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Myxobacteria are social bacteria, that can glide in two dimensions and form counter-
propagating, interacting waves. Here, we present a novel age-structured, continuous
macroscopic model for the movement of myxobacteria. The derivation is based on micro-
scopic interaction rules that can be formulated as a particle-based model and set within
the Self-Organized Hydrodynamics (SOH) framework. The strength of this combined
approach is that microscopic knowledge or data can be incorporated easily into the par-
ticle model, whilst the continuous model allows for easy numerical analysis of the differ-
ent effects. However, we found that the derived macroscopic model lacks a diffusion term
in the density equations, which is necessary to control the number of waves, indicating
that a higher order approximation during the derivation is crucial. Upon ad hoc addition
of the diffusion term, we found very good agreement between the age-structured model
and the biology. In particular, we analyzed the influence of a refractory (insensitivity)
period following a reversal of movement. Our analysis reveals that the refractory period

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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is not necessary for wave formation, but essential to wave synchronization, indicating
separate molecular mechanisms.

Keywords: Self-propelled particles; nematic alignment; hydrodynamic limit; generalized
collision invariant; diffusion correction; myxobacteria; wave formation; refractory period.

AMS Subject Classification: 35L60, 35K55, 35Q70, 82C05, 82C22, 82C70, 92D50

1. Introduction

Myxobacteria are a fascinating example for how simple cell–cell interaction rules
can lead to emergent, collective behavior. These single-celled organisms have the
ability to move on two-dimensional (2D) surfaces and form large colonies. When
swarming, the colony exists as a rather uniform mono- or multi-layer of densely
packed cells with single cells occasionally venturing away from the main swarm
body. Myxobacterial swarms are predatory, searching and killing prey as a collec-
tive, which is one reason why these bacteria have often been called social bacteria.21

Upon meeting prey, but also under starvation conditions, the cells enter a ripple
phase, during which periodic density waves are formed.42 When two waves traveling
in opposite directions collide, the waves appear to pass through each other unaffect-
edly. However, by tracking individual bacteria,39,46 it was discovered that most cells
in the wave crests in fact reverse their direction of movement, showing that the den-
sity waves are actually being reflected off each other. Myxobacteria reverse without
turning, by internally exchanging the lagging and the leading pole. Isolated bacte-
ria reverse spontaneously (on average every 10 min), however, their reversal rate
increases as a response to higher densities of other bacteria around them. Although
the precise function of rippling is not known, it often serves as a prelude and also
overlaps with an aggregation phase: in this developmental stage, bacteria aggre-
gate into several growing mounds which eventually rise out of the plane and form
large three-dimensional (3D) fruiting bodies. Both waves and aggregates are macro-
scopic structures with typical length scales of 100 µm, whereas individual bacteria
are only a few microns long. Biologically, this makes myxobacteria an interesting
and suitable research object for understanding the development of multicellular
cooperation, the basis of all complex life forms. Finally, the myxobacteria’s unique
metabolites have also rendered them an attractive source for potential new drugs.38

The various social and cooperative behavior in observed myxobacterial colonies
raises questions about the mechanisms of cell–cell communication. The most impor-
tant mechanism responsible for inducing both ripple formation and aggregation
has been found to be C-signaling: The C-factor is a 17-kD protein associated with
the cell surface. It has been shown that direct cell–cell contact is necessary for
C-signaling and that the exchange is facilitated via end-to-end contacts.29 Isolated
cells exposed to purified C-factor show an increase in reversal frequency,39 suggest-
ing that cell-to-cell contacts increase the probability for a cell to reverse.

In this work, we try to shed light on some of the questions associated with ripple
formation: What primary effect of C-signaling causes a uniformly spread swarm to
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start forming ripples? Are density-dependent changes in reversal frequency enough
to explain the formation of opposing, periodic wave trains? One idea brought for-
ward in Ref. 26 and inspired by Dictyostelium discoideum is that of an insensitivity
or refractory period. Based on the observation that there seems to be a minimum
time of around 40 sec46 between two reversals of the same bacterium, it is sug-
gested that bacteria become insensitive to C-signaling immediately after they have
reversed. Using mathematical modeling, we show that a refractory period is not
necessary for the formation of traveling waves as such, but rather for controlling
the width of the waves as well as their wavelength. By analyzing the composition of
waves in terms of insensitive and sensitive cells, we discover a possible mechanism
how periodic waves are created and maintained in myxobacterial colonies.

While mutation experiments provide valuable insight, computational models
offer a powerful alternative to test and analyze different mechanistic biological
models. Detailed measurements and statistics about single cell behavior39,46 as
well as mutation experiments provide the quantitative data necessary to formulate,
parametrize and validate mathematical models. In many cases when modeling bio-
logical or physical systems, one of the first modeling decisions is whether to use an
individual- or particle-based model (IBM), in which the individual agents (in our
case bacteria) interact by simple rules or to use a continuum model, in which the
evolution of macroscopic quantities such as densities or mean directions is described
by differential equations.32 Advantages of IBMs are that they generally allow for an
easy incorporation of biological knowledge or hypotheses and can deal with noise
in a straightforward way. However, the analysis of the model is often limited to
running a large number of simulations and little mechanistic insight is gained. For
(macroscopic) differential equations on the other hand, a large analytical toolbox
ranging from asymptotic methods to linear stability analysis and bifurcation theory
is available, which can produce precise results about the parameter dependence of
solution behavior, etc. However for biological systems, it is often difficult to derive
continuous models, in many cases, ad hoc models are used in which some desired
system behavior is already built into the derivation, thereby limiting the explana-
tory potential of the model.

The derivation of macroscopic models from IBMs of collective dynamics has
been the subject of an intense literature with a particular focus on applications to
biology. This derivation proceeds through an intermediate modeling level called the
kinetic or mean-field model.4,5,8 The derivation from kinetic to macroscopic models
of collective dynamics faces the problem of the lack of conservation relations (such
as the lack of momentum conservation, see e.g. the review in Ref. 45). A recent
breakthrough is the so-called generalized collision-invariant (GCI) concept18,23 sub-
sequently developed in a variety of biological contexts (tissue self-organization,13

flocking14) as well as physical (micromagnetism15) or social (economics16) contexts.
Other models of collective dynamics can be found in Refs. 1, 2, 3, 9, 11, 12, 22,
31, 33, 37 and 44. In most works within the Self-Organized Hydrodynamics (SOH)
framework, the derivation involves an expansion of the collision operator in terms
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of ε — the ratio between the microscopic and the macroscopic scale — and a (for-
mal) limit of ε → 0. One effect of this approximation is the absence of any mass
diffusion. For the myxobacteria model we found that this approach leads to a dis-
crepancy between the particle model, in which the number of waves are controlled
and the diffusion-free continuous model, in which they are not. Hence the O(ε)
terms describing small, but finite effects seem to be crucial. In this work, we use
the IBM to estimate the correct size of the mass diffusion term, however future work
will include a formal derivation using the Chapman–Enskog expansion (applied to
an SOH model in Ref. 20).

In this paper, to model the refractory period between two reversals of myxobac-
teria, we use the concept of a local time that is reset to zero after each reversal.
This idea is borrowed from similar ideas used in neuron dynamics (see e.g. Ref. 36)
itself being a variant of the renewal equation used to model the cell cycle.25

The rest of the paper is organized as follows: In Sec. 2, we present a hierarchy
of models starting with an IBM, (Sec. 2.1) and systematically deriving a partial
differential equation (PDE)-based macroscopic model. The final, macroscopic 2-age
model is presented in Sec. 2.3. In Sec. 3, we perform detailed simulations: first we
validate the macroscopic model by comparison with the IBM (Secs. 3.1 and 3.2),
then we further analyze the properties of the 2-age model, in particular with respect
to experimental predictions and wave formation. Concluding remarks are found in
Sec. 4.

2. Model Presentation

We present a model hierarchy at the individual and macroscopic levels. We start
with an IBM (Sec. 2.1) describing the position and velocity of each bacterium as
well as its internal biochemical age variable, which can be interpreted as memory of
the bacterium. Here age refers to the time passed since the last reversal. From there,
we systematically derive an age-structured continuous model for the macroscopic
quantities, density and nematic mean direction (Sec. 2.2) where the age variable is
still continuous. As a last step, we discretize the age variable and assume only two
groups or ages: being in the refractory period (i.e. being insensitive to C-signaling)
or being sensitive to C-signaling. This results in a macroscopic 2-age model (Sec. 2.3)
that forms the basis of the subsequent analysis.

Model Assumptions. Figure 1 shows the main model ingredients and assump-
tions:

M1: Bacteria move in 2D with constant speed, in the direction of their orientation.
This orientation is subject to random noise (Fig. 1(B))

M2: Bacteria align nematically with other bacteria within their immediate vicinity
(Fig. 1(A)).

M3: Bacteria can reverse their orientation. Their reversal rate is a function of the
local density of opposing bacteria (Fig. 1(C1)/1(C3)).
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(A) (B)

(C1)

(C2)

(C3)

(D)

Fig. 1. Ingredients of the memory-dependent myxobacteria model. (A): Nematic Alignment.
The bacterium depicted in gray aligns nematically with its neighbors due to steric interactions
and size exclusion effects. (B): Angular Noise. The bacterium’s orientation is subject to random
fluctuation. (C/D): Reversals and Aging. Bacteria can either be insensitive to C-signaling (light
gray) or sensitive (dark grey). The age bar (explained in the lower, left corner) depicts the two
periods and the bacterium’s current state (white dot). Upon meeting oppositely moving bacteria,
a bacterium can reverse, if sensitive to C-signaling (C1) or not, if in the refractory period (C2).
They can also reverse spontaneously (C3). Insensitive bacteria age into a sensitive state (D) and
reversals reset their age variable to zero (C1 and C3).

