posed on the smooth manifold W (•, t) -1 ({u}) for a convenient non-zero u. By elliptic regularity, its solution θ is C ∞ along the manifold. But because the manifold depends smoothly on u and the right hand side depends smoothly on x and t, it results that v as well is inC ∞ ((R d \ {0}) × [0, T ]). So, v is in C ∞ ((R d \ {0}) × [0, T ]).(ii) We consider the transport equation (2.30) and assume that v is in C ∞ ((R d \ {0}) × [0, T ]). Then we can solve (2.30) by characteristics locally in time from any point x = 0. The corresponding solution τ will be inC ∞ ((R d \ {0}) × [0, T ]) provided that τ (x, 0), τ -1 (x, 0) are in C ∞ (R d ) and q is in C ∞ (R d × [0, T ] × (0, ∞)),and as long as the characteristics issued from any point in Ω N (t) remain in R d \ {0} during the whole time interval [0, T ].

( 2 .

 2 44) for a and to the corresponding expression with a and b exchanged for b . Note that the denominator cannot be 0 as ∂ x W (a, t) and ∂ x W (b, t) have opposite signs and cannot be zero as W has a unique critical point which belongs to the open interval (a(t), b(t)).7. Conclusions/perspectives. In this paper, we have proposed a new continuum model of a swelling or drying material. Two aspects have been investigated.The first one is an equilibrium problem describing particles seeking to minimize their mechanical energy subject to non-overlapping constraints. Its solution has been fully characterized. The second one is a non-equilibrium problem where we assume that the particle average volume and potential energy may vary with time and where we compute the resulting velocity applying two principles: (i) the non swapping condition and (ii) the principle of smallest displacements. Under these two principles, the medium velocity has been fully determined. A detailed discussion has been provided and many different elaborations of the model have been proposed. In future work, we intend to progress towards the resolution of the many open problems outlined at the end of Sec. 2.9.

  which to τ first associates the velocity field v according to (2.18),(2.19), (2.20), (2.27), (2.28), (2.29), and then determines a new τ from the resolution of (2.30) with a given initial condition τ 0 (x). Proving the existence of a solution would amount to show the existence of a fixed point to this map, which is beyond the scope of the present work.

  The model can be coupled with chemical fields such as oxygen, nutrients, growth factors, etc. Another route is to introduce boundary fuzziness to account for a mushy zone between the tumor and the healthy tissue. It could be envisioned to introduce a statistical description of particle volume sizes, which would lead to a kinetic equation for the size distribution. Healthy surrounding cells or different types of tumor cells could be introduced, leading to multiple particle species models. Other

mathematical directions of development are the derivation of a continuum model from the microscopic model introduced in Section 2.1) through coarse-graining techniques or the design of appropriate numerical methods. Indeed, the numerical approximation of the model is challenging and requires thorough investigations before this theory can be applied to practical systems.

  Lemma 5.2. Let f : R d → R be a smooth function, with d ≥ 2. If there exists a smooth vector field A: R d → R d , tangent to all surfaces Σ p , i.e. satisfying

	1/2 t and V (x) = ((εx 2 1 ) + x 2 2 )/2
	as ε → 0 where we have replaced assumption (vii) by periodicity conditions w.r.t. x 1 .
	5.2. Dimension d ≥ 2: determination of v under the principle of min-
	imal displacements. We first show that (2.24) is a necessary solvability condition
	for (2.23). This is a consequence of the following lemma, in which we forget the time
	variable t:
	(5.2)

  [START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF] and postpone the proof that the solution of problem(2.26) is given by (2.27) to the end of the section. For any (p, t) ∈ (0, N ) × (0, ∞), we note that Σ p (t) ⊂ Ω N (t). We denote by I p,t : Σ p (t) → Ω N (t) the set injection of Σ p (t) into Ω N (t), i.e. for any y ∈ Σ p (t), I p,t (y) = y ∈ Ω N (t). Now, we introduce the following change of variables. For a function θ: (x, t) ∈ ∪ t∈(0,∞) Ω N (t)× Theorem 5.3. Under the assumptions of Theorem 3.1 and under the solvability condition (2.24), Eq. (2.28) together with the zero-average constraint (2.29) has a unique solution which can be written θ(x, t) = θ(p, t, y) thanks to the change of variables(5.5), such that θ belongs to the class C 0 (0, N ) × (0, ∞), H 1 (Σ p (t)) where H 1 (Σ p (t)) is the Sobolev space of square integrable functions on Σ p (t) whose first order distributional derivatives are square integrable.

