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Abstract: This paper proposes a model for the growth of two interacting populations of cells that do
not mix. The dynamics is driven by pressure and cohesion forces on the one hand and proliferation
on the other hand. Contrasting with earlier works which assume that the two populations are initially
segregated, our model can deal with initially mixed populations as it explicitly incorporates a repul-
sion force that enforces segregation. To balance segregation instabilities potentially triggered by the
repulsion force, our model also incorporates a fourth order diffusion. In this paper, we study the influ-
ence of the model parameters thanks to one-dimensional simulations using a finite-volume method for
a relaxation approximation of the fourth order diffusion. Then, following earlier works on the single
population case, we provide formal arguments that the model approximates a free boundary Hele Shaw
type model that we characterise using both analytical and numerical arguments.
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1. Introduction

During development, tissues and organs grow while generating diverse cell types. Thus, different
cell populations co-exist during growth. For example, in a developing limb, prospective muscles, bone
and epidermis become distinct during development and as a result grow at different rates. As they
grow, these cell types contribute to mass gain for the whole structure. However, since the different cell
populations grow at different rates, stresses arise and must be relieved to ensure that they contribute
harmoniously to the final structure. How differential growth rates within a structure are accommodated
is therefore an important question in developmental biology. To approach this question from a theo-
retical point of view, we consider a model whereby an idealised tissue is composed of one contiguous
cell population located within a wider area occupied by another cell population.
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Our approach relies on a new continuum model for two populations of cells which includes the fol-
lowing biological features. First, we impose a constraint that cells do not overlap. This is ensured in the
model by an appropriate pressure-density relationship which becomes singular at the packing density.
Second, we model cell-cell contact inhibition by implementing cell motion in the direction opposite
to the cell density gradient. These features are believed to play important roles in the development of
mono-layered epithelial tissues such as pseudo-stratified epithelia. Third, the model incorporates fea-
tures that are specific to two non-mixing cell populations. The model favors segregation by penalizing
the mixing of cells of different populations. Such segregation is observed in various tissues, such as
developing tissues when there are two populations of cells which are genetically distinct, or cancerous
tissues composed of proliferative and healthy cells. Some aspects of the derivation of our model use
an optimal transport framework. Indeed, we describe the cell populations by means of continuum den-
sities satisfying gradient flow equations which decrease a free energy encompassing some important
biological properties of the system. Optimal transport has proved a fertile concept for many types
of Partial Differential Equation (PDE) such as the porous medium equation [1], convection-diffusion
equations [2], the Fokker Planck equation [3], etc. However, other aspects of the system such as the in-
clusion of reaction terms which model tissue growth depart from a strict optimal transport framework.
So, optimal transport will not be used in this paper beyond the derivation of the model.

After describing the model, we first present numerical simulations in order to analyse the roles of
the various parameters of the model. Then, we investigate its incompressible limit. In this limit, the
cell densities can only take two values: either zero or their respective maximal value corresponding to
the packing density. We show that the limit model is a free boundary Hele-Shaw model (HSM), which
allows us to focus on the geometric evolution of the boundaries of the domains occupied by the two
species.

Mathematical models have been widely used to study tissue development or tumour growth. Among
these, we distinguish two ways of representing cells. On the one hand, discrete models consider each
cell as an individual entity whose position and other attributes evolve in time [4, 5]. This provides
a high level of accuracy but also results in large computational costs. On the other hand, continuum
models consider local averages such as the cell number density, as functions of space and time, which
evolve according to suitable PDEs [6, 7]. This description is appropriate when the number of cells
is large as it dramatically reduces the computational cost. However it only gives access to the large
scale features of the system as the small scale features are averaged out. As the goal of this paper is
to study the evolution of the whole tissue, we have chosen a continuum model. Continuum models
roughly fall into two categories. The first category comprises models which describe the dynamics of
the cell density through convection and diffusion [8, 9, 10]. Models of the second category describe
the motion of the geometric boundary between the tissue or the tumour and its environment through
geometric evolution equations [11, 12, 13, 14]. The latter share similarities with Hele-Shaw models in
fluid mechanics and Stefan’s free boundary problem in solidification [15]. These two types of models
are related to one another through asymptotic limits. In particular, some tumour growth models of the
first type have been related to Hele-Shaw free boundary models in [16, 17, 18].

In this paper, we propose a two cell population model as an extension of earlier models for single
cell populations introduced in [19, 16] in the context of tumour growth. In these works, the authors
consider a single category of cells whose density is denoted by n(x, t) and depends on time t ≥ 0 and
position x ∈ Rd. The diffusion of the density is triggered by a mechanical pressure p = p(n) which
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is a given non linear function of the density n. Cell proliferation is modelled by a growth function
G = G(p) dependent on the pressure. The displacement of the cells occurs with a velocity u = u(x, t)
related to the pressure gradient through Darcy’s law. The model is written as follows,

∂tn + ∇ · (nu) = nG(p), on R+ × Rd, (1.1)
u = −∇p, p = p(n). (1.2)

In [16, 17, 18] the pressure is expressed as

p(n) =
γ

γ − 1
nγ−1, (1.3)

where γ > 0 is a model parameter. Inserting (1.3) into (1.1), (1.2) leads to the porous medium equa-
tion which has been widely studied [20]. This model can be expressed as the gradient flow (for the
Wasserstein metric) of the following energy,

E(n) =

∫
Rd

P(n(x)) dx, (1.4)

where P is a primitive of p, i.e. ∂P
∂n = p.

The incompressible limit of this model corresponds to γ → +∞. It has been shown in [21] that
this incompressible limit is a Hele-Shaw free boundary model which, classically, is used to describe
the pattern of tumor growth [12, 22]. In two dimensions, the classical Hele-Shaw problem models
an incompressible viscous fluid squeezed between two parallel flat plates. As more fluid is injected,
the region occupied by the fluid expands. It has been shown that the incompressible limits of many
PDEs converge towards Hele-Shaw type models [23, 24, 25, 22, 26]. This incompressible limit and
the corresponding Hele-Shaw model have been shown to be particularly relevant to tumor growth
modelling [16, 17].

In this paper, we present a new Segregation Pressure Model (SPM) for two cells populations which
is built upon the gradient flow framework presented above. We introduce a free energy E(n1, n2) that
depends on the cell densities of each cell population n1 and n2. The free energy encompasses a term
similar to (1.4) which depends on the total cell density n = n1 + n2 and models both cell contact inhibi-
tion and packing. In addition we introduce active repulsion between cells of different types in order to
enforce the segregation property, the latter being expressed as r = n1n2 = 0, i.e. the two cell densities
cannot be simultaneously non-zero. As this term induces repulsion forces and triggers instabilities,
we also include regularising terms depending on the gradients ∇n1, ∇n2 inside the expression of the
free energy. We pursue two goals. The first one is the formal derivation of the incompressible limit
model which takes the form of a two species Hele-Shaw Model (HSM). The second goal is to develop
a numerical method for the SPM which enables us to illustrate the validity of the limit HSM.

The pressure law (1.3) previously used in the literature does not prevent cells from overlapping.
Indeed, with this expression, the cell density can take a value greater than n = 1, where the value n = 1
is supposed to be the maximal allowed cell density, corresponding to complete packing. In this paper
we rather use the expression (instead of (1.3))

pε(n) = ε
n

1 − n
, (1.5)
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where ε > 0 is a modelling parameter which plays a similar role as the parameter 1/γ in (1.3). With
this expression, the pressure has a singularity at n = 1 which prevents the density to take values greater
than n = 1. Similar pressure laws have been used in [21]. The limit γ → ∞ is now replaced by ε → 0.

Systems with multiple populations are studied in many different areas. In chemistry, reaction-
diffusion systems are used to model reacting chemical substances [27]. In population dynamics, these
model are generalised into cross-diffusion systems in which the movement of one species can be in-
duced by the gradient of the population of another species. In biology, Keller-Segel models [28] are
used to model bacterial chemotaxis. Another classical example of cross-diffusion in biology is the
Lotka-Volterra model [29], which describes the dynamics of a predator-prey system. These have been
extended to nonlinear diffusion Lotka-Volterra systems to model cell populations [30, 31]. In the con-
text of tumor growth, systems with different types of cells have been studied (such as healthy/tumor
cells, proliferative/quiescent cells [32, 33, 34]). Among these models [30, 31, 35], some preserve the
segregation of initially segregated populations. On the other hand, some models generate segregation
between initially non-segregated species. The ability of imposing segregation is a distinctive feature of
the present work. The Cahn-Hilliard equation gives an example of a model that promotes segregation.
It describes the process of phase separation [36] where, in the absence of growth terms and up to possi-
ble boundary effects, each phase tends to occupy a single connected domain from which it excludes the
other phase. Similarities between our model and the Cahn-Hilliard equation will be described below.

The paper is divided into the following five sections. In Section 2 the two populations SPM model
is described and numerical simulations which study the influence of the modelling parameters are
shown. In Section 3, the main results are exposed: the formal incompressible limit theorem is stated;
a formal proof of the convergence to the HSM free boundary problem is given; numerical simulations
are shown in support and a discussion is provided. Then, Section 4 contains the description of the
numerical scheme. A short conclusion is given in Section 5. Finally, Appendix A is devoted to the the
derivation of the model from the free energy.