M4: After a reversal, bacteria go through a refractory period of fixed length,
denoted by T , during which they cannot reverse (Fig. 1(D)/1(C2)).

M2 can be interpreted as the effect of physical interactions between hard rods and
model size exclusion effects and steric interactions. M3 is a consequence of the
contact dependence of C-signaling, which we assume to act only over very short
distances.

2.1. The individual based model

We describe the movement of N individual myxobacteria. For i ∈ N := {1, . . . , N},
the ith bacterium at time t > 0 is characterized by its center of mass Xi(t) ∈ R

2, its
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orientation angle Θi(t) ∈ [−π, π) (defined modulo 2π) and an age variable si(t) ≥ 0,
related to the time since the bacterium’s last reversal.

Movement and Alignment. Bacteria move with constant speed v0 > 0 in the
direction v(Θi(t)) := (cosΘi(t), sin Θi(t))T . To model nematic alignment, we fol-
low Ref. 17 and assume that the following stochastic differential equations (SDEs)
govern the evolution of Xi(t) and Θi(t):



dXi

dt
= v0v(Θi(t)), (2.1a)

dΘi = −νSign
(
cos(Θi − Θ̄i)

)
sin(Θi − Θ̄i) dt− 4D cos(Θi − Θ̄i)

× sin(Θi − Θ̄i) dt+
√

2D cos2(Θi − Θ̄i) dBi
t. (2.1b)

Remark 2.1. Note that the term 4D cos(Θi− Θ̄i) sin(Θi− Θ̄i) dt presents a subtle
difference to the model presented in Ref. 17 and arises from a different interpre-
tation of the SDEs: Using the usual Ito convention, this term is necessary to be
consistent with both the numerical implementation presented in Appendix A.1 and
the Fokker–Planck equation derived in Sec. 2.2.1. In Ref. 17, the SDEs were inter-
preted in the Backward Ito sense (also called isothermal convention30), and hence
formulated without this term.

The parameter ν > 0 measures the alignment frequency to the local mean
direction Θ̄i. Bacteria either align with it (if cos(Θi − Θ̄i) > 0) or against it (if
cos(Θi − Θ̄i) < 0). Sign is defined by Sign(a) = ±1 for ±a > 0. The nematic mean
direction Θ̄i can be understood as an average of lines going through each bacterium.
It is defined by(

cos(2Θ̄i)

sin(2Θ̄i)

)
=

Ji

|Ji| with Ji =
∑

k:|Xk−Xi|≤R

(
cos(2Θk)
sin(2Θk)

)
.

Ji represents the nematic mean current and the parameter R > 0 specifies the
interaction range of the alignment. Since it is an average of lines (as opposed to
an average of angles), Θ̄i has to be understood modulo π and we always choose
Θ̄i ∈ [0, π). A more detailed discussion can be found in Ref. 17. The angular noise is
modeled by the stochastic process dBi

t, describing independent Brownian motion of
intensity D cos2(Θi−Θ̄i), where D > 0. The term cos2(Θi−Θ̄i) aids the separation
into two groups of bacteria traveling in opposite direction and is described in detail
in Ref. 17. This concludes the modeling of assumptions M1 and M2.

Reversals and Insensitivity. To model assumptions M3 and M4, we start by
noting that bacteria can reverse their orientation, which changes Θi to Θi + π.
The reversal frequency depends on physical contact during which the signaling
molecule C-factor is exchanged. We assume that immediately after a reversal, bac-
teria go through a refractory period of length T , during which they are insensitive
to C-signaling. We therefore endow each bacterium with an age variable si(t) > 0
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which measures the time elapsed since its last reversal, normalized by the refractory
period T :

si(t) =
t− τi
T

, (2.2)

where τi records the time of the last reversal for the ith particle and si(t) is between
0 and τ ′i − τi, where τ ′i is the instant of the next reversal. Therefore, the dynamics
of si between two instants of reversal is given by


dsi

dt
=

1
T

if t > τi and t is not a reversal time,

si = 0 if t is a reversal time.
(2.3)

Equations (2.2) and (2.3) are equivalent. While the former gives an explicit expres-
sion of the age variable si, the latter will be used in the formulation of the kinetic
equation (2.6) as follows. We model C-signaling sensitivity by a step function
φ(s) ∈ {0, 1}:

φ(s) =

{
0, if 0 ≤ s ≤ 1 (refractory period),

1, if s > 1 (C-factor sensitive period).
(2.4)

To model M3, we assume that an individual bacterium’s reversal rate is a function
of the local density of bacteria oriented opposite to it. To that end, we define
the local densities ρi

± in the ith bacterium’s neighborhood Bi(X) = {X : |X −
Xi| ≤ R} as

ρi
± =

1
|Bi|Card{k ∈ N |Xk ∈ Bi and ± cos(Θk − Θ̄i) ≥ 0},

where “Card” is the cardinal of a set and |Bi| the area of Bi. Since both are related
to physical contact, we choose the interaction radii of density sensing and alignment
to be equal, however in general, they could be different. The subscripts ± indicate
whether the density refers to bacteria moving with (+) or against (−) the ith
particle. The reversal frequency as a function of density of opposing bacteria is
denoted by λ(ρ). Since higher concentration of opposing bacteria has been observed
to cause more frequent reversals, we assume λ(ρ) to be an increasing function of ρ.
More discussion is provided in Sec. 2.4.

The total reversal function Λ(ρ, s) takes into account both of the above factors,
namely the density and the refractory period, and is defined by

Λ(ρ, s) = λ(ρ)φ(s). (2.5)

Finally, the probability that the ith particle has reversed between t and t + ∆t is
modeled as a Poisson process:

Pr{Θi(t+ ∆t) = Θi(t) + π}
= Λ(ρi

−Sign cos(Θi−Θ̄i)
, si(t))∆t exp

(− Λ(ρi
−Sign cos(Θi−Θ̄i)

, si(t))∆t
)
.

This completes the description of the IBM. Numerical results are presented in
Sec. 3.1.
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2.2. The macroscopic continuous-age model

The IBM presented in Sec. 2.1 consists of 4N coupled SDEs for typical bacterial
colony sizes of N ≈ 106. We therefore derive a macroscopic model that consists of
only three PDEs. The derivation strategy uses the SOH framework, which allows a
systematic derivation of hydrodynamic equations for particle systems that do not
have enough conserved quantities, a common obstacle in biological systems. The
derivation follows Ref. 17 and is described in more detail in Sec. 2.2.1; however
its structure can be summarized as follows. First, a mean field model is derived,
which leads to a Fokker–Planck equation for the 1-particle distribution function.
A hydrodynamic scaling introduces a small parameter representing the difference
in microscopic and macroscopic time and spatial scales. Taking this parameter to
zero, one finds that the equilibrium distribution function is locally characterized
by three quantities: The nematic mean direction θ̄, the density of particles aligned
with it, ρ+ and that of particles anti-aligned with it, ρ−. The macroscopic model
describes how these three quantities change in time and space and how the densities
depend on the bacteria’s biochemical age.

2.2.1. Derivation of the macroscopic continuous-age model (2.17)

The particle model presented in Sec. 2.1 serves as the starting point for the deriva-
tion. We largely follow Ref. 17 and emphasize differences where appropriate.

Kinetic Equation. Following the classical strategy for mean field models, pre-
sented in Ref. 18, we let the number of particles N tend to infinity. Then the
distribution function f(x, θ, s, t) satisfies the following Kolmogorov–Fokker–Planck
type equation:

∂tf + v0∇x · (v(θ)f) +
1
T
∂sf = QR

al(f) +QR
rev(f). (2.6)

We note in particular that the term 1
T ∂sf comes from the age equation (2.3). We

recall that R denotes the interaction radius for both reversals and alignment. Here
and in the following, the superindex R is used to emphasize the nonlocality of the
corresponding terms. The collision operator QR

al caused by the alignment is almost
identical to that derived in Ref. 17 and is given by

QR
al(f) = ∂θ

[
νSign

(
cos
(
θ − θ̄R

f

))
sin
(
θ − θ̄R

f

)
f +D cos2

(
θ − θ̄R

f

)
∂θf

]
,

where the nematic mean direction θ̄R
f is defined by

v
(
2θ̄R

f (x, t)
)

=
JR

f (x, t)
|JR

f (x, t)| , JR
f (x, t) =

∫ ∞

0

∫
|x−y|≤R

∫ π

−π

v(2θ)f(y, θ, s, t) dy dθ ds.

Note that the definition of the mean nematic current JR
f requires integrating over

all ages s, a small difference to the operator of the age-free model defined in Ref. 18,
which reflects the fact that the biochemical age of a bacterium does not influence
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the alignment. The first term in QR
al is a drift term in θ that moves the mass towards

θ̄R
f and θ̄R

f −π. The second term causes diffusion in θ with magnitude D cos2(θ−θ̄R
f ).