	Proof. Notice that f (given by (2.23)) is smooth, since τ -1 and π are smooth (see
	Assumption (i) in Th. 3.1 and Rem. 3.2 point (ii)). Taking ψ: (x, t) ∈ R d →
	ψ(x, t) ∈ R any smooth compactly supported function, multiplying (2.28) by ψ and
	using Green's formula, we get:	
	{t} → θ(x, t) ∈ R, we define a function θ: (p, t, y) ∈ ∪ (p,t)∈(0,N )×(0,∞) {(p, t)} × Σ p (t) → θ(p, t, y) ∈ (0, ∞) such that
	(5.5)	θ(p, t, y) = θ(I p,t (y), t).
	Below, we will use that	

(∇ θ)(I p,t (y), t) = ∇ y θ(p, t, y), where ∇ y denote the gradient operator on the manifold Σ p (t). We now state the This manuscript is for review purposes only.

  (x) is the Euclidean surface measure on Σ p (t). Using the change of variable (5.5) on both θ and ψ, we get

											t)	dS p,t (x) |∇π(x, t)|	dp dt
	(5.6)								=	0	∞	0	N	x∈Σp(t)	f (x, t) ψ(x, t)	dS p,t (x) |∇π(x, t)|	dp dt,
	where dS p,t ∞ 0 (5.7)	0	N	y∈Σp(t)	(τ 2 g(τ )) -1 (I p,t (y), t) ∇ y θ(p, t, y) • ∇ y ψ(p, t, y)	dS p,t (y) dp dt |∇π(I p,t (y), t)|
					=	0	∞	0	N	y∈Σp(t)	f (I p,t (y), t) ψ(p, t, y)	dS p,t (y) |∇π(I p,t (y), t)|	dp dt.
	Since this is true for any function ψ(p, t, y), this implies that for any (p, t) ∈ (0, N ) ×
	(0, ∞), and any smooth function ξ : y ∈ Σ p (t) → ξ(y) ∈ R, we have
	(5.8)	y∈Σp(t)	(τ 2 g(τ )) -1 (I p,t (y), t) ∇ y θ(p, t, y) • ∇ y ξ(y)	dS p,t (y) |∇π(I p,t (y), t)|
											=	y∈Σp(t)	f (I p,t (y), t) ξ(y)	dS p,t (y) |∇π(I p,t (y), t)|	.
	Eq. (5.8) is the weak formulation of an elliptic problem posed on the closed (i.e.
	without boundary) smooth manifold Σ p (t). Reciprocally, if y → θ(p, t, y) is a solution
	to (5.8) for any (p, t) ∈ (0, N ) × (0, ∞), then θ(x, t) constructed through (5.5) is a
	solution to (5.6) and ultimately to (2.28).

  ∀ϕ.

	Using (2.22) and (5.5) again, this is equivalent to saying that v satisfies:
	(5.14)	y∈Σp(t)	(τ g)(τ (I p,t (y), t)) (v • z)(p, t, y)	dS p,t (y) |∇π(I p,t (y), t)|	= 0
			for all z tangent vector field to Σ p (t) satisfying
	y∈Σp(t)				

  Prop. 2.5. The expression of the velocity v is obtained by integrating the continuity equation (4.5) with respect to space on [a(t), x], noting that the velocity at a(t) is precisely a (t). We just need to verify that the same property is satisfied at b(t), namely that v(b(t), t) = b (t). Differentiating the second Eq. (2.42) with respect

	to t gives				
					b(t)
	(6.5)	b (t)n(b(t), t) -a (t)n(a(t), t) +	∂ t n(y, t)dy = 0.
					a(t)
	Using (2.43), this leads to:		
	v(b(t), t) =	1 n(b(t), t)	n(a(t), t)a (t) -	b(t) a(t)	∂ t n(y, t)dy = b (t),
	which ends the proof. To find (2.44) we differentiate the first Eq. (2.42) with respect
	to t. We find				
	∂				

x W (b(t), t) b (t) -∂ x W (a(t), t) a (t) + ∂ t W (b(t), t) -∂ t W (a(t), t) = 0.
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