2. The Segregation Pressure model

2.1. Introduction of the continuum model

In this paper, we consider two densities of cells denoted by n1(t, x) and n2(t, x) and the corresponding
pressures p1(t, x) and p2(t, x) that depend on time t ≥ 0 and position x ∈ Rd. We derive our model from
the single cell model exposed in the introduction and define the free energy E(n1, n2) expressed as
follows:

E(n1, n2) =

∫
Rd

Pε(n1 + n2)dx +

∫
Rd

Qm(n1n2)dx +
α

2

∫
Rd

(|∇n1|
2 + |∇n2|

2)dx, (2.1)

where α > 0 is a diffusion parameter and ε > 0, m > 0 are parameters which set the strengths of the
congestion and segregation effects in the pressure laws. The functions Pε and Qm are primitives of the
functions pε and qm defined respectively by (1.5) and

qm(r) =
m

m − 1
(
(1 + r)m−1 − 1

)
. (2.2)

From now, the total density will be denoted by n = n1 + n2 and the product of the densities will be
denoted by r = n1n2. The first term corresponds to the pressure building up from the volume exclusion
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constraint and the second term is a repulsion pressure between the two different categories of cells.
The last term represents cohesive energy penalising strong gradients of either cell densities. The effect
of these different terms are detailed below.

For the sake of simplicity, we omit the parameters ε,m, α in the notations of the unknown functions
n1, n2, p1 and p2. From the free energy (2.1), in Section A, we derive the following system of equations,

∂tn1 − ∇x(n1∇p1) + α∇x(n1∇(∆n1)) = n1G1(p1), (2.3)
∂tn2 − ∇x(n2∇p2) + α∇x(n2∇(∆n2)) = n2G2(p2), (2.4)
p1 = pε(n1 + n2) + n2qm(n1n2), (2.5)
p2 = pε(n1 + n2) + n1qm(n1n2), (2.6)

where G1 and G2 are growth functions depending of the pressures p1 and p2. The pressures p1 and p2

are obtain thanks to the formula

pi = ∂ni

[
Pε(n1 + n2) + Qm(n1n2)

]
for i = 1, 2.

We first comment on the first term of (2.1). We assume that the two categories of cells have identical
volume, so that the volume exclusion pressure resulting from either category of cells is similar and the
total volume exclusion pressure is just a function of the total cell density. The parameter ε is supposed
to be small. So, this first term penalizes configurations where the total density n is close to the packing
density (here assumed to be equal to 1 according to (1.5)).

We now comment on the second term of (2.1). The segregation pressure is a novel aspect of the
model. To minimise the second term of the free energy, it is necessary to make n1n2 as small as possible.
In the particular case α = 0, for a given density n = n1 + n2, the minimiser of the free energy will be
(n∗1, n

∗
2) such that n∗1n∗2 = 0 and n = n∗1 + n∗2. This justifies why the repulsion term tends to increase

the segregation of the populations as time evolves. Moreover this term imposes segregation when m is
going to infinity. This can be seen thanks to the equality (1 + r)(m−1

m qm(r) + 1) = (m−1
m qm(r) + 1)

m
m−1 .

Passing to the limit m→ ∞, we obtain

(1 + r∞)(q∞ + 1) = lim
m→+∞

(1 + r)(
m − 1

m
qm(r) + 1) = lim

m→+∞
(
m − 1

m
qm(r) + 1)

m
m−1 = q∞ + 1,

meaning that r∞(q∞ + 1) = 0. Since q∞ ≥ 0, this implies that r∞ = 0, which expresses the segregation
property (the cell densities cannot be simultaneously non-zero).

The third term of the free energy is a cohesive energy. Indeed this term penalises the gradients of
either densities, meaning that it tends to regroup each species in a single cluster. This term also allows
the two populations to mix over a small width at their interface. The diffusion coefficient α is related
to the width of the mixing region. To understand it, we make a rough order-of-magnitude calculation.
We assume that the densities vary linearly in the mixing region supposed to occupy the region [0, `].
The density n1 varies from a value close to 1 to the value 0 and n2 varies in the opposite way, so:
n1 ≈ (1 − ν)(1 − x

l ) and n2 ≈ (1 − ν) x
l with ν � 1. We suppose that at the minimum of the free energy

(2.1), the two last terms have the same order of magnitude in the interface zone. The first term of the
free energy has been already taken into account by assuming that n = n1 + n2 = 1 − ν < 1. We have,

Q(r) =
1

m − 1

(
(1 + r)m − mr

)
≈

1
m − 1

(
(1 + (1 −

x
l
)
x
l
)m − m(1 −

x
l
)
x
l

)
.
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So by integrating on [0, `] we get by a change of variables z = (1 − y)y:∫ `

0
Q(r) = 2

∫ 1
2

0

1
m − 1

(
(1 + (1 − y)y)m − m(1 − y)y

)
dy

= 2
∫ 1

4

0

1
m − 1

(
(1 + z)m − mz

) dz
√

1 − 4z
= C(m).

When m � 1, the leading order term is 2
m−1

∫ 1
4

0
(1 + z)m dz

√
1−4z

that we can estimate by neglecting 1
√

1−4z
.

We then get
C(m) ∝ λm (2.7)

where λ is a given constant. The fourth order term can be estimated by

α

2

∫ `

0
|∇n1|

2 + |∇n2|
2 ≈ α

(1 − ν)2

`2 ` ∝
α

`

We deduce that
` ∝

α

C(m)
∝

α

λm

At this stage it is interesting to see the analogy between our model and the Cahn-Hilliard equation.
We recall that the Cahn-Hilliard equation is a gradient flow (for the L2 distance) of the free energy

ECH(d) =

∫
(
1
4

(d2 − 1)2 +
γ

2
|∇d|2) dx, (2.8)

where d = d(x) is the unknown function and γ > 0 is a modelling coefficient. In order to see the
similarity with our model, we rewrite (2.1) in terms of the total density n and the difference d = n1 −n2

and let m = 2,

E(n, d) =

∫
Pε(n)dx +

∫
Q2(

n2 − d2

4
)dx +

α

8

∫
(|∇(n + d)|2 + |∇(n − d)|2)dx

=
1

16

∫
(d2 − n2)2dx +

α

4

∫
|∇d|2dx + Ẽ(n), (2.9)

with Ẽ(n) =
∫

(1 + Pε)dx + α
4

∫
|∇n|2dx. Now, fixing n and considering d as the only variable, we can

ignore the term Ẽ(n). Then, the similarity of the first two terms of E(n, d) in (2.9) with (2.8) becomes
clear. The only difference is that the two stable states u = ±1 of the Cahn-Hilliard energy are replaced
by the states d = ±n, which depend on n. Hence, we can view our model as a coupling between the
Cahn-Hilliard equation for d, with a non linear parabolic equation for n. If we make α = 0 in (2.1)
and write the resulting equations in the unknowns (n, d), we obtain an unstable diffusion system, the
repulsion pressure giving rise to negative diffusion. The role of the terms in factor of α in (2.1) is to
counteract this instability by introducing a stable fourth order diffusion.

Note that the particular case qm = 0 and α = 0 has been studied in [30, 31, 35]. There, it has been
shown that the system exhibits species segregation, provided that the initial conditions are segregated
[32, 33, 37, 38]. The present paper treats a different case, as initially the two species may be mixed and
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the model drives them to a segregated state after some time, except for a thin interface depending on
α and m. This is consistent with the biological observation that some mixing between the cell species
occurs across the interface.

The aim of this paper is to investigate the incompressible limit of this model (2.3)-(2.6), which
consists of letting ε going to 0 and m going to infinity in the system.

2.2. Numerical simulations

In this section we present numerical simulation for both segregated and mixed initial populations.
This section aims to illustrate the dynamics of the system and the role of the parameters ε,m, α in
the volume exclusion pressure, the segregation pressure and the cohesive term. In order to facilitate
the visualisation of the results, the simulation are performed in one dimension. The scheme used is
described in Section 4.

2.2.1. Numerical simulation with initially segregated and mixed populations

We illustrate the evolution in time of the SPM on two initial configurations. For the first example,
we consider initial densities which are segregated and distant, given by

nini
1 (x) = 0.5e−5(x+0.5)2

and nini
2 (x) = 0.5e−5(x+1.5)2

. (2.10)

In the second example, the initial densities are mixed and given by

nini
1 (x) = 0.7e−5x2

and nini
2 (x) = 0.5e−5(x−0.5)2

+ 0.6e−5(x+1)2
. (2.11)

With these two examples, we investigate cases where the initial densities are either segregated or mixed.
For both examples, the growth functions are given by

G1(p) = (20 − p) and G2(p) = (10 − p), (2.12)

and the numerical parameters are ε = 0.01, m = 10, α = 0.01. The numerical simulation of the
SPM model will involve the use of an approximate model, the Relaxation Segregation Pressure Model
(RSPM), detailed in Section 4. This relaxation model is introduced to facilitate the numerical treatment
of the fourth order term in the SPM. The RSPM model involves a relaxation parameter νwhich is given
the value ν = 0.001. The results of the simulations of Examples 1 and 2 are respectively plotted in
Figure 1 and Figure 2. On these Figures, the red line represents the species n1 and the blue line, the
species n2 on panels (a)-(d) while the orange and green lines respectively represent the pressures p and
q on panels (e)-(h). For both figures, the initial densities and pressures are plotted on panel (a) and (e).

In Figure 1 (a)-(b), we observe the dynamics of the two populations when they are not yet in
contact with each other. The dynamics is then similar to that of the one species model (1.1)-(1.2)
(since the density of one species is equal to zero on the support of the other species). When the
densities are smaller than 1, the pressure is small (cf Figure 1(e)) and the reaction terms control the
dynamics, resulting in the growth of the densities. When the densities ni reach the critical values
n∗i = p−1(p∗i ) =

p∗i
ε+p∗i

, with p∗1 = 20 and p∗2 = 10 (p∗i is the value for which the growth functions vanish),
the pressure p become significant and creates a moving front encompassing the domain where ni ≈ n∗i
(cf Figure 1(c)-(d)). In panel Figure 1(c) the two populations meet, which creates an interface between
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Figure 1. Densities n1 (red), n2 (blue) and pressures p (orange), q (green) as functions of
position x for the SPM at different times: (a), (e) t = 0; (b), (f) t = 0.06; (c), (g) t = 0.14; (d),
(h) t = 0.18. Initial conditions: densities from Eq. (2.10), growth function from Eq. (2.12).

them. In panel Figure 1(h), we observe a pressure ditch at the interface which is due to a small variation
in the total density. This phenomenon will be investigated later when we will study the influence of
the parameters m and α. Omitting the pressure ditch, we can consider that the gradient of the pressure
is negative at the interface, which creates a movement of the interface toward the right. Indeed the red
species, which has reached its critical density, is expanding and pushes the blue species to have more
space to grow (cf Figure 1(d) and (h)).