The new operator QR
rev(f) describes the reversals and is defined as follows. First,

we introduce two quantities σR,±
f (x, t) representing the position-dependent, total

densities of each group,

σR,±
f (x, t) =

1
πR2

∫ ∞

0

∫
± cos(θ−θ̄R

f )>0

∫
|x−y|≤R

f(y, θ, s, t) dy dθ ds.

Note that these quantities are densities, i.e. number of particles per unit area, hence
the factor πR2 at the denominator, representing the area of the set {y||x−y| ≤ R}.
Then we have

QR
rev(f) = −[Λ(σR,−

f , s
)
χ{cos(θ−θ̄R

f )>0} + Λ
(
σR,+

f , s
)
χ{cos(θ−θ̄R

f )<0}
]
f(x, θ, s, t),

(2.7)

where χS is the characteristic function on the set S and Λ(σ, s) is defined in (2.5).
Equation (2.7) is nonzero only for s > 1, since only then particles are sensitive
to C-signaling and can reverse with a frequency that depends on the density of
the opposing group. Note that (2.7) represents particles reversing away from their
group. Indeed, bacteria having reversed only enter the balance at age s = 0. Away
from s = 0, there is no influx of (turned) bacteria, which explains why in (2.7), the
loss term appears alone. The contribution of bacteria having reversed is accounted
for as a boundary condition at age s = 0 given by

f(x, θ, 0, t) = T

∫ ∞

0

(
Λ
(
σR,−

f , s′
)
χ{cos(θ−θ̄R

f )<0}

+ Λ
(
σR,+

f , s′
)
χ{cos(θ−θ̄R

f )>0}
)
f(x, θ + π, s′, t) ds′. (2.8)

The integral reflects the fact that reversing particles of all ages that point in direc-
tion θ + π will add mass to the distribution function at angle θ and age s = 0,
since reversing resets the biochemical age to zero. An alternative formulation —
which we discard here — would be to add a Dirac delta at s = 0 multiplied by the
right-hand side of (2.8) (divided by T ) to the expression of (2.7). Both approaches
are equivalent. In particular, the correctness of the mass balance can be checked by
integration of (2.6) with respect to s on [0,∞).

Scaling. Analogous to Ref. 17, we perform the nondimensionalization and the
hydrodynamic scaling in one step. On the microscopic scale, the reference time
and space units are given by t0 = 1/ν and x0 = v0t0. The age variable s remains
unchanged since it is already dimensionless. The scaled diffusion constant is d =
D t0. On the macroscopic scale, we use the coarse units t′0 = t0/ε, x

′
0 = x0/ε, where

ε > 0 is some small real number. Then the dimensionless macroscopic variables are
t̂ = t

t′0
, x̂ = x

x′
0
. Further, we set R̂ = R

x′
0
. The scaled distribution function f̂ and
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densities σ̂R̂,±
f are given by

f̂(x̂, θ, s, t̂) =
f(x, θ, s, t)

(1/x′0)2
and σ̂R̂,±

f̂
(x̂, t̂) =

σR,±
f (x, t)
(1/x′0)2

.

For the reversal term, we set T = T̂ t′0 and Λ̂(σ̂R̂,±
f̂

, s) = Λ(σR,±
f , s)t′0. Note that

θ̄R̂
f̂

(x̂, t̂) = θ̄R
f (x, t). The scaled equation reads

∂t̂f̂ + ∇x̂ · (v(θ)f̂ ) +
1
T̂
∂sf̂

=
1
ε
∂θ

[
Sign

(
cos
(
θ − θ̄R̂

f̂

))
sin
(
θ − θ̄R̂

f̂

)
f̂ + d cos2

(
θ − θ̄R̂

f̂

)
∂θ f̂
]

− [Λ(σ̂R̂,−
f̂

, s
)
χ{cos(θ−θ̄R̂

f̂
)>0} + Λ

(
σR̂,+

f̂
, s
)
χ{cos(θ−θ̄R̂

f̂
)<0}

]
f̂ ,

where the second and third lines represent the scaled alignment and reversal oper-
ators, respectively. The scaled boundary condition at s = 0 is given by

f̂(x̂, θ, 0, t̂) = T̂

∫ ∞

0

(
Λ
(
σ̂R̂,−

f̂
, s′
)
χ{cos(θ−θ̄R̂

f̂
)<0}

+ Λ
(
σ̂R̂,+

f̂
, s′
)
χ{cos(θ−θ̄R̂

f̂
)>0}

)
f̂(x̂, θ + π, s′, t̂) ds′.

At this point, the definitions of the nematic mean direction and the densities σ̂R̂,±
f̂

still involve space integrals, i.e. they are nonlocal. We assume purely local inter-
actions for both alignment and reversals and therefore set R̂ = εr with r = O(1).
Then Taylor expansion of θ̄εr

f̂
and σ̂εr,±

f̂
around ε = 0 shows that the functions can

be approximated by the local-in-space functions θ̄f̂ and σ̂±
f̂

, respectively, (see (2.11)

and (2.12)) with a remainder of order O(ε2). In the following, we drop the hats for
better readability and call the solution fε to emphasize its dependence on ε.

Hyrodynamic Limit. To derive the mean field equation, we need to find the
solution fε(x, θ, s, t) as ε→ 0 in

ε

(
∂tf

ε + ∇x · (v(θ)fε) +
1
T
∂sf

ε

)
= Qal(fε) + εQrev(fε), (2.9)

where

Qal(f) = ∂θ[Sign(cos(θ − θ̄f )) sin(θ − θ̄f )f + d cos2(θ − θ̄f )∂θf ] (2.10)

and

Qrev(f) = −(Λ(σ−
f (x), s)χ{cos(θ−θ̄f)>0} + Λ(σ+

f (x), s)χ{cos(θ−θ̄f )<0})f(x, θ, s, t),

supplemented by the boundary condition at s = 0

f(x, θ, 0, t) = T

∫ ∞

0

(Λ(σ−
f (x), s′)χ{cos(θ−θ̄f)<0}

+ Λ(σ+
f (x), s′)χ{cos(θ−θ̄f)>0})f(x, θ + π, s′, t) ds′.
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The mean nematic direction is defined by

v(2θ̄f (x, t)) =
Jf (x, t)
|Jf (x, t)| , with Jf (x, t) =

∫ ∞

0

∫ π

−π

v(2θ)f(x, θ, s, t) dθ ds

(2.11)

and the local mass functions are

σ±
f (x, t) =

∫ ∞

0

∫
± cos(θ−θ̄f)>0

f(x, θ, s, t) dθ ds. (2.12)

Taking the hydrodynamic limit in the SOH framework18 now involves two steps: (i)
characterizing the kernel of Qal(f) (θ dependence) and (ii) using GCIs to extract
information about the x and t dependence from the transport and reversal terms.

Step (i): Since Qal(f) is similar to the collision operator analyzed in Ref. 17, but
for the addition of the age variable, we simply state the result without proof.

Lemma 2.1. The kernel of Qal is given by

{f̄ρ+(s),ρ−(s),θ̄(θ)|ρ± : [0,∞) → [0,∞), θ̄ ∈ [0, π)},
where

f̄ρ+,ρ−,θ̄(θ) =

{
ρ+Mθ̄(θ) for cos(θ − θ̄) > 0

ρ−Mθ̄(θ) for cos(θ − θ̄) < 0.
(2.13)

Mθ̄(θ) describes the Generalized von Mises (GVM) distribution defined by

Mθ̄(θ) =
1
Zd

exp
(
− 1
d| cos (θ − θ̄)|

)
, θ ∈ [−π, π),

where Zd =
∫

cos θ>0

exp
(
− 1
d cos θ

)
dθ.

The equilibria have the shape of two opposing maxima: One in direction θ̄ with
mass ρ+(s) and one in direction θ̄ − π with mass ρ−(s) and are depicted in Fig. 2.

Step (ii): In a classical setting, one would at this point multiply Eq. (2.9) with
collision invariants (CIs) and integrate over all directions θ and all ages s. A CI is
defined as a function Ψ(θ, s) on [−π, π) × [0,∞), such that∫∫

Qal(f)Ψ(θ, s) dθ ds = 0 ∀ f.

This would allow us to remove the term of order one from (2.9) and thereby yield
three macroscopic equations that describe the constant θ̄ and the two functions
ρ±(s) that characterize the equilibria defined in (2.13). However, the operator Qal

has only one family of CIs: Ψ(θ, s) ≡ ψ0(s) for an arbitrary function ψ0 which
represents mass conservation of particles of a given age s (since alignment does not
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- - /2 0 /2
0

0.5

1

1.5

2

2.5

3

Fig. 2. (Color online) Equilibria of Qal. The equilibrium distribution f̄ as defined in (2.13)
for (ρ+, ρ−, θ̄) = (2, 1, π/2) using d = 2, 0.5 and 0.1 (red-dotted, black-solid and blue-dashed,
respectively).

modify the age). This necessitates the use of GCIs. Given an angle of lines θ̄ a GCI
associated with θ̄ is a function Ψθ̄(θ, s) defined on [−π, π) × [0,∞), such that∫∫

Qal,θ̄(f)Ψθ̄(θ, s) dθ ds = 0 ∀ f with θ̄f = θ̄,

where Qal,θ̄ is defined analogously to Qal in (2.10), but with θ̄f replaced by θ̄.
A GCI is a more general concept than CIs. If enough families of GCIs can be
found, Step (ii) of the derivation now requires integrating Eq. (2.9) against these
GCIs associated to θ̄fε . Similar to the classical CI-based approach, this removes
the leading-order singular term and allows us to derive the macroscopic equations.
We omit the precise functional analytical setting as it can be easily extended from
Ref. 17 and simply state the following result.