In Figure 2, we observe the dynamics of two cell populations when they are initially mixed. When
the overlapping between the two species is strong the dynamics is driven by the segregation pressure
as q is nonnegative (cf Figure 2(i)). This creates domains where the density of one species is close to
its maximal value while the other species density is close to 0. Because the parameter m which is the
exponent of the segregation pressure is finite, some mixing is allowed between the two cell species. At
the interfaces between the domains occupied by either species, we observe ditches in the pressure p,
which are correlated with peaks in the segregation pressure q. In Figure 2(i-b)-(i-d), as the densities
are close to their maximal value, the interfaces are moving in the directions given by the signs of the
pressure gradients ∂x p (with p plotted in Figure 2(i-f)-(i-h)). In this case, the red species is growing
faster than the blue one, which explains why the inner species is pushing the outer one to have more
space to grow. In Figure 2 (ii), which corresponds to the same simulation as in Figure 2 (i) but for larger
times, we observe on the left side that the red species pushes the blue species outside the domain, until
only the red species remains (see Figure 2 (ii-d)). In addition, in Figure 2 (ii) we observe that a small
pouch of the blue species surrounded by the red one gradually disappears. Because 20 = p∗1 > p∗2 = 10,
the pressure at the location of the blue species pouch becomes larger than p∗2 = 10 (as observed in
Figure 2 (ii-e) and (ii-f)) and this triggers the decay of the blue population as its growth term becomes
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(a) Plot for small times: (a), (e) t = 0; (b), (f) t = 0.05; (c), (g) t = 0.10; (d), (h) t = 0.15
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(b) Plot for large times: (a), (e) t = 0.3; (b), (f) t = 0.5; (c), (g) t = 0.7; (d), (h) t = 1.2

Figure 2. Densities n1 (red), n2 (blue) and pressures p (orange), q (green) as functions of
position x for the SPM at small times (i) and large time (ii). Initial conditions: densities from
Eq. (2.11), growth function from Eq. (2.12).

negative. At large times, only the faster growing species remains.

2.2.2. Influence of the parameters

In Figure 1 and Figure 2, we observe some mixing between the two populations: first, at the interface
between their respective domains the species mix in a small interval and create a ditch in the pressure
p; second, in the central domain occupied by the red species in Figure 2, the density of the blue species
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is not exactly zero. To understand these phenomena we study the influence of the parameters ε,m, α
and plot the simulation results respectively in Figure 3 (i), (ii), (iii) for a fixed time t = 0.15. The initial
densities and growth functions are the same as in Example 2 of the previous subsection and are defined
by Eqs. (2.11) -(2.12). We vary the parameters about pivot values given by ε = 0.01, m = 10, α = 0.01,
ν = 0.001.
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(a) Varying ε: ε = 1 (a), ε = 0.1 (b), ε = 0.01 (c). The other parameters are m = 10, α = 0.01, ν =

0.001.
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(b) Varying m: m = 5 (a), m = 10 (b), m = 50 (c). The other parameters are ε = 0.01, α = 0.01, ν =

0.001.
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(c) Varying α and ν: α = 0.1, ν = 0.001 (a), α = 0.01, ν = 0.001 (b), α = 0.001, ν = 0.0001 (c). The
other parameters are ε = 0.01, m = 10.

Figure 3. Densities n1 (red), n2 (blue) as functions of position x for the SPM at time t = 0.15
for different values of the parameters ε (i), m (ii) and α (iii). Initial conditions: densities from
Eq. (2.11), growth functions from Eq. (2.12).

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5804–5835



5814

In Figure 3 (i-a), (i-b), (i-c) the densities are plotted for the cases ε = 1, ε = 0.1 and ε = 0.01
respectively. We first remark that the parameter ε does not influence the amount of mixing of the two
populations or the number of domains each species is divided in. Instead ε influences the densities at
the boundaries of the domains occupied by each species. As ε decreases, the gradients of the densi-
ties become sharper at the exterior boundaries and at the interfaces between the two populations. In
addition, the upper bound of the densities increases and becomes closer to 1.

In Figure 3 (ii), the influence of the exponent of the segregation pressure m is studied. The densities
are plotted for cases m = 5, m = 10 and m = 50 in Figure 3 (ii-a), (ii-b), (ii-c) respectively. In
Figure 3(ii-c), we can observe that there is less mixing than in Figures 3(ii-a) and (ii-b). In Figure 3(ii-
c) the central domain of the red species is smaller than in Figure 3(ii-b) because the blue species has
grown in the middle as a result of a larger segregation pressure. Then in Figure 3(ii-c), we do not
observe the small dimple in the blue cell density found in Figure 3(ii-a) and (ii-b). To summarise,
the parameter m controls the strength of the segregation between the two populations. However, even
when m is large, we still observe some mixing at the interfaces.

In Figure 3 (iii), we study the influence of the parameter α in factor of the fourth order diffusion
term. The densities are plotted for the cases α = 0.1, ν = 0.001; α = 0.01, ν = 0.001 and α =

0.001, ν = 0.0001 in panels Figure 3 (iii-a), (iii-b), (iii-c) respectively (we have observed that the
parameter ν needs to be smaller than α). We can observe that as α becomes smaller, the width of
the interface region between the two populations gets smaller. We can also observe in Figure 3(iii-c)
that on the right hand side, thin stripes with alternating populations appear. However, even when such
stripes appear, there is still some mixing between the two populations, by contrast with the simulations
where m was higher in Figure 3(ii-c). The same kind of features, namely the formation of many thin
strips alternating n1 = 1, n2 = 0 and n1 = 0, n2 = 1, were observed in simulations performed with
α = 0. This was observed both with the same numerical scheme as that used in this paper, and with
schemes using the gradient flow structure of the system. Without the fourth order term, a species
surrounded by an other one will prefer to split, with some proportion of the population jumping across
the other species instead of pushing it. For these reasons, the fourth order term is essential to produce
realistic dynamics. What this analysis shows is that the choice of the parameter α is critical to prevent
this jumping behaviour and maintain the connectivity of the domains occupied by the species.

3. Incompressible limit ε → 0,m→ +∞ and α→ 0

3.1. Formal limit

In this Section, we obtain formal convergence results of the model when ε → 0, m→ ∞ and α→ 0.
First we list some assumptions. As for the growth function, we assume:

∃Gm > 0, ‖G1‖∞ ≤ Gmax, ‖G2‖∞ ≤ Gmax,
G′1,G

′
2 < 0, and ∃ p∗1, p∗2 > 0, G1(p∗1) = 0 and G2(p∗2) = 0,

∃ γ > 0, min(min
[0,p∗1]
|G′1|,min

[0,p∗2]
|G′2|) = γ.

(3.1)

These assumptions stem from biological considerations. As the pressure increases in the tissue, cell
division occurs less frequently, until eventually the pressure reaches a critical value, which either stops
the growth or starts to trigger cell death. In what follows, the growth functions will be chosen as
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G(p) = g(p∗ − p). As for the initial conditions, we assume that there exists ε0 > 0 such that, for all
ε ∈ (0, ε0), 

0 ≤ nini
1 , 0 ≤ nini

2 , 0 ≤ nini := nini
1 + nini

2 ≤ 1,

pini
ε := ε

nini

1 − nini ≤ p∗ := max(p∗1, p∗2).
(3.2)

Thanks to these assumptions, it is possible to establish a priori estimates on n1 and n2 such as positivity
and L1 bounds. However, in order to pass to the limits ε → 0, m → ∞ and α → 0, we need more a
priori estimates. In the following theorem, we only provide a formal limit. Indeed, the appearance of
terms of the type ∇n · ∇r which we are not able to control prevent us from obtaining such theorem.
The fourth order term is also difficult to control, as it does not enable us to use maximal principle
arguments.

The main result is stated in the following theorem.

Theorem 1. (Formal limit) Let T > 0, QT = (0,T ) × Rd. Let G1, G2 and nini, nini
1 , nsini

2 satisfy
assumptions (3.1) and (3.2). Suppose the limits of the densities n1(x, t), n2(x, t), of the pressure
pε(x, t) = pε(n1(x, t), n2(x, t)) and of qm(x, t) = qm(n1(x, t), n2(x, t)) as ε → 0, m→ +∞ and α→ 0 exist
and are denoted by n∞1 , n

∞
2 , p∞ and q∞. If the convergence is strong enough then these limits satisfy

∂tn∞1 − ∇ · (n
∞
1 ∇p∞) = n∞1 G1(p∞1 ), (3.3)

∂tn∞2 − ∇ · (n
∞
2 ∇p∞) = n∞2 G2(p∞2 ). (3.4)

As a consequence of (3.3) and (3.4) we have,

∂tn∞ − ∆p∞ = n∞1 G1(p∞1 ) + n∞2 G2(p∞2 ), (3.5)

In addition, we have

(1 − n∞)p∞ = 0, (3.6)

with n∞ = n∞1 + n∞2 ,

n∞1 n∞2 = 0, (3.7)

and the complementary relation

p∞2(∆p∞ + n∞1 G1(p∞) + n∞2 G2(p∞)) = 0. (3.8)

Remark 1. The assumption nini
1 nini

2 = 0 is not needed in Theorem 1. Since in the limit, the segregation
is imposed by (3.7), the system reorganises instantaneously and the initial density of the limit model
must verify n∞1

inin∞2
ini = 0. The densities n∞1

ini and n∞2
ini could be determined through an initial-layer

analysis.