Lemma 2.2. Given an angle of lines θ̄, the space of GCIs of Qal associated with
θ̄ is spanned by ψ±

θ̄
(θ, s) := H(± cos (θ − θ̄))ψ0(s) and gθ̄(θ, s) := g(θ− θ̄), where H

denotes the Heaviside function,

g(θ) = −
∫ θ

0

∫ π/2

β sin 2α exp
(− 1

d cos α

)
dα

cos2 β exp
(

1
d cos β

) dβ for θ ∈ [0, π/2],

which is extended to [−π, π) by g(−θ) = −g(θ) and g(π− θ) = −g(θ), and ψ0(s) is
an arbitrary function of s.

Note that ψ+
θ̄

(θ, s) + ψ−
θ̄

(θ, s) ≡ ψ0(s) and we recover the CI associated with
mass conservation. Now we proceed as explained, by integrating (2.9) against the
three GCIs associated to θ̄fε .

Proceeding similar to Ref. 17 finally yields the following.
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Proposition 2.1. Taking the (formal) limit ε→ 0 in (2.9), we obtain

fε(x, θ, s, t) → f̄ρ+(x,s,t),ρ−(x,s,t),θ̄(x,t)(θ),

where f̄ρ+(x,s,t),ρ−(x,s,t),θ̄(x,t)(θ) is given by (2.13) and the macroscopic quantities
ρ±(x, s, t) and θ̄(x, t) are such that ρ±(x, s, t) ∈ [0,∞) and θ̄(x, t) is a real number
defined modulo π, and fulfill

∂tρ+ + d1∇x · (ρ+v(θ̄)) +
1
T
∂sρ+ = −Λ(σ−, s)ρ+, (2.14a)

∂tρ− − d1∇x · (ρ−v(θ̄)) +
1
T
∂sρ− = −Λ(σ+, s)ρ−, (2.14b)

(σ+ + σ−)∂tθ̄ + d2(σ+ − σ−)(v(θ̄) · ∇x)θ̄ + µ v(θ̄)⊥ · ∇x(σ+ − σ−) = 0, (2.14c)

supplemented by the boundary conditions

ρ+(x, 0, t) = T

∫ ∞

0

Λ(σ+, s)ρ− ds, ρ−(x, 0, t) = T

∫ ∞

0

Λ(σ−, s)ρ+ ds, (2.15)

where the coefficients d1, d2 and µ are given by

d1 = 〈cos〉M , d2 =
〈g sin

cos 〉M
〈g sin

cos2 〉M
, µ = d

〈g sin〉M
〈g sin

cos2 〉M
, (2.16)

v(θ̄)⊥ = (− sin(θ̄), cos(θ̄))T and 〈φ〉M represents the average with respect to M(θ) =
M0(θ):

〈φ〉M = 2
∫ π

2

0

φ(θ)M(θ) dθ =

∫ π
2

0
φ(θ)e−

1
d cos θ dθ∫ π

2
0 e−

1
d cos θ dθ

.

Finally, we remove the nondimensionalization and revert system (2.14)–(2.15)
back to physical units yielding (2.17)–(2.18) as follows. The next section summarizes
the model.

2.2.2. The macroscopic continuous-age model

We denote the spatial variable by x ∈ R
2, the age variable by s ∈ [0,∞) and time

by t > 0. Then θ̄(x, t) ∈ [0, π) describes the local nematic mean direction, which is
independent of s. We recall that v(θ̄) := (cos(θ̄), sin(θ̄))T and define v⊥ as its left-
oriented orthogonal. We denote by ρ+(x, s, t) and ρ−(x, s, t) the local densities of
bacteria of age s that are transported in the directions v(θ̄) and −v(θ̄), respectively.
θ̄(x, t), ρ±(x, s, t) fulfill the following system of equations:

∂tρ+ + d1v0∇x · (ρ+v(θ̄)) +
1
T
∂sρ+ = −Λ(σ−, s)ρ+, (2.17a)

∂tρ− − d1v0∇x · (ρ−v(θ̄)) +
1
T
∂sρ− = −Λ(σ+, s)ρ−, (2.17b)

(σ+ + σ−)∂tθ̄ + d2v0(σ+ − σ−)(v(θ̄) · ∇x)θ̄ + µv0v(θ̄)⊥ · ∇x(σ+ − σ−) = 0,

(2.17c)
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supplemented by boundary conditions at the age s = 0,

ρ+(x, 0, t) = T

∫ ∞

0

Λ(σ+, s)ρ− ds, ρ−(x, 0, t) = T

∫ ∞

0

Λ(σ−, s)ρ+ ds, (2.18)

where the coefficients d1, d2 and µ are given by (2.16), Λ(σ, s) is defined in (2.5)
and σ±(x, t) are the local masses of the two opposing groups:

σ±(x, t) =
∫ ∞

0

ρ±(x, s, t) ds.

Figure 3(a) illustrates the reversal- and age-related dynamics of (2.17)–(2.18):
For s ∈ [0, 1], bacteria are in the refractory period and can not reverse, ensured
by Λ(σ∓, s) = 0. For s > 1, bacteria enter the C-factor sensitive period and the
reversal frequency is governed by the reversal function Λ(σ∓, s) = λ(σ∓) (using
(2.4) and (2.5)). Assume that there are in fact only two essential age states for the
age variable s, which allows to simplify (2.17) to remove the age s as independent
variable. This is done in the following section.

2.3. The 2-age model

To arrive at an easy-to-handle, yet powerful macroscopic model, we perform one
last simplification step: we assume only two age groups of bacteria, those who can
and those who cannot reverse. The main difference to the continuous-age model
is that the aging itself is now described as a simple reaction term with rate 1/T .
Figure 3(b) depicts the corresponding reaction schematic. The time evolution of the
nematic mean direction remains unchanged. The derivation is given in Sec. 2.3.1.

(a) Continuous-age model (b) Two-age model (c) Memory-free model

Fig. 3. Reaction terms in the three macroscopic models. In (a) the continuous-age model, the
densities ρ± depend on the continuous age variable s. Particles can age along s (horizontal arrows)
or reverse, if s > 1 (diagonal arrows), which let them join the other group at age s = 0. In (b)
the 2-age model (b), there are only two age groups, insensitive to C-signaling or sensitive to C-
signaling, denoted by the superscripts 0 and 1. In (c) the memory-free model, all particles are
sensitive to C-signaling and there is no aging.
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2.3.1. Derivation of the 2-age model

An age-discretized macro-model with K + 1 age groups. As a starting
point, we use the system of equations (2.17) together with the boundary conditions
(2.18), i.e. the macroscopic myxobacteria model with a continuous age variable. To
derive the corresponding discrete age system, we discretize the age variable s by
sk = k∆s for k = 0, . . . ,K, yielding K + 1 age groups defined by

ρ̃k
±(x, t) := ρ±(x, sk, t), k = 0, . . . ,K.

To get equations for ρ̃k
±(x, t), we use a forward difference discretization of ∂sρ±.

Since the equation for θ̄ is independent of s, we only need to consider the two
density equations. The only noteworthy point is that the largest age group, i.e. ρ̃K

±
can lose particles only by reversing, not by aging. The corresponding system for a
discrete age system with K + 1 age groups is

∂tρ̃
k
+ + d1v0∇x · (ρ̃k

+v(θ̄)) +
1

T∆s
(
ρ̃k
+ − ρ̃k−1

+

)
= −λ(σ̃−)φ(sk)ρ̃k

+

for k = 0, . . . ,K − 1,

∂tρ̃
K
+ + d1v0∇x · (ρ̃K

+ v(θ̄)) −
1

T∆s
ρ̃K−1
+ = −λ(σ̃−)φ(sK)ρ̃K

+ ,

for k = K

(2.19)

(and analogously for ρ̃k−). The boundary conditions are included by using “virtual”
age groups defined by discretizing the integrals in (2.18), yielding

ρ̃−1
+ := T∆sλ(σ̃+)

K∑
k=0

ρ̃k
−φ(sk), ρ̃−1

− := T∆sλ(σ̃−)
K∑

k=0

ρ̃k
+φ(sk).

The total group densities σ̃±(x, t) are defined by

σ̃+ = ∆s
K∑

k=0

ρ̃k
+, σ̃− = ∆s

K∑
k=0

ρ̃k
−.

The 2-age macro-model. To obtain the 2-age model (3.1), we define

ρ0
±(x, t) := ∆s ρ̃0

±(x, t), ρ1
±(x, t) := ∆s

K∑
k=1

ρ̃k
±(x, t)

in (2.19) and assume that φ(s0) = 0 and φ(sk) = 1 for k ≥ 1. This yields a closed
system for (ρ0

±, ρ
1
±). For better readability, we drop the tilde on the expressions for

the total densities σ±:

∂tρ
0
+ + d1v0∇x · (ρ0

+v(θ̄)) = − 1
T∆s

ρ0
+ + λ(σ+)ρ1

−,

∂tρ
1
+ + d1v0∇x · (ρ1

+v(θ̄)) =
1

T∆s
ρ0
+ − λ(σ−)ρ1

+,
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∂tρ
0
− − d1v0∇x · (ρ0

−v(θ̄)) = − 1
T∆s

ρ0
− + λ(σ−)ρ1

+,

∂tρ
1
− − d1v0∇x · (ρ1

−v(θ̄)) =
1

T∆s
ρ0
− − λ(σ+)ρ1

−.