Firstly, it is important to notice that, in the limit, p∞ and q∞ become independent of the densities n∞1
and n∞2 . Indeed, looking at the expression of the pressures (1.5)-(2.2) in the limit, we obtain:

p∞(n) ∈


{0} if n ∈ [0, 1),

[0,+∞) if n = 1,
{+∞} if n > 1,

and q∞(r) ∈
{

[0,+∞) if r = 0,
{+∞} if r > 0.

(3.9)
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The pressure p∞ can be viewed as a volume exclusion pressure, while the pressures n∞1 q∞ and n∞2 q∞

are segregation pressures. Eq. (3.6) suggests to decompose the domain in two parts. We consider the
domain Ω(t) = {x | p∞(x, t) > 0} and the complementary domain, where the pressure is equal to 0.
Notice that, because of Eq. (3.6), Ω(t) ⊂ {x | n∞(x, t) = 1}. Moreover, the two domains coincide almost
everywhere. Indeed, if n∞ = 1 and p∞ = 0, because of the reaction term in (3.5) the density would
grow following

∂tn∞ = n∞1 G1(0) + n∞2 G2(0) > 0, (3.10)

and the total density would become greater than the maximum density. If initially the pressure p∞ = 0
and the total density n∞ is strictly smaller than 1, the total density will follow Eq. (3.10). It will
grow until the value 1 is reached, and then p∞ will become nonnegative. Thanks to the segregation
property (3.7) we can decompose Ω(t) in two subdomain, Ω1(t) = Ω(t) ∩ {x | n1

∞(x, t) = 1} and
Ω2(t) = Ω(t) ∩ {x | n2

∞(x, t) = 1}. Then thanks to (3.7), Ω1(t) and Ω2(t) are disjoint and their union is
Ω(t).

Remark 2. It is interesting to remark that

p∞1 =


p∞ in Ω1(t),
p∞ + q∞ in Ω2(t),
0 outside Ω(t),

and p∞2 =


p∞ + q∞ in Ω1(t),
p∞ in Ω2(t),
0 outside Ω(t).

(3.11)

The pressure p∞1 is driving the movement of the density n∞1 which is equal to 0 on Ω2(t). So q∞ does
not appear in the limit equation of n∞1 . The same reasoning can be applied to n∞2 . It shows that the
pressure q∞ does not influence the limit model. Then at the limit the dynamics of the densities n∞1 and
n∞2 are driven by ∇p∞ even though p∞1 , p∞2 .

The equation for the pressure p∞ inside Ω(t) is deduced from the complementary relation (3.8) and
reads:

∆p∞ + n∞1 G1(p∞) + n∞2 G2(p∞) = 0 on Ω(t).

Thanks to (3.6), the pressure p∞ is equal to zero on the boundary ∂Ω(t). However the normal derivative
of the pressure is non-zero and controls the movement of the domain boundary. The exterior boundary
is denoted by Σ and the interface between the two populations is called Γ. Knowing that in the system
(2.3) - (2.6) the densities n1 and n2 diffuse with velocities ∇p (see Remark 2) which in the limit, is
equal to ∇p∞ respectively on Ω1 and Ω2, we deduce that the boundaries Σ and Γ both move in the
normal direction with velocities

VΣ = −∇p∞ and VΓ = −(∇p∞ · υ)υ, (3.12)

where υ is any of the two opposite unit normal vectors to Γ. The velocity VΣ is normal to Σ. Indeed,
p∞ is constant equal to zero along Σ from (3.6), so, its gradient must be in the normal direction to Σ.
On the other hand, Γ does not need to be a level surface of p∞, so ∇p∞ must be projected along the
normal direction to Γ.

To help understand the expression of the velocity (3.12) of the limit model, we now consider a
particular solution of the HSM. We consider the case where the initial densities are defined by nini

1 =

1BRini
1

and nini
2 (t, x) = 1BRini

2
\BRini

1
with BR the ball of center 0 and radius R and 1S is the indicator function
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of the set S . We suppose that Rini
1 < Rini

2 , then nini = 1BRini
2

. We are looking for solutions of the HSM

of the form n∞1 (x, t) = 1BR1(t)(x) and n∞2 (x, t) = 1BR2(t)\BR1(t)(x) with R1(0) = Rini
1 and R2(0) = Rini

2 . Thus we
have n(x, t) = 1BR2(t) and so, we get:

∂tn∞ = R′2(t)δ{|x|=R2(t)}. (3.13)

Using Eq. (3.5) and knowing that n∞1 , n∞2 are constant equal to 0 or 1, we obtain that n∞ is solution in
the sense of the distribution of

∂tn∞ = ∆p∞ + n∞1 G1(p∞) + n∞2 G2(p∞).

Then for all ϕ ∈ C∞c (Rd)∫
Rd
∂tn∞ ϕdx =

∫
BR2(t)

p∞∆ϕdx +

∫
BR2(t)

(
n∞1 G1(p∞) + n∞2 G2(p∞)

)
ϕdx.

Since p∞ verifies the complementary relation (3.8), applying the Green formula twice we get∫
Rd
∂tn∞ ϕdx =

∫
∂BR2(t)

p∞(∇ϕ · υ)dσ −
∫
∂BR2(t)

(∇p∞ · υ)ϕdσ

where dσ is the surface element and υ is the normal directed outward the domain B(R2(t)). Using radial
symmetry and knowing that the pressure p∞ is equal to 0 at the interface, we obtain

∂tn∞ = −∇p∞ · υ. (3.14)

Since ∂B(R2(t)) is a level surface of the pressure p∞, its gradient is normal to ∂B(R2(t)). Then identify-
ing Eqs. (3.13) and (3.14), we have

R′2(t) = |∇p∞(R2(t), t)|,

where, by abuse of notation, we have denoted p∞(r, t) the constant value of p∞(., t) on the surface
{|x| = r}. Similarly, applying the same result on the species n∞1 , we obtain

R′1(t) = −∇p∞(R1(t), t) · υ.

The limit HSM is graphically represented in Figure 4.

3.2. Formal proof of Theorem 1

This section is dedicated to the formal proof of Theorem 1. First, we prove Eqs. (3.6) and (3.7)
that lead to the definition of the evolving domains of the HSM. Secondly, we compute the equations
for the densities n1, n2 and n in the limit ε → 0,m → +∞. Third, we prove Eq. (3.8), also named
complementary relation, which gives the evolution of the pressure inside the domain for the HSM.
Finally, we compute the speeds of the boundaries of the domains.

Proof. Eqs. (3.6) and (3.7) follow from the pressure laws (1.5) and (2.2). Indeed, since (1− n)pε = εn,
it follows in the limit ε → 0 that

(1 − n∞)p∞ = 0.
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Figure 4. Graphical representation of the result exposed in Theorem 1. The grey dotted
region is Ω1(t) while the region filled with wavy lines is Ω2(t).

Working out the repulsion pressure law (2.2) leads to the formula

(1 + r)(
m − 1

m
qm(r) + 1) = (

m − 1
m

qm(r) + 1)
m

m−1 .

Taking the limit m→ +∞, we have

(1 + r∞)(q∞ + 1) = q∞ + 1

which implies that r∞(q∞ + 1) = 0. Since qm ≥ 0 for all m, we deduce q∞ + 1 > 0 and

r∞ = n∞1 n∞2 = 0.

Eqs. (3.3) and (3.4) follow directly from taking the limit ε → 0,m → +∞ and α → 0 in (2.3) and
(2.4). To recover (3.5), it is first interesting to remark that the solution of (2.3)-(2.6) satisfies

∂tn − ∆(Hε,m(n, r)) + α∇ · (n1∇(∆n1) + n2∇(∆n2))
= n1G1(p1) + n2G2(p2),

(3.15)

where
Hε,m(n, r) = (pε(n) − ε ln(pε(n) + ε) + ε ln ε) + (rqm(r) + (r + 1)m − qm(r)). (3.16)

Indeed, by adding (2.3) and (2.4), we obtain

∂tn − ∇ · (n∇pε(n) + 2r∇qm(r) + qm(r)∇r) + α∇ · (n1∇(∆n1) + n2∇(∆n2))
= n1G1(p1) + n2G2(p2).

(3.17)

Then given formula (1.5),

n∇pε(n) = n p′ε(n)∇n

= ε
n

(1 − n)2∇n

= (p′ε(n) − ε
1

(1 − n)
)∇n

= ∇(pε(n) − ε ln(pε(n) + ε) + ε ln ε),

(3.18)
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and given formula (2.2),

2r∇qm(r) + qm(r)∇r = r∇qm(r) + ∇(rqm(r))
= (1 + r)∇qm(r) − ∇qm(r) + ∇(rqm(r))
= m(1 + r)m−1∇r + ∇((r − 1)qm(r))
= ∇(rqm(r) + (r + 1)m − qm(r)),

(3.19)

and inserting (3.18), (3.19) into (3.17) gives (3.15), (3.16). Let us denote

hε,m(x, t) = Hε,m(nε,m(x, t), rε,m(x, t))

and h∞ its limit when ε → 0,m → ∞. Since (r + 1)m = (1 + r)(m−1
m qm(r) + 1) and r∞ = 0, passing to

the limit as ε → 0,m→ ∞, we obtain

h∞ = p∞ + r∞q∞ + (q∞ + 1)(1 + r∞) − q∞

= p∞ + 1.
(3.20)

So at the limit, we have:
∂tn∞ − ∆p∞ = n∞1 G1(p∞1 ) + n∞2 G2(p∞2 ).