Setting ∆s = 1, we get the final system (2.20), as follows. In Sec. 3, we demonstrate
that this 2-age model is a good approximation of the full age-dependent dynamics
and sufficient to reproduce and explain almost all experimentally observed features
of myxobacteria.

2.3.2. The 2-age model

The final 2-age model derived in Sec. 2.3.1 consists of five equations for the four
densities ρ0,1

± (x, t) and the nematic mean direction θ̄(x, t). Subindices ± denote
densities of bacteria moving with and against the nematic mean direction, respec-
tively, and superindices 0/1 denote bacteria in a nonreversible and reversible states,
respectively:

∂tρ
0
+ + d1v0∇x · (ρ0

+v(θ̄)) = − 1
T
ρ0
+ + λ(σ+)ρ1

−, (2.20a)

∂tρ
1
+ + d1v0∇x · (ρ1

+v(θ̄)) =
1
T
ρ0
+ − λ(σ−)ρ1

+, (2.20b)

∂tρ
0
− − d1v0∇x · (ρ0

−v(θ̄)) = − 1
T
ρ0
− + λ(σ−)ρ1

+, (2.20c)

∂tρ
1
− − d1v0∇x · (ρ1

−v(θ̄)) =
1
T
ρ0
− − λ(σ+)ρ1

−, (2.20d)

(σ+ + σ−)∂tθ̄ + d2v0(σ+ − σ−)(v(θ̄) · ∇x)θ̄ + µv0 v(θ̄)⊥∇x(σ+ − σ−) = 0,

(2.21)

where the local masses are given by σ± = ρ0± + ρ1±. The constants d1, d2 and µ are
defined analogously as for (2.17). Note that this model does not contain any spatial
diffusion, which we will discuss further in Sec. 3.2.

2.4. The Reversal Frequency λ(ρ)

To complete the models presented in Secs. 2.1–2.3, the density dependence of the
reversal frequency λ(ρ) has to be specified based on the available information from
experiments. First, in most experiments, the number of reversals increases with the
density of opposing bacteria, i.e. λ′(ρ) ≥ 0. Next, in the absence of other bacteria,
isolated myxobacteria still reverse, i.e. λ(0) =: λm > 0. Spontaneous reversal rates
between 0.07 and 0.09 reversals per minute have been reported.39,43,46 Third, there
seems to be an upper limit as to how frequent reversals can be, which confirms the
biological intuition that the rearrangement of the internal movement machinery
takes some time. In Ref. 46, a maximal rate of 1.5 reversals per minute had been
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observed. Finally, in Ref. 39, experiments were performed in which the reversal rate
of isolated bacteria was measured in response to externally adding the signaling
molecule C-factor, which was thought to communicate the density information.
At low concentration of C-factor, the reversal rate remained the same, while with
increasing concentration, a growth in reversal rate was observed, which plateaued
for very high concentrations of C-factor. Using these pieces of information, we
assume a sigmoid shape of λ(ρ). As a convenient representation, we use a C1 and
piecewise smooth function:

λ(ρ) =




λm +
1
2
(λM − λm)

(
ρ

ρ̄

)2

if ρ < ρ̄,

λM − 1
2
(λM − λm)

(
ρ

ρ̄
− 2
)2

if ρ̄ ≤ ρ < 2ρ̄,

λM elsewhere.

(2.22)

Note that λ(ρ) is parameterized by three quantities, the spontaneous reversal rate
λm, the maximal reversal rate λM and the inflection density ρ̄, at which λ(ρ) grows
the fastest.

3. Numerical Analysis — Comparison to Experiments

Depending on the precise experimental set-up, various bacterial speeds v0 were
observed,39,43 ranging from 2.7 to 11µm/min. We do not have reliable biological
data on the refractory period T and the inflection density ρ̄. In Ref. 26, it was
suggested that the refractory period must be less than 40 s, while in Ref. 7, times
around 5 min were suggested. We use T = 2min, but note that our analysis shows
wave synchronization also for any value larger than ≈1min. For ρ̄, we estimated
that it should be of the order of half of the initial mean density to have an effect.
A list of all parameters can be found in Table 1.

3.1. The particle model in 2D

As a first test of the model, we simulate the full 2D particle model described in
Sec. 2.1. Details about the numerical method as well as simulation parameters
can be found in Appendix A.1. Both the initial positions Xi ∈ R

2 and the initial

Table 1. Biological parameters.

Name Meaning Value Comment

v0 bacterial speed 9 µm/min Ref. 39
λm spontaneous reversal rate 0.07/min Refs. 39, 43 and 46
λM maximal reversal rate 1.5/min Refs. 39, 43 and 46
ρ̄ inflection density 0.2/µm2 fitting parameter
T refractory period 2 min estimates in Refs. 7 and 26
D angular diffusion constant 0.1/min o

leads to d1 = 0.99
ν alignment frequency 100/min

2 m0 total average density 0.25/µm2 Ref. 43
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orientations Θi ∈ [−π, π) follow a uniform random distribution. The age variable
was initialized with a uniform random distribution on [0, 1], i.e. all bacteria are
assumed to have reversed before the start of the simulation, however also other
choices will lead to the same behavior.

The particle model shows ripple formation. Within about 1 h, an almost
spatially constant nematic mean direction is established (in this simulation, it is
Θ̄ = 120◦) and all bacteria are either aligned or anti-aligned with it, with small
deviations caused by the noise. Just like in experiments, macroscopic traveling
density bands develop, in which bacteria travel in the same direction as the band
itself and normal to its longitudinal axis. Figure 4(a) depicts the simulation outcome
at time t = 200min (see also https://figshare.com/articles/IBM video avi/5769408
for the whole time history of this simulation). To distinguish between bacteria
aligned or anti-aligned with the (global) nematic mean direction, they are shown
in red and blue, respectively, and in the following, we will sometimes refer to them
as right- and left-moving bacteria. The global ordering indicates that the nematic
alignment quickly drives the system to a quasi-one-dimensional situation. To further
analyze what happens along the nematic mean direction, we calculate the densities
of the right- and left-moving bacteria within a thin strip in the simulation domain
(Fig. 4(b) upper and middle rows). Additionally, we examine the composition of

0 50 100 150 200 250
0

50

100

150

200

250

0.

0.

0 50 100 150 200
0

20
Particle Model, Particles

0 50 100 150 200
0

5
Particle Model, 1D density

0 50 100 150 200
0

5
2-Age Model, 1D density

0 50 100 150 200

Particle Model, Particles

0 50 100 150 200

0 50 100 150 200

2-Age Model, 1D density

Particle Model, 1D density

(a) Ripples in the IBM (b) Comparison to 2-Age model

Fig. 4. (Color online) Comparison between IBM and 2-age model: Wave composition. (a) shows
the bacteria at time t = 200 min of a simulation of the IBM using uniform, random initial condi-
tions (see also https://figshare.com/articles/IBM video avi/5769408 for the whole time history of
this simulation). The nematic mean direction is almost globally constant with Θ̄ = 120◦. Bacteria
aligned and anti-aligned with it are depicted in red and blue, respectively. Units are in µm. (b)
Comparing the IBM to the 2-age model at time t = 199 min (A) and t = 200 min (B). Upper row:
The rectangular strip marked in (a) turned by the global nematic mean direction. Middle row:
The 1D-densities of right-moving (red) and left-moving (blue) bacteria calculated from the strip
above with a grid-size of 4 µm in x-direction and averaging in y-direction. Each wave consists of
C-signaling insensitive, refractory bacteria (si ≤ 1, dotted) and C-signaling sensitive, nonrefrac-
tory bacteria (si > 1, dashed). Lower row: Simulation of the 1D 2-age model (3.1) using as initial
conditions a uniform random perturbation of magnitude 0.02 µm−2 of (3.2). Color and line-styles
are the same as in middle figure. Boxes A and B mark crests before and after collisions, respec-
tively, for both the IBM and the 2-age model. y-units for the middle and lower row are in bacteria
per µm2. All other units are in µm.
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each wave in terms of C-signaling sensitive and insensitive bacteria: the middle rows
in Fig. 4(b) clearly show the density waves and indicates that the wave composition
is different before (Box A) and after (Box B) a wave crest collision. This will be
examined further as follows.

Individual bacteria reverse upon crest collisions. From biological experi-
ments, it is known that when two waves meet, bacteria in the crests typically
reverse their direction of movement. The macroscopic, experimental observations,
i.e. that counter-propagating waves move with approximately the bacterial speed,
persist over time and travel through each other seemingly unaffected, can be easily
verified in Fig. 5, which shows a space-time plot of the total (1D) densities in the
rectangular strip marked in Fig. 4(a) for 170 min ≤ t ≤ 200 min. To examine the
behavior of individual bacteria in this macroscopic context, Fig. 5(a) also shows
the space-time path (blue) of two individual bacteria (marked in Fig. 4(a)). Con-
sistent with experiments, bacteria mostly reverse upon crest collision and rarely
in-between. This shows that the waves are mostly reflected off each other, confirm-
ing the accordion-like behavior known biologically.

3.2. Adding spatial diffusion in the 2-age model

The above results show that the particle model provides a faithful approximation
of the biological reality. Since particle models come with a high computational

(a) IBM (b) 2-Age model

Fig. 5. (Color online) Comparison between IBM and 2-age model: Wave behavior. (a) shows the
1D densities along the rectangular strip marked in Fig. 4(a) calculated at each time step for 170
min ≤ t ≤ 200 min. It can be seen that waves persist over time, move with a speed of ≈ 9 µm/min
and are not affected by collisions. Blue lines are the traces of the two particles marked in Fig. 4(a).
They mostly travel in wave crests, typically reverse upon wave collision and make almost no net
movement along the strip. (b) depicts the densities over the same time interval for the 1D 2-
age model showing very similar macroscopic behavior. The units of both color bars are bacteria
per µm2.
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cost and are inherently hard to analyze analytically, we want to use the much
simpler 2-age model to gain biological insight into wave formation. Motivated by
the observation that alignment leads to a global nematic mean direction, we assume
θ̄ ≡ 0 in the 2-age model, which amounts to setting v(θ̄) = (1, 0)T and omitting
the equation for θ̄. The remaining four equations constitute a nonlinearly coupled
system of transport–reaction equations with no spatial diffusion.

No wavelength control without spatial diffusion. Simulating this system
with initial conditions, randomly perturbed around the space-homogeneous steady
state (3.2), we found that it produces counter-propagating density waves, just like
its IBM counter-part. However, the wavelength can be arbitrarily small and is
only limited by the diffusivity of the numerical scheme or the spatial resolution
(see Appendix A.1). The waves in the IBM have a controlled wavelength, indicating
that spatial diffusion is inherent in the IBM, but is “lost” during the derivation
of the SOH. Rigorous derivation of the spatial diffusion term will be a topic for
future work and will involve performing a Chapman–Enskog expansion10 as detailed
in Ref. 20. The fact that we need a higher order approximation is most likely a
consequence of the fact that for this system, the microscopic scale (size of one
bacterium, ≈ 5µm) is small, but not negligibly small, compared to the size of the
developing waves (order of 50–100µm). In this work, we add a diffusion term of
size δ to (2.20) and use the IBM to estimate this otherwise difficult to measure
parameter by fitting the produced wavelengths. In all of the following simulations,
we use the following diffusion-corrected version of (2.20):

∂tρ
0
+ + d1v0∇x · (ρ0

+v(θ̄)) = δ∆ρ0
+ − 1

T
ρ0
+ + λ(σ+)ρ1

−, (3.1a)

∂tρ
1
+ + d1v0∇x · (ρ1

+v(θ̄)) = δ∆ρ1
+ +

1
T
ρ0
+ − λ(σ−)ρ1

+, (3.1b)

∂tρ
0
− − d1v0∇x · (ρ0

−v(θ̄)) = δ∆ρ0
− − 1

T
ρ0
− + λ(σ−)ρ1

+, (3.1c)

∂tρ
1
− − d1v0∇x · (ρ1

−v(θ̄)) = δ∆ρ1
− +

1
T
ρ0
− − λ(σ+)ρ1

−. (3.1d)

The diffusion corrected 2-age model is a good approximation of the par-
ticle model. We simulate (3.1) with randomly perturbed, constant initial condi-
tions of equal mean density as for Fig. 4 (see caption of Fig. 4 for details). We used
δ = 0.8µm2/min, fitted to produce the correct wavelength. In the 2-age model,
opposing traveling waves also emerge (discussed in more detail in Sec. 3.3). Fig-
ure 4(b) compares the 1D densities calculated from the IBM to those of the 1D 2-age
model: Crest and trough widths match closely. Further, one can observe that the
composition of the crests in terms of refractory and nonrefractory bacteria match
very well prior and after crest collisions (Boxes A and B in the middle and lower
rows). Finally also the macroscopic wave behavior is very similar to that observed
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in the space-time plots shown in Fig. 5. The remainder of the section is therefore
devoted to analyzing the diffusion corrected 1D 2-age model (3.1).

3.3. The wildtype: Emergence of waves

We want to understand wave formation, shape and behavior in more detail using
the 1D 2-age model (3.1). All simulations are performed with periodic boundary
conditions on an interval of length L = 250µm using the wildtype parameters
listed in Table 1 (unless stated differently). The numerical method is discussed
in Appendix A.1. Note that system (3.1) conserves the total mass and we define
2m0 as the average total density, which is constant in time:

2m0 :=
1
L

∫ L

0

(ρ0
+ + ρ0

− + ρ1
+ + ρ1

−) dx.

As initial conditions, we determine spatially uniform steady-state solutions by find-
ing values which make the reaction terms on the right-hand side of (3.1) zero,
yielding

ρ0
+ = ρ0

− ≡ m0 λ(m0)
1/T + λ(m0)

, ρ1
+ = ρ1

− ≡ m0 1/T
1/T + λ(m0)

, (3.2)

and perturb them with a uniform random distribution. These steady-state solutions
reflect the fractions of nonrefractory and refractory cells in the absence of spatial
patterning. Large reversal rates, i.e. large values of λ(m0) will increase the fraction
of refractory cells, because cells will spend less time on average in a nonrefractory
state. Small refractory periods T on the other hand decrease them, as they will
shortly become sensitive to C-signaling again.

In Fig. 6, a time series of one simulation is shown. After about 1 h, bands of
oppositely moving ripples start to develop and are fully established after 2 h, after
which their general shape and speed do not change anymore. The ripple crests move
with a speed close to the bacterial speed (9 µm/min) to the left and right, respec-
tively. The density ratio between crests and troughs is about 10, which corresponds
to the experimental values found in Ref. 39. Upon collisions of two such waves, the
total bacteria densities (Figs. 6(E)–(H)) double, as described also in experiments.
The shapes of the individual waves of left- and right-moving bacteria themselves
seem to be almost unaffected by the collision, with only slight deformations. How-
ever, when inspecting the composition of the ripple crests in terms of refractory
and nonrefractory bacteria during a collision, one can observe two distinct phases:
a collision phase and a reconstitution phase (see Fig. 7): while before the collision,
the fraction of refractory bacteria is low, it increases rapidly in the collision phase,
indicating a high number of reversals taking place. In the reconstitution phase
that follows, this fraction decreases again and resumes its original value. During
this phase, the C-signal insensitive bacteria go through their refractory period and
“age” back into C-signaling sensitive bacteria. To estimate the fraction of bacteria
that reverse during a collision, we compare the total number of reversing bacteria
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Fig. 6. (Color online) Ripple Emergence. (A)–(D): Time snapshots of the densities σ± of right-
moving bacteria (red-solid) and left-moving bacteria (blue-dotted). The x-axis is in µm and the
y-axis is in bacteria per µm2. (E)–(H): “Microscopy-view”, from above. The total local density
of bacteria σ+ + σ− is shown in 2D space at the same time points as (A)–(D). All length units
are µm.

in one wave in the course of one collision to the original number of bacteria present
in that wave before the collision. Figure 7 (left, solid line) shows that more than
half of all bacteria reverse.

3.4. The influence of the refractory period T

A memory-free model still produces traveling waves. A crucial part of the
presented model is the introduction of the refractory period T . What is its influence
on the bacterial behavior predicted by the 2-age model? In order to assess this, we
investigate what changes in the absence of a refractory period, i.e. for T → 0. The
corresponding model can be interpreted as a memory-free model, as bacteria retain
no information about their previous reversals (see explanation in the following).
Mathematically, this can be realized by taking the limit T → 0, i.e. bacteria are
susceptible to C-signaling immediately after they reverse. System (3.1) then reduces
to ρ0

± ≡ 0 and ρ1
± = σ± fulfilling (compare with Fig. 3(c) for the reaction diagram)

∂tρ
1
+ + d1v0∇x · (ρ1

+v(θ̄)) = δ∆ρ1
+ + λ(ρ1

+)ρ1
− − λ(ρ1

−)ρ1
+, (3.3a)

∂tρ
1
− − d1v0∇x · (ρ1

−v(θ̄)) = δ∆ρ1
− + λ(ρ1

−)ρ1
+ − λ(ρ1

+)ρ1
−, (3.3b)

(ρ1
+ + ρ1

−)∂tθ̄ + d2v0(ρ1
+ − ρ1

−)(v(θ̄) · ∇x)θ̄

+µv0 v(θ̄)⊥ · ∇x(ρ1
+ − ρ1

−) = 0. (3.4)
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Fig. 7. (Color online) Collision Study. (A): The fraction of refractory (dotted) and nonrefractory
(dashed) bacteria in the wave over the time of one collision. The solid line shows the cumulative,
total number of reversing bacteria in that wave as a fraction of the total number of bacteria
originally present. The extent of the wave crest is defined by σ± ≥ 0.05 (see gray-shaded regions
in (B)–(E) on the right). White-dashed lines and boxed letters mark the time points that are shown
to the right. (B)–(E): Time snapshots showing densities of refractory (dotted) and nonrefractory
(dashed) cells as well as their sum (solid) for the left- and right-moving groups (blue and red,
respectively). Parameters are listed in Table 1.

Remark 3.1. The formally correct way to derive this system requires two steps:
First, system (3.1) needs to be nondimensionalized by introducing a suitable ref-
erence timescale t̄. A natural choice is t̄ = L

d1v0
≈ 27 min, i.e. the time it would

take a nonreversing bacteria to cross the domain. The above limit then amounts to
saying that ε = T/t̄ is small compared to this typical time scale. Second, one needs
to Taylor expand the functions ρ0

± and ρ1
± in terms of ε. One then finds that to the

first order ρ0
± are zero and ρ1

± fulfill system (3.3).