To recover the complementary relation (3.8), we need to compute an evolution equation for the
pressure. To do so, we multiply the density equation (3.15) by p′ε(n) and obtain,

∂t pε − p′ε(n)∆(Hε,m(n, r)) + αp′ε(n)∇ · (n1∇(∆n1) + n2∇(∆n2))
= p′ε(n)(n1G1(p1) + n2G2(p2)),

(3.21)

Multiplying Eq. (3.21) by ε and taking into account that p′ε(n) = 1
ε
(pε + ε)2 yields

ε∂t pε − (pε + ε)2∆(Hε,m(n, r)) + α(pε + ε)2∇ · (n1∇(∆n1) + n2∇(∆n2))
= (pε + ε)2(n1G1(p1) + n2G2(p2)).

We now take the limit ε → 0, m→ ∞ and α→ 0, and using the expression (3.20) for the limit of Hε,m,
we get,

− p∞2
∆p∞ = p∞2(n1G1(p1) + n2G2(p2)). (3.22)

It leads to the complementary relation (3.8).This concludes the formal proof of the theorem. �

Now, we prove Formula (3.12). We first focus on the speed of the exterior boundary Σ. Thanks to
Eq. (3.5), for all ϕ ∈ C∞c (Rd) and using Green’s formula

∂t

∫
Rd

n∞ ϕ dx =

∫
Rd
∂tn∞ ϕ dx

=

∫
Rd

p∞∆ϕ dx +

∫
Rd

n∞1 G1(p∞1 ) ϕ dx +

∫
Rd

n∞2 G2(p∞2 ) ϕ dx.

Since p∞ is equal to 0 outside Ω(t) and because n∞1 and n∞2 are both constant equal to 1 on Ω1(t) and
Ω2(t) respectively and equal to 0 outside, we have

∂t

∫
Rd

n∞ ϕ dx =

∫
Ω1(t)

p∞∆ϕ dx +

∫
Ω2(t)

p∞∆ϕ dx

+

∫
Ω1(t)

G1(p∞1 ) ϕ dx +

∫
Ω2(t)

G2(p∞2 ) ϕ dx
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Therefore applying the Green formula twice, yields

∂t

∫
Rd

n∞ ϕdx =

∫
Ω1(t)

(∆p∞ + G1(p∞))ϕ dx −
∫
∂Ω1(t)

∂p∞

∂υ
ϕ dσ +

∫
∂Ω1(t)

p∞
∂ϕ

∂υ
dσ

+

∫
Ω2(t)

(∆p∞ + G2(p∞))ϕ dx −
∫
∂Ω2(t)

∂p∞

∂υ
ϕ dσ +

∫
∂Ω2(t)

p∞
∂ϕ

∂υ
dσ

=

∫
Ω(t)

(∆p∞ + n∞1 G1(p∞) + n∞2 G2(p∞)) ϕ dx −
∫
∂Ω(t)

∂p∞

∂υ
ϕ dσ

−

∫
Γ(t)

[
∂p∞

∂υ
]12 ϕ dσ +

∫
∂Ω(t)

p∞
∂ϕ

∂υ
dσ +

∫
Γ(t)

[p∞]12
∂ϕ

∂υ
dσ, (3.23)

where υ is the unit normal vector. For x ∈ Γ, we denote

[
∂p∞

∂υ
]12 =

(
∇( p∞|Ω2

)(x) − ∇( p∞|Ω1
)(x)

)
· υ(x),

and
[p∞]12 = ( p∞|Ω2

)(x) − ( p∞|Ω1
)(x).

On ∂Ω(t), ∂Ω1(t), ∂Ω2(t) the unit normals υ are directed outwards to the respective domains. On Γ(t),
the normal υ is directed from Ω2(t) towards Ω1(t). From Eq. (3.8), the first integral in (3.23) is equal
to 0. In addition, the pressure is equal to zero on the boundary ∂Ω(t) so that

∂t

∫
Rd

n∞ ϕ dx = ∂t

∫
Ω(t)

n∞ ϕ dx

= −

∫
∂Ω(t)

∂p∞

∂υ
ϕ dσ −

∫
Γ(t)

[
∂p∞

∂υ
]12 ϕ dσ +

∫
Γ(t)

[p∞]12
∂ϕ

∂υ
dσ.

(3.24)

Moreover since n∞ = 1 in the domain Ω(t), we have

∂t(
∫

Ω(t)
n∞ ϕ dx) =

∫
∂Ω(t)

(V∂Ω(t) · υ) n∞ ϕ dσ, (3.25)

where V∂Ω(t) is the speed of the boundary ∂Ω(t) and is directed along the normal υ in the outwards
direction. Since Eqs. (3.24) and (3.25) are verified for all ϕ ∈ C∞c (Rd), we deduce that

V∂Ω(t) = −
∂p∞

∂υ
υ = −(∇p∞ · υ)υ, (3.26)

and at the interface Γ,

[p∞]12 = 0 and [
∂p∞

∂υ
]12 = 0. (3.27)

Then, both p∞ and its normal derivative are continuous at the interface Γ. Since p∞ is equal to zero
along ∂Ω, its gradient is normal to ∂Ω and the velocity on the outer domain given by (3.26) can be
rewritten

V∂Ω(t) = −∇p∞.

To find the velocity at the interface the same method needs to be applied on either n∞1 or n∞2 and it leads
to

VΓ(t) = −(∇p∞ · υ)υ, (3.28)

where VΓ(t) is the speed of the boundary Γ(t). This gives (3.12).
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3.3. Numerical validation

3.3.1. Analytical solution of the Hele-Shaw model

The HSM is characterised by the complementary relation (3.8) and the velocity of the boundary
given by (3.12). In the one-dimensional case (1D), the solution of this problem can be computed
explicitely. We will consider G(p) = g(p∗ − p), with p∗ the maximum pressure and g the growth rate,
since it is one of the most common growth terms in the literature [16, 17, 18]. In the case of a single
population, the complementary relation (3.8) in 1D can be rewritten as

−p′′(x) + gp = gp∗ on Ω(t). (3.29)

The solutions of this problem are of the form

p(x) = Ae
√

gx + Be−
√

gx + p∗,

with constants A, B depending on the boundary conditions. We compute the exact solution in two
different cases which are going to be used for the numerical validation of the model.

Example 1 We first consider the case where the two species have the same growth term

G1(p) = G2(p) = g(p∗ − p), (3.30)

with one species surrounded by the other one. The density nini
2 is defined as the indicator function of

[xini
Γ−

; xini
Γ+] and the density nini

1 is defined as the indicator function of [xini
Σ−

; xini
Σ+] \ [xini

Γ−
; xini

Γ+] where xini
Γ−
, xini

Γ+

represents the interfaces between the two populations and xini
Σ−
, xini

Σ+ represent the exterior boundaries of
the support of the total density. More specifically,

nini
1 (x) = 1[xini

Σ−
;xini

Γ−
](x) + 1[xini

Γ+ ;xini
Σ+ ](x) and nini

2 (x) = 1[xini
Γ−

;xini
Γ+ ](x). (3.31)

Since the two populations have the same growth function, the complementary relation can be treated
as that of a single population of cells (3.29) with the boundary conditions p(xΣ−) = 0 and p(xΣ+) = 0 at
any time. A simple computation shows that

p(x) = p∗
(
1 −

cosh(
√

g( xΣ−+xΣ+

2 − x)

cosh(
√

g xΣ−−xΣ+

2 )

)
,

where cosh and sinh stand for the hyperbolic cosine and sine. The velocities of the exterior boundaries
and of the interfaces can be easily computed:

VΣ− = −p∗
√

g
sinh(

√
g xΣ−−xΣ+

2 )

cosh(
√

g xΣ−−xΣ+

2 )
and VΣ+ = p∗

√
g

sinh(
√

g xΣ−−xΣ+

2 )

cosh(
√

g xΣ−−xΣ+

2 )
,

and

VΓ− = p∗
√

g
sinh(

√
g( xΣ−+xΣ+

2 − xΓ−)

cosh(
√

g xΣ−−xΣ+

2 )
and VΓ+ = p∗

√
g

sinh(
√

g( xΣ−+xΣ+

2 − xΓ+)

cosh(
√

g xΣ−−xΣ+

2 )
.

Then xΣ± and xΓ± evolve respectively according to d
dt xΣ± = VΣ± and d

dt xΓ± = VΓ± . Since initially xini
Σ−
<

xini
Γ−
< xini

Γ+ < xini
Σ+ , the velocities VΣ− ,VΓ− are nonpositive and the velocities VΣ+ ,VΓ+ are nonnegative. It

means that the densities n1 and n2 spread. However |VΓ− | ≤ VΣ− and |VΓ+ | ≤ VΣ− so the interface is
moving more slowly than the exterior boundary. This means that the density n1 is not only transported
but also spreads. The density n2 spreads and simultaneously pushes n1.
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Example 2 We now consider two species having only one contact point, with different growth terms

G1(p) = g1(p∗1 − p) and G2(p) = g2(p∗2 − p). (3.32)

The initial densities are defined as indicator functions of [xini
Σ−

; xini
Γ

] and [xini
Γ

; xini
Σ+] where xini

Σ−
, xini

Σ+ define
the boundaries of the support of the total density and xini

Γ
defines the interface between the supports of

the two densities. More specifically,

nini
1 (x) = 1[xini

Σ−
;xini

Γ
](x) and nini

2 (x) = 1[xini
Γ

;xini
Σ+ ](x). (3.33)

The pressure follows the complementary relation (3.8), which can be rewritten as−p′′(x) + g1 p = g1 p∗1 in Ω1 = [xΣ−; xΓ],
−p′′(x) + g2 p = g2 p∗2 in Ω2 = [xΓ; xΣ+],

with the additional conditions p(xΣ−) = 0, p(xΣ+) = 0, and p and p′ are continuous at xΓ. After some
computations we find,

p(x) =


2A1e

√
g1 xΣ− sinh(

√
g1(x − xΣ−)) + p∗1(1 − e−

√
g1(x−xΣ− )) in [xΣ−; xΓ],

2A2e
√

g2 xΣ+ sinh(
√

g2(x − xΣ+)) + p∗1(1 − e−
√

g2(x−xΣ+ )) in [xΓ; xΣ+],
0 in (−∞, xΣ−] ∪ [xΣ+ ,+∞),

with
A1 = e

√
g2 xΣ−

D ( p1(
√

g2(1 − e−
√

g1∗(xΓ−xΣ+ )) cosh(
√

g2(xΓ − xΣ−))
−
√

g1e−
√

g2(xΓ−xΣ+ ) sinh(
√

g2(xΓ − xΣ−)))
+p2
√

g2(−(1 − e−
√

g2(xΓ−xΣ− )) cosh(
√

g2(xΓ − xΣ−))
+e−

√
g2(xΓ−xΣ− ) sinh(

√
g2(xΓ − xΣ−)))),

and
A2 = e

√
g1 xΣ+

D ( p1
√

g1((1 − e−
√

g1(xΓ−xΣ− )) cosh(
√

g1(xΓ − xΣ−))
−e−

√
g1(xΓ−xΣ− ) sinh(

√
g1(xΓ − xΣ−)))

+p2(
√

g2(1 − e−
√

g2(xΓ−xΣ+ )) cosh(
√

g2(xΓ − xΣ+))
−
√

g1e−
√

g2(xΓ−xΣ+ ) sinh(
√

g1(xΓ − xΣ−)))).