The diffusion-free version of this system has already been described in Ref. 17,
where a memory-free myxobacteria model without an internal age variable s was
derived. Note that without the reaction term (i.e. λ ≡ 0), the system describes the
macroscopic limit of purely nematic interactions, a phenomena of great interest in
physics and studied in various works.19,35,37 Assuming a constant nematic direction
θ̄, the system reduces to two coupled transport–reaction equations; equations of
this type were examined in the context of pattern formation and aggregation in
biological systems in Refs. 22 and 31 (see also the following discussion).

We simulate the memory-free model (3.3) in one space dimension (assuming
θ̄ ≡ 0), with the same parameters as for the 2-age model (Table 1) and observe
that the constant steady state again destabilizes under randomly perturbed initial
conditions and traveling bumps occur. However, their widths vary greatly and do
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not seem to be controlled by the dynamics at all. In fact in Ref. 31, it was commented
that without diffusion, the system seems to converge to piecewise constant traveling
waves, traveling precisely at speed d1v0, which fulfill (3.3) in a weak sense.

The refractory period causes wave synchronization. The results from the
memory-free model suggest that while the refractory period might not be neces-
sary for the formation of opposing traveling waves, it seems to be responsible for
controlling the width of the individual traveling crests and synchronizes the waves
by controlling the wavelength. To examine this further, we systematically vary T

in the 2-age model and examine the resulting effects. In Fig. 8, it can be observed
that there are two parameter regimes. For very small refractory periods, the sys-
tem behaves similarly to the memory-free, limiting system (3.3), i.e. while traveling
waves occur, the crest width and wavelength varies greatly, indicating a lack of syn-
chronization. After reaching a critical value of T ≈ 1min, the waves become more
synchronized and the crests share a common width. In this regime, larger refractory
periods lead to wider crests with larger wavelengths. How can we interpret these
results?

-2 -1 0 1 2 3 4
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14

16

18

20

-2 -1 0 1 2 3 4
0

50
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200 wavelength
crest width

0 50 100 150 200 250
0

0.5
T=0.1

0 50 100 150 200 250
0

0.5
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T=2

0 50 100 150 200 250
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T=10
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0.5
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(A)
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(C)

Fig. 8. (Color online) Varying the refractory period T . Shown are the dependencies of the density
ratio between wave crest and wave trough (A) and the wavelength and crest width (B) on the
refractory period T . Error bars show ± standard deviation for a sample consisting of all waves
from 10 simulation runs per T . In the case of nonperiodic waves, wavelengths were measured as
distances between the center of masses of subsequent crests. (C): Four examples of traveling wave
profiles for different values of T . Shown are the total densities σ+ (red-solid) and σ− (blue-dashed).
Measured are the shapes after the system has reached equilibrium. Other parameters are listed in
Table 1.
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The refractory period imposes a time delay between successive collisions.
The reason for the lack of synchronization in the case of small T lies in the fact that
bacteria retain no memory of previous reversals, hence two waves cannot affect each
other. To understand how the refractory period enhances wave synchronization, it
is instructive to look again at Fig. 7: as described above, during the reconstitution
phase after a collision, the number of nonrefractory cells grows back to its equilib-
rium value. This growth depends on T (the smaller T , the faster the growth). If
now the crest meets another crest before sufficiently, many bacteria have regained
their sensitivity to the C-factor, the wave will not be fully reflected off the oncom-
ing wave. Figure 9 depicts the result of a simulation, in which one right-moving
wave meets two left-moving waves traveling with a short wavelength for both the
2-age model (A)–(D) and the memory-free model (F)–(I). Figures 9(E) and 9(J)
depict how many bacteria reverse on average in each wave per minute (i.e. to be
precise, if xa and xb mark the beginning and end positions of a wave, Fig. 9(E)/9(J)
depict 1

xb−xa

∫ xb

xa
λ(σ∓)ρ1

± dx in both models). At the first collision, the same (high)
number of bacteria reverses in both waves, the waves are reflected off each other
and the number of reversing bacteria is similar for both the 2-age model and the
memory-free model. In the second collision for the 2-age model, however, the right-
moving wave contains much fewer nonrefractory cells (i.e. ρ1

+ is lower) than the
second left-moving wave, hence it is only partially reflected. The overall effect is
a significant reduction of the second left-moving wave. For the memory-free case,
the second collision resembles exactly the first collision, hence the second wave is
unchanged.
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Fig. 9. (Color online) Wavelength control. (A)–(D) and (F)–(I): Four time snapshots from a
1D simulation with refractory period (i.e. system (3.1), (A)–(D) and without (i.e. system (3.3),
(F)–(I). Shown are densities of non-refractory cells (thin-solid), refractory cells (thin-dashed),
as well as their sums (thick-solid). Right- and left-moving densities are shown in red and blue,
respectively. (E) and (J): Average number of reversing bacteria per time in each of the three waves
for the 2-age model (E) and the memory-free model (J) as a function of time, i.e. the average of
λ(σ−)ρ1

+ (red-solid for right moving wave) and λ(σ+)ρ1
− (blue-circles for leading left-moving wave

and blue-dashed for following left-moving wave) over the whole wave. Parameters as in Table 1
with T = 4 min for the 2-age model.
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3.5. Parameter dependence of wave formation

Two necessary wave conditions. In many experimental set-ups, one of the main
output is whether or not myxobacteria colonies form waves. We therefore examine
what parameter combinations lead to wave formation. The previous section suggests
that the length of the refractory period T has no influence on the appearance of
waves. We therefore perform a rough parameter scan over the shape parameters of
the reversal function λ(ρ), i.e. the spontaneous reversal rate λm, the maximal rever-
sal rate λM and the inflection density ρ̄. Rigorous mathematical stability analysis
of system (3.1) will give more insight into the precise stability regions also for other
shapes of λ(ρ) and will be the subject of future work. However, several conclusions
can already be drawn. We find two wave formation conditions:

Condition A: The maximal reversal rate needs to be large enough compared to
the spontaneous reversal rate (λM > 3λm).

Condition B: The inflection density and the average total density need to be of
similar order (ρ̄ ≈ m0).

How can we link this to experiments?

Remark 3.2. A nondimensionalization of the system shows that its behavior
depends on four dimensionless quantities:

d1v0T

L
,

λmL

d1v0
,

λML

d1v0
and

ρ̄

m0
.

The first quantity compares the time it takes a just reversed bacterium to age back
into a reversible state, to the time it takes a (nonreversing) bacterium to cross the
domain. The next two quantities can be interpreted as the expected number of
reversals during one domain crossing for reversal rates λm and λM in the absence
of a refractory period. The last quantity compares the initial average density to the
inflection density, i.e. the density of opposing bacteria, where the reversal function
λ is the most sensitive to changes in density. Examining λm, λM and ρ̄ therefore
amounts to analyzing the last three quantities.

Mutation experiments: hypo- and hyper-reversing bacteria. To assess how
the reversal behavior impacts the ripple formation, Sager and Kaiser have used
Myxococcus xanthus strains, that have an insertion mutation in the frzCD gene,
which has been shown to impact the reversal probability.39 Isolated individuals of
the hypo-reverses change direction on average ≈10 times less frequent and hyper-
reversers ≈5 times more often as compared to the wildtype. Both strains have
lost the ability to form ripples and it is suggested that the mutation affects the
spontaneous reversal rate. Wave condition (A) suggests that if the spontaneous
reversal rate λm is too large compared to the maximal reversal rate, no waves
will form, in agreement with the hyper-reverser experiments. Our wave formation
conditions do not explain the absence of waves in hypo-reversers, however measuring
the reversal rate λ(ρ) experimentally could shed light on this question.
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Dilution experiments: Changing the fraction of C-signal competent cells.
Another way to demonstrate the influence of C-signaling on the ripple formation
was a second set of experiments performed by Kaiser and Sager:39 two strains of
myxobacteria were used, a C-signaling competent wildtype strain csgA+ and a
mutant strain csgA−, which cannot produce C-signal, but can respond to it. By
themselves, ensembles of csgA− cells do not have the ability to form ripples. In
their experiments, Kaiser and Sager changed the fraction of csgA+ and csgA− cells
and measured the changes in ripple wavelength, speed and width. To simulate this
situation using our 2-age model, we note that, since csgA− cells react to C-signals in
the same manner as the wildtype, the fraction of csgA+ and csgA− will be constant
everywhere. This was confirmed in Ref. 39. Let the fraction of C-signaling competent
csgA+ cells be q ∈ [0, 1]. At some density of opposing bacteria σ, therefore only
qσ cells contribute to the amount of signal produced, i.e. λ(σ±) in system (3.1) is
replaced by λ(qσ±). Substituting this into (2.22), the expression for λ, we see that
this in fact simply changes ρ̄ to ρ̄/q. In view of wave condition (B), this suggests
that if q is too small, this would inhibit wave formation. This is in agreement with
the experiments described in Ref. 39, although it should be noted that for very
small fractions of csgA+ cells, for which waves were still present in the experiment,

Fig. 10. Varying the inflection density ρ̄. The effect of varying ρ̄ on various wave characteristics.
Depicted are mean ± standard deviation for all waves for 10 simulation runs per ρ̄. Crest speeds
were measured over the time that it takes for one wave to cross the simulation domain. Other
parameters are listed in Table 1.
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the corresponding large values of ρ̄ do not produce waves anymore in our model. We
further study how varying the inflection density ρ̄ affects the wave shape (within the
range that supports ripple formation). Figure 10 depicts the impact of this variation
on various wave characteristics. Wave speed is not affected and stays close to the
individual bacterial speed (Fig. 10(A)). For regular waves, crest width increases, as
does ripple wavelength (Fig. 10(C)/10(D)), both of which are in agreement with
the findings in Ref. 39. Our model also predicts a nonmonotonous dependence of
the ratio of the number of cells in the crest to the number of cells in the trough as
a function of ρ̄ (Fig. 10(B)), which could easily be addressed experimentally.