From this expressions we can compute the speeds of the exterior boundary and of the interface by
computing the derivative of the pressure and evaluating it at xini

Σ−
, xini

Σ+ and xini
Γ

.

3.3.2. Numerical validation

In this section we use the numerical scheme presented in Section 4 to illustrate that the solution
of the SPM converges to the corresponding solution of the HSM described in Section 3.1. In order
to facilitate the comparison with the analytical solutions of the HSM shown in the previous section,
the simulations are performed in one dimension. To compare the two models we initialize them with
the same initial configuration: the densities are taken as segregated indicator functions. We consider
the two different cases with different growth functions and different initial conditions, corresponding
to Examples 1 and 2 of Section 3.2. For Example 1, we plot the simulation for one set of parameters:
ε = 0.1, m = 10, α = 0.01 and ν = 0.001 (where ν is introduced for the RSPM in Section 4). For
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Example 2, we plot the simulation for a set of parameters: (ε,m, α, ν) = (1, 2, 0.1, 0.01), (ε,m, α, ν) =

(0.1, 10, 0.01, 0.001), (ε,m, α, ν) = (0.02, 50, 0.001, 0.0001).
The first case defined as Example 1 in Section 3.2 is illustrated in Figure 5. We use the growth

function (3.30) with the parameters g = 1 and p∗ = 10. The boundary and interface are taken as
xini

Σ±
= ±1.4 and xini

Γ±
= ±0.6. Then the initial density of the HSM are defined by Eq. (3.31). As initial

conditions of the SPM, we take

nini
1 (x) = 0.98 (1[−1.4;−0.6](x) + 1[0.6;1.4](x)) and nini

2 (x) = 0.98 1[−0.6;0.6](x). (3.34)

We take n1 = n2 = 0.98 initially as it is close to the singular value 1. We plot the numerical solutions
of the SPM (solid line) and of the HSM (dashed line) on the same figure. The species n1 and n2 are
plotted in red and blue, respectively. In this example the solution of the SPM is expected to be close to
the particular solution of the HSM given in Example 1.
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Figure 5. Snapshots of densities n1 (red), n2 (blue) and pressure p (black) for SPM (solid
line) and HSM (dashed line with marker) for Example 1 at different times: (a) t = 0, (b)
t = 0.001, (c) t = 0.01, (d) t = 0.15. Initial conditions: density of the SPM from Eq. (3.34),
density of the HSM from Eq. (3.31), growth functions from Eq. (3.30).

In Figures 5, panel (a) is for the initial configuration and panels (b), (c), (d) are for times t = 0.001,
t = 0.01, t = 0.15 respectively. First of all, we notice that the approximation is excellent except for the
pressure at small times, and at the interface between the two cell population. While the pressure of the
HSM is smooth wherever the total density is positive, the pressure of the SPM exhibits sharp ditches
at the interfaces between the two populations. These ditches appear because of the fourth order term
in the model (2.3)-(2.6). Indeed, because of the fourth order term, n1 and n2 are continuous. Since n1

is zero in Ω1 and n2 is zero in Ω1, both are zero at the interface and since they are continuous, they are
both very small in a small vicinity of the interface. Therefore the repulsion pressure p is also small at
the interface. Since the width of the the interface is of the order of alpha and is very small, this implies
that the region of small pressure is very narrow and generates a sharp ditch near the interface. Away
from the interface, the pressure does not feel the influence of the fourth order term because all densities
are smooth and therefore, it approximates very well the pressure given by the HSM model. Away from
the interfaces, the pressures given by the two models are similar except at small times. In Figure 5(b),
the pressure of the SPM is larger than that of the HSM. However, we do not observe any influence of
this difference on the densities. On Figures 5(c) and 5(d), the two pressures are almost the same for the
two models. Overall, the dynamics of the SPM and the HSM are quite similar. In Figure 5, we observe
that the blue (inner) species pushes the red (outer) species in order to be allowed to grow.
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The second case is illustrated in Figure 6. The growth functions are defined by (3.32) with the
parameters g1 = g2 = 1, p∗1 = 20 and p∗2 = 10. As initial conditions of the SPM we take

nini
1 (x) = 0.98 1[xini

Σ−
;xini

Γ
](x) and nini

2 (x) = 0.98 1[xini
Γ

;xini
Σ+ ](x), (3.35)

where xini
Σ±

= ±1.4 and xini
Γ

= 0. The initial density of the HSM are defined with formula (3.33). In
this example, we plot the solution of the HSM (dashed line) in Figure 6 (i) and the solution of the
SPM (solid line) in Figure 6 (ii)-(iv) (respectively for the parameters (ε,m, α, ν) = (1, 2, 0.1, 0.01),
(ε,m, α, ν) = (0.1, 10, 0.01, 0.001), (ε,m, α, ν) = (0.02, 50, 0.001, 0.0001)). For each line, panels (a),
(b), (c) are for times t = 0.001, t = 0.01, t = 0.15. Panel (d) is also a plot at time t = 0.15, but only
of the densities. The species n1 and n2 are plotted in red and blue, respectively and the pressure p is
plotted in black.

In Figure 6 (i)-(iv), the red species (leftmost) which has the biggest growth rate pushes the blue
species (rightmost) toward the right. Therefore by growing more rapidly, the red species exerts a
bigger pressure on the blue species than the blue species exerts on the red species. This pressure
imbalance which is visible on Figure 6 (a)-(c), triggers the motion of the interface towards regions of
lower pressure.

In Figures 6, while going from line (ii) to (iv) (which corresponds to having ε → 0 and m → ∞),
we observe three important phenomena. As seen previously in Figures 5, for small times the pressure
p of the SPM and the HSM are different. However this difference is much bigger in Figures 6 (ii-a)
when (ε,m, α, ν) = (1, 2, 0.1, 0.01) than for the two other cases. So as the parameters ε, m converge,
the time for the two models to provide similar solutions reduces. This corresponds to an initial layer
converging faster to the initial state of the HSM. The other main difference is the pressure ditch at the
interface as shown in Figures 6 (a), (b), (c). As ε and m converge, the ditch becomes deeper. Indeed, as
ε and m converge, the variations of n1 and n2 near the interface become sharper. Since the pressure near
the interface is a function of the densities, its variations become sharper as well, which is consistent
with the observation that the pressure ditch becomes more pronounced as these parameters converge.
Except near the interface, the pressure p of the SPM and the HSM almost coincide in Figures 6 (b),
(c). The last phenomenon we observe is the convergence of the densities of the SPM to the Heaviside
functions which characterize the solutions of hte HSM in Figure 6 (d). Indeed as ε gets smaller (and m
gets bigger), the fronts of the densities become steeper and the upper bounds of the densities get closer
to 1.

3.3.3. Discussion

The results of the simulations presented in Figures 5 and 6 show that the dynamics of the two models
are almost identical after some time. However, at the beginning of the simulation we observe some
differences between the pressure of the SPM and of the HSM. This is because the initial conditions of
the SPM are not well-prepared for the limit model, which generates an initial layer whose function is to
relax the initial conditions to well-prepared ones. Indeed, initially in the SPM, the densities are taken
as indicator functions, so at the start the pressure pε of the SPM is also an indicator function whereas
that of the HSM is continuous. It takes an initial transient for the model to smooth it out, and then the
two pressures coincide. In addition, the initial value of the SPM in these simulations is fixed to 98%
of the packing density 1. At the beginning of the simulation, the dynamics of the SPM is driven by the
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(b) Solution of the SPM with (ε,m) = (1, 2, 0.1, 0.01)
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(c) Solution of the SPM with (ε,m) = (0.1, 10, 0.01, 0.001)
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(d) Solution of the SPM with (ε,m) = (0.02, 50, 0.001, 0.0001)

Figure 6. Snapshots of densities n1 (red), n2 (blue) and pressure p (black) for SPM (solid
line) and HSM (dashed line) from Example 2 at different times: (a) t = 0.01, (b) t = 0.01,
(c) t = 0.15. On panels (d) close-ups of the densities of (c) at t = 0.15 are plotted. Initial
conditions: density of the SPM from Eq. (3.35), density of the HSM from Eq. (3.33), growth
functions from Eq. (3.32).
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growth terms which increase the densities to their upper bound values nM = p−1
ε (p∗) =

p∗

ε+p∗ < 1 with
p∗ = max(p∗1, p∗2) (see (3.2)). Until the densities reach their upper bound value, the SPM and the HSM
are not close to each other. After this short period, we observe that the pressures of the two models
fit well. It also seems that this time becomes smaller when the parameters are closer to convergence,
which is consistent with the fact that initial transients are faster when the perturbation parameters are
closer to their limit values.

The major difference between the two models is at the interfaces between the two populations. As a
result of the fourth order terms, the densities of the SPM are not perfectly segregated and overlap only
in a narrow spatial interval. As long ε and m are finite, the densities n1 and n2, which are continuous,
are small in the vicinity of the interface. This creates sharp ditches in the pressures (which in this
regime are function of the densities). In the limit ε → 0, m → +∞ and α → 0, the densities become
discontinuous and the pressure ditches become narrower and narrower until they disappear completely.
For finite ε and m close to the limit, despite the pressure ditches, the interface and boundary speeds are
very close in the two models. These are quite remarkable results, considering that the parameters used
in the tests were not yet in the asymptotic ranges where the two models should be identical.

However, it is important to remark that the comparisons between the SPM and the HSM can only
be made in the case of initially segregated populations. This is necessary to initialize the free boundary
model. In the case of mixed population, simulations of the SPM have been made and can be found in
Section 2. They confirm the convergence of the SPM towards a free boundary model since we observe
that the system self-organizes into separated domains containing the different populations. However
we cannot study the convergence towards the HSM since we do not know beforehand which initial
conditions for the HSM will correspond to the converged SPM.

4. Numerical method

This section is devoted to the derivation of the numerical scheme used to perform the simulations
of the SPM presented in Sections 2 and 3. Since the equations for the densities are of fourth order, we
first introduce a relaxation model, in which the fourth order terms are replaced by a coupled system of
second order equations. Then, we present the numerical scheme together with some of its properties
and derive a CFL stability condition.

4.1. Relaxation model

In order to simplify the computation of system (2.3) - (2.6), we lower its order through a suitable
relaxation approximation. The relaxation system, depending on the relaxation parameter ν, is written
as follows

∂tnν1 − ∇ · (n
ν
1∇pν1) +

1
ν
∇ ·

(
nν1∇(cν1 − nν1)

)
= nν1G1(pν1), (4.1)

∂tnν2 − ∇ · (n
ν
2∇pν2) +

1
ν
∇ ·

(
nν2∇(cν2 − nν2)

)
= nν2G2(pν2), (4.2)

α∆cν1 =
1
ν

(cν1 − nν1), (4.3)

α∆cν2 =
1
ν

(cν2 − nν2). (4.4)
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with p1 and p2 given by the constitutive laws (2.5)-(2.6) and where c1 and c2 are two new variables.
The fourth order terms in (2.3) - (2.6) are now replaced by second order terms supplemented with Pois-
son equations which define c1 and c2. This relaxation method has been introduced for the numerical
approximation of the Navier-Stokes-Korteweg equations [39, 40]. This system is referred to as Relax-
ation Segregation Pressure Model (RSPM). It formally converges toward the SPM when ν → 0. Here
we give supporting elements for this statement. We suppose that (nν1) and (nν2) converge when ν goes
to 0. Since the two species play the same role, we only consider n1. Inserting (4.3) in (4.1) we have,

∂tnν1 − ∇ · (n
ν
1∇pν1) + α∇ ·

(
nν1∇∆cν1

)
= nν1G1(pν1).

Then to prove the convergence we need to show that cν1 → n1 when ν→ 0. We can rewrite (4.3) as

−α∆(cν1 − nν1) +
1
ν

(cν1 − nν1) = α∆nν1.

So that
cν1 − nν1 = α(−α∆ +

1
ν

)−1∆nν1.

Using Fourier transform, we obtain:

ĉν1 − n̂ν1 = −
α|ξ|2

α|ξ|2 + 1
ν

n̂ν1 ∀ξ.

And then,
lim
ν→0

(cν1 − nν1) = 0.

With the same computation we can obtain that

lim
ν→0

(cν2 − nν2) = 0.

This formally shows the convergence of the RSPM toward the SPM.

4.2. The scheme

We aim to numerically solve the RSPM given by (4.1)-(4.4) with Neumann boundary conditions by
a finite-volume method. The choice of the boundary condition is arbitrary because we are interested
in the dynamics of the system whilst the densities have not reached the boundary. To facilitate the
comprehension, we omit the indices ν. For the sake of simplicity, we only consider the 1D case on a
finite interval Ω = (a, b).

We divide the computational domain into finite-volume cells C j = [x j−1/2, x j+1/2] of uniform size
∆x with x j = j∆x, j ∈ {1, ...,Mx}, and x j =

x j−1/2+x j+1/2

2 so that

a = x1/2 < x3/2 < ... < x j−1/2 < x j+1/2 < ... < xMx−1/2 < xMx+1/2 = b

and define the cell average of functions n1(t, x) and n2(t, x) on the cell C j by

n̄β, j(t) =
1

∆x

∫
C j

nβ(t, x) dx, β ∈ {1, 2}.
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A semi-discrete finite-volume scheme is obtained by integrating system (4.1)-(4.4) over C j and is given
by

∂tn̄1, j(t) = −
F1, j+1/2(t) − F1, j−1/2(t)

∆x
+ n̄1, j(t)G1(p1, j(t)),

∂tn̄2, j(t) = −
F2, j+1/2(t) − F2, j−1/2(t)

∆x
+ n̄2, j(t)G2(p2, j(t)),

α
c1, j+1(t) − 2c1, j(t) + c1, j−1(t)

(∆x)2 −
1
ν

(c1, j(t) − n̄1, j(t)) = 0,

α
c2, j+1(t) − 2c2, j(t) + c2, j−1(t)

(∆x)2 −
1
ν

(c2, j(t) − n̄2, j(t)) = 0.

(4.5)

Here, cβ, j(t) ≈ cβ(t, x j), β ∈ {1, 2} and Fβ, j+1/2 are numerical fluxes approximating −nβuβ := −nβ∂x(pβ−
1
ν
(cβ − nβ)) and defined by the following upwind scheme:

Fβ, j+1/2 = (uβ, j+1/2)+n̄β, j + (uβ, j+1/2)−n̄β, j+1, β ∈ {1, 2}, (4.6)

where

uβ, j+1/2 = −

(
pβ, j+1 −

1
ν
(cβ, j+1 − n̄β, j+1)

)
−

(
pβ, j − 1

ν
(cβ, j − n̄β, j)

)
∆x

, (4.7)

and (uβ, j+1/2)+ = max(uβ, j+1/2, 0) and (uβ, j+1/2)− = min(uβ, j+1/2, 0) are its positive and negative part,
respectively. The numerical pressure pβ, j+1 for β = 1, 2 are computed applying (2.5)-(2.6) to the n̄β, j.

It is easy to see that scheme (4.5)–(4.7) is first order in space and if one uses an explicit Euler
method for time evolution, then the scheme is also first order in time. Higher order approximations can
also be obtained, see e.g. [41].

4.3. CFL condition and properties of the scheme

In this section, we present some properties of the scheme. We prove that for all times t ≥ 0, it
preserves the non-negativity of the computed densities n̄1 and n̄2 and also ensures that the total density n̄
stays below 1. The former property guarantees physically meaningful values of the computed densities
while the second one is needed to make sense of the pressure law which blows up when n̄→ 1.

We consider the semi-discrete finite volume scheme (4.5)–(4.7) and evolve it in time by the forward
Euler method. We denote by n̄k

1, j, n̄k
2, j, pk

1, j and pk
2, j the computed densities and pressures obtained at

time tk = tk−1 + ∆tk, i.e., n̄k
1, j := n̄1, j(tk), n̄k

2, j := n̄2, j(tk), pk
1, j := p1, j(tk) and pk

2, j := p2, j(tk), and prove the
following two propositions.

Proposition 1. (Positivity of the density) Consider the semi-discrete finite volume scheme (4.5)–(4.7)
that is evolved in time by the forward Euler method. Provided that the initial densities n̄0

1, j ≥ 0 and
n̄0

2, j ≥ 0 for all j ∈ {1, ...,Mx}, and that the growth terms Gβ are nonnegative for β = {1, 2}, a sufficient
CFL condition for the cell averages n̄k

1 j
and n̄k

2 j
, with k ∈ [0,Nit], to be positive is

∆tk+1 ≤
∆x

2 max
j∈{1,...,Mx},
β∈{1,2}

{(uk
β, j+1/2)+,−(uk

β, j+1/2)−}
, ∀k ∈ [0,Nit] , (4.8)

where (uk
β, j+1/2)+ := (uβ, j+1/2)+(tk) and (uk

β, j+1/2)− := (uβ, j+1/2)−(tk).
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Proof. Assume that at a given time tk, n̄k
1, j ≥ 0 and n̄k

2, j ≥ 0 for all j ∈ {1, ...,Mx}. Then, the new
densities are given by the general formula

n̄k+1
β, j = n̄k

β, j −
∆tk+1

∆x
(Fk

β, j+1/2 − Fk
β, j−1/2) + ∆tk+1 n̄k

β, jG1(pk
β, j) (4.9)

where Fk
β, j+1/2 := Fβ, j+1/2(tk). Taking into account formula (4.6) for fluxes Fk

β, j+1/2 and the fact that the
growth terms Gβ are nonnegative for β = 1, 2, we obtain

n̄k+1
β, j ≥n̄k

β, j −
∆tk+1

∆x

[
(uk

β, j+1/2)+ n̄k
β, j + (uk

β, j+1/2)− n̄k
β, j+1 − (uk

β, j−1/2)+ n̄k
β, j−1 − (uk

β, j−1/2)− n̄k
β, j

]
≥

∆tk+1

∆x
(uk

β, j−1/2)+ n̄k
β, j−1 +

(
1
2
−

∆tk+1

∆x
(uk

β, j+1/2)+

)
n̄k
β, j

+

(
1
2

+
∆tk+1

∆x
(uk

β, j−1/2)−
)

n̄k
β, j −

∆tk+1

∆x
(uk

β, j+1/2)− n̄k
β, j+1.

By definition, (uk
β, j+1/2)− ≤ 0 and (uk

β, j+1/2)+ ≥ 0 for all j ∈ {1, ...,Mx}. Then, provided that the CFL
condition (4.8) is satisfied,

1
2
−

∆tk+1

∆x
(uk

β, j+1/2)+ ≥ 0 and
1
2

+
∆tk+1

∆x
(uk

β, j−1/2)− ≥ 0 ∀ j ∈ {1, ...,Mx}.

Since (n̄k
1, j) j∈{1,...,Mx}, (n̄

k
2, j) j∈{1,...,Mx} are non-negative, we conclude that n̄k+1

1, j ≥ 0 and n̄k+1
2, j ≥ 0 for all

j ∈ {1, ...,Mx}. �

Proposition 2. (Maximum total density) Consider the semi-discrete finite volume scheme (4.5)–(4.7)
that is evolved in time by the forward Euler method. Provided that the initial total density n̄0

j = n̄0
1, j +

n̄0
2, j < 1 for all j ∈ {1, ...,Mx}, a sufficient CFL condition for the average total densities n̄k

j = n̄k
1, j + n̄k

2, j,
to be below 1 for all k ∈ [0,Nit] is

∆tk+1 ≤ (
1

max
j∈{1,...,Mx},
β∈{1,2}

n̄k
β j

− 1)
1

4
∆x max

j∈{1,...,Mx},
β∈{1,2}

{(uk
β j+1/2

)+,−(uk
β j+1/2

)+} + max
j∈{1,...,Mx},
β∈{1,2}

Gβ(pk
β j

)
,

∀k ∈ [0,Nit].

(4.10)

Proof. Assume that at a given time tk, n̄k
1, j ≤ 1 and n̄k

2, j ≤ 1 for all j ∈ {1, ...,Mx}. The densities
n̄k+1
β, j , β = {1, 2}, at the following time step are given by

n̄k+1
β, j = n̄k

β, j −
∆tk+1

∆x
(Fk

β, j+1/2 − Fk
β, j−1/2) + ∆tk+1 n̄k

β, jG1(pk
β, j)

≤ n̄k
β, j −

∆tk+1

∆x

[
(uk

β, j+1/2)+ n̄k
β, j + (uk

β, j+1/2)− n̄k
β, j+1

− (uk
β, j−1/2)+ n̄k

β, j−1 − (uk
β, j−1/2)− n̄k

β, j

]
+ ∆tk+1 n̄k

β, jG1(pk
β, j)

≤
(
1 + 4

∆tk+1

∆x
max

j∈{1,...,Mx}
{(uk

β, j+1/2)+,−(uk
β, j+1/2)−} + ∆tk+1 max

j∈{1,...,Mx}
Gβ(pk

β, j

)
max

j∈{1,...,Mx}
n̄k
β, j.
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Adding the last inequality for the two densities we get that

n̄k+1
j ≤

(
1 + 4

∆tk+1

∆x
max

j∈{1,...,Mx},
β∈{1,2}

{(uk
β, j+1/2)+,−(uk

β, j+1/2)−}

+ ∆tk+1 max
j∈{1,...,Mx},
β∈{1,2}

Gβ(pk
β, j)

)
max

j∈{1,...,Mx},
β∈{1,2}

n̄k
β, j.

Then a sufficient condition for the total density to stay below 1 is (4.10). �

Remark 3. Eqs. (4.8) and (4.10) give conditions enabling us to choose the time step in the numerical
simulations. However, in some computations we need to reduce the time step in order to avoid oscilla-
tions in the pressure when the density is close to the singular density n = 1. These oscillations originate
from small oscillation in the densities. However despite these varations the total density still verifies
the condition 0 ≤ n < 1. To enforce stability in the simulations, ∆x is replaced by ∆x2 in (4.8)-(4.10)
which give rise to more stringent stability constraints. This kind of condition is in fact expected for a
standard parabolic CFL.

Remark 4. Similar theorems can also be proven if the second-order upwind spatial scheme from [41] is
used and the forward Euler method is replaced by a higher-order SSP ODE solver since a time step in
such solvers can be written as a convex combination of several forward Euler steps, see, e.g., [42, 43].

5. Conclusion

In this paper, we have presented a continuum model for two populations which avoid mixing. In
addition we have introduced a numerical scheme and used it to study the behaviour of the system with
different parameters. This model is a generalisation of a single population case which has been studied
in the literature previously.

Through a combination of analytical and numerical arguments, this paper demonstrates that the
continuum model converges to a Hele-Shaw free interface/boundary model, when an appropriate set
of parameters is sent to zero (or infinity). The analytical proof is only formal and is supported by
numerical simulations. In particular, we observe that the speed of the boundaries and interfaces of the
continuum model for parameters taken in the asymptotic regime is the same as those computed by the
Hele-Shaw model. This is verified with values of the parameters fairly far from the asymptotic regime
which means that the convergence is quite fast.

Perspectives for this work are both on the analytical and numerical sides. On the analytical side, a
rigorous proof of the convergence of the continuum model to the Hele-Shaw one seems within reach
in the case α = 0 and q = 0. On the numerical side, simulations of two-dimensional cases will be
developed and applied to the modelling of tissue growth and growth termination.
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France. PD and SH would like to thank Andrea Bertozzi for stimulating discussions.

Data Statement

No new data were collected in the course of this research.

Conflict of interest

All authors declare no conflicts of interest in this paper.

AMS subject classifications

35K55; 35R35; 65M08; 92C15; 92C10

References

1. F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm.
Part. Diff. Eq., 26(2001), 101–174, URL https://doi.org/10.1081/PDE-100002243.

2. D. Kinderlehrer and N. J. Walkington, Approximation of parabolic equations using the Wasser-
stein metric, ESAIM: M2AN, 33(1999), 837–852, URL https://doi.org/10.1051/m2an:
1999166.

3. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–
Planck equation, SIAM J. Math. Anal., 29(1998), 1–17, URL https://doi.org/10.1137/
S0036141096303359.
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Appendix

A. Derivation of the continuum model

Eqs. (2.3) and (2.4) can be derived from the gradient flow associated with the free energy (2.1).
Indeed the functional derivatives δE

δn1
and δE

δn2
of Ewith respect to n1 and n2, acting on a density increment

ñ1(x) and ñ2(x) are given by

δE

δn1
= pε(n1 + n2) + n2qm(n1n2) − α∆n1 = p1ε,m(n1, n2) − α∆n1, (A.1)

δE

δn2
= pε(n1 + n2) + n1qm(n1n2) − α∆n2 = p2ε,m(n1, n2) − α∆n2. (A.2)

Indeed, the computation for the first derivative is given by

<
δE

δn1
, ñ1 > :=

∫
Rd

δE

δn1
(n1, n2) ñ1dx

= lim
h→0

1
h

(
E(n1 + hñ1, n2) − E(n1, n2)

)
= lim

h→0

1
h

∫
Rd

(
Pε(n1 + hñ1 + n2)(x) − Pε(n1 + n2)(x)

)
dx

+ lim
h→0

1
h

∫
Rd

(
Qm((n1 + hñ1)n2)(x) − Qm(n1n2)(x)

)
dx

+ lim
h→0

α

2h

∫
Rd

(
|∇(n1 + hñ1)|2 − |∇n1|

2
)

dx

=

∫
Rd

(∂Pε

∂n1
(n1 + n2) +

∂Qm

∂n1
(n1n2) + α∇n1∇ñ1

)
ñ1dx

=

∫
Rd

(
pε(n1 + n2) + n2 qm(n1n2) − α∆n1

)
ñ1dx.

The expression of δE
δn2

follows from a similar computation. Therefore the gradient flow associated to
the free energy (2.1) according to the Wasserstein metric can be written as follows [1],

∂tn1 − ∇ · (n1∇
δE

δn1
(n1, n2)) = 0, (A.3)

∂tn2 − ∇ · (n2∇
δE

δn2
(n1, n2)) = 0. (A.4)

The metric used here is not the traditional distance on L2(Rd), but the Wasserstein distance. This
distance is defined on the set of probability distributions on Rd. It is used in a wide variety of physically
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meaningful equations like the porous medium equation or degenerate parabolic equations [2, 3, 1]. We
recover Eqs. (2.3) and (2.4) of the SPM by adding growth terms G1 and G2 to (A.3) and (A.4).

It is worth noting that the free energy decreases along the trajectories of the equation in the absence
of growth terms. Indeed, using the Green formula and the Eqs. (A.3) and (A.4), we have

∂tE(n1, n2) =

∫
Rd

(
δE

δn1
(n1(x, t), n2(x, t)) ∂tn1(x, t)

+
δE

δn2
(n1(x, t), n2(x, t)) ∂tn2(x, t)) dx

=

∫
Rd

(
δE

δn1
(n1(x, t), n2(x, t))∇ · (n1(x, t)∇

δE

δn1
(n1(x, t), n2(x, t)))

+
δE

δn2
(n1(x, t), n2(x, t))∇ · (n2(x, t)∇

δE

δn2
(n1(x, t), n2(x, t)))) dx

= −

∫
Rd

n1(x, t)|∇
δE

δn1
(n1(x, t), n2(x, t))|2 dx

−

∫
Rd

n2(x, t)|∇
δE

δn2
(n1(x, t), n2(x, t))|2 dx ≤ 0.

(A.5)

Therefore, when the growth rates are set to 0, the model evolves in a way that minimize the free energy.
This free energy depends on three terms, representing the levels of volume exclusion, segregation and
cohesion. Therefore the model seeks to minimize the pressures, which means moving away from
situations where the volume exclusion or the segregation constraints are violated.
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