4. Discussion

We presented a novel, continuous, age-structured macroscopic model of myxobac-
teria, derived systematically from an IBM. The main assumptions of the model are
nematic alignment, a density-dependent reversal function and a refractory period
of fixed length, which introduces a memory effect.

In excellent agreement with experimental data on myxobacteria, simulations
of the full IBM show the development of periodic waves, traveling in opposing
directions and being reflected upon collision. We performed an in-depth numer-
ical investigation of 1D macro-model for the case of two sensitivity/age groups:
refractory cells, incapable of reversing, and nonrefractory cells, that can reverse
and are sensitive to C-signaling. A main result of our analysis is that the refractory
period is not responsible for wave formation, but for wave synchronization. This is
because it introduces a memory effect that controls wavelengths. The existence of
a refractory period is known for example for D. discoideum.41 The idea of a refrac-
tory period for myxobacteria has originally been brought forward in the model
presented in Ref. 26, where it is suggested that myxobacteria also go through an
insensitivity period following a reversal. Assuming that the length of the refractory
period is unaffected by the density of opposing bacteria, we show that the memory
effect introduced by a fixed refractory period is sufficient to explain ripple synchro-
nization. We discovered two wave formation conditions that are consistent with
experimental results: the maximal reversal rate needs to be large enough compared
to the spontaneous reversal rate and the average density of the myxobacteria colony
needs to be close to 2ρ̄ with ρ̄ being the inflection density at which the reversal
function reacts most sensitively to density changes. This predicts that both very
high and very low densities will inhibit wave formation in myxobacterial colonies.

A strength of the SOH models is that they are directly derived from the corre-
sponding IBM by the method of GCI. This allows for easy and transparent inclu-
sion of assumptions, such as the density-dependent reversal rate and the refractory
period. The simulations presented in Sec. 3.2 show good agreement between the
IBM and diffusion corrected 2-age model, however, to fully validate the correspon-
dence between the macroscopic model and the IBM, a formal derivation of the mass
diffusion term10,20 will be necessary. The lack of control over the number of waves in
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the absence of diffusion shows that for phenomena where the ratio between micro-
scopic and macroscopic scales is not very small, higher order terms can be crucial
and hence the additional effort for deriving them is justified.

In this work, we concentrated on wave formation, where both experimen-
tal results and particle simulations suggest that the dynamics can be studied in
one space dimension. However, several other macroscopic patterns are known for
myxobacteria, most notably the formation of large aggregates. The combination of
simulation results of both the IBM and 2D 2-age model as well as analytical results
on the latter might shed light on what parameters cause cells to switch between
a uniform state to ripple formation and aggregation. Several aspects will need to
be considered: Could the reversal frequency depend on both the densities of the
opposing group as well as on the aligned one? In Ref. 31, such cases were analyzed
for a memory-free model and simulations also showed wave formation. Further,
the authors in Ref. 31 also noted that small changes in the reversal function λ(ρ)
can cause the system to switch from ripples to aggregation. It will be interest-
ing to extend the results to the age-structured model. In Ref. 28, experiments were
described in which C-signaling and thereby local densities affect the gliding speed of
bacteria. Such density-dependent parameters can easily be incorporated into SOH
models and significantly impact the dynamics.23

A large number of IBMs exist for self-propelled particles such as myxobacteria43

and detailed numerical and statistical analysis of their properties have significantly
contributed to the understanding of emergent phenomena and phase transitions.
While they allow for direct comparison between the experimental data about the
behavior of the individuals, they are limited in terms of insights into macroscopic
phenomena. For macro-systems such as the 2-age model on the other hand, stabil-
ity or asymptotic analysis can be performed which can elucidate precise parameter
dependencies and long-term behavior. The macro-system of Ref. 26 triggered a num-
ber of works examining wavelength determination,6,27 demonstrating the potential
insight gained through analytical methods. For the macro-system presented here, a
rigorous analytical treatment will be the subject of future work. Several works deal
with the linkage between IBMs and meso- or macro-models, e.g. both in Refs. 7
and 24 where continuous models are derived from particle models. The methods
presented there as well as the GCI method offer a powerful option of combining the
strengths of both particle and continuous-based methods.

Our work together with the results in Refs. 7, 26 and 43 strongly suggests the
existence of a refractory period. Several aspects of our findings can be addressed
experimentally: our main result is that wave formation and wave synchronization
are independent phenomena, which would suggest separate molecular mechanisms.
We therefore predict that mutants that form nonsynchronized traveling waves of
various width have a density-dependent reversal frequency, but no refractory period.
As to the length of the refractory period, in Ref. 26, experimental data argued for
refractory periods of under 1 min. Our model argues that T ≈ 1 min presents the
lower limit for the formation of synchronized waves. Larger refractory periods also
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lead to periodic waves, but it takes the system much longer to produce steadily
moving wave. Hence the value T ≈ 1 min is the fastest way to make synchro-
nized waves, presenting a possible, evolutionary answer as to why this particular
refractory period length evolved.

Appendix A

A.1. Numerical methods

Particle Model. The IBM of Sec. 2.1 was simulated in a square domain with
periodic boundary conditions, using the method described in Ref. 34.

2-Age Model. We simulated the 2-age model (3.1) in one space dimension with
periodic boundary conditions and θ̄ ≡ 0. The transport and reaction terms were
implemented using operator splitting with explicit upwind or downwind (for the
+ and − family, respectively) finite differences for the transport term, an implicit
finite difference scheme for the diffusion term and an explicit treatment of the
reaction term. We also tested implementing the reaction term with an explicit
Runge–Kutta (4,5) formula using the ode45 solver of Matlab and a Lax–Friedrichs
scheme for the transport term, both with no significant gains in accuracy. Table 2
shows the parameters used for both simulation set-ups.

A.2. Controlling the number of waves

We want to asses whether (2.20) encodes information about the number of waves
naturally created. We use as initial conditions small perturbations from (3.2), how-
ever using completely random data can be problematic due to its nonsmoothness
and because the result could be influenced by the spatial discretization. To avoid
these problems, but mimic randomness, we use sums of Fourier modes as pertur-
bations:

K∑
k=1

ak cos (2πkx) + bk sin (2πkx), (A.1)

Table 2. Numerical parameters.

Name Meaning Value

Simulation parameters of IBM

Lx, Ly Width and length of simulation domain Lx = Ly = 250 µm
N Total number of bacteria 2 m0 Lx Ly = 15, 625
∆t Time step 0.01 min
R Interaction radius 5 µm

Simulation parameters of 1D 2-age model

L Simulation domain 250 µm
∆x Spatial step 0.313 µm
∆t Time step for transport operator ∆x/(d1v0)0.95 = 0.033 min
δ Diffusion constant 0.8 µm2/min

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
18

.2
8:

17
37

-1
77

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 8

6.
15

5.
37

.1
77

 o
n 

03
/0

5/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 5, 2018 9:30 WSPC/103-M3AS 1840004

An age-structured continuum model for myxobacteria 1767

where ak, bk are chosen randomly in [−1, 1]. Finally, we normalize the resulting
perturbations so that the maximal amplitude does not exceed ε = 0.05. For the
time discretization, we used ∆t = ∆x/(d1v0) × CFL, where CFL is the Courant–
Friedrichs–Lewy number. The up/down winding scheme for the transport terms
implies that we need CFL ≤ 1 for stability. Without the reaction terms, the trans-
port equations could be solved numerically and exactly if CFL = 1. Then the
numerical diffusion introduced by the discretization of the transport term increases
for smaller CFL.

Arbitrary small wavelengths in the absence of diffusion. To examine the
effects of numerical diffusion and spatial resolution on the wavelength, we vary (1)
the maximal number of Fourier modes K used in the initial conditions, (2) the
spatial discretization ∆x and (3) the CFL condition. For each choice of K, we use
the same initial conditions, i.e. the same random numbers ak, bk. Each simulation
is run until time = 300min and the number of waves is determined as the average
number of peaks of σ+ and σ−. Figure 11(A) shows the outcome. For large K, for
each fixed CFL number, a finer grid leads to more waves. On the other hand for a
fixed grid size, the closer the CFL is to 1, the more waves we observe. This indicates
that the upper bound of the number of waves is caused by the numerical diffusion
and the spatial resolution, rather than by the equations themselves. However, the
minimal number of waves seems to be encoded in the equations, as it is largely
independent of the spatial discretization and CFL number. The issue of wavelength
selection for a similar system was also discussed in Ref. 40.

Fig. 11. Wave number determination. (A): No diffusion. Depicted is the average number of peaks
of σ− and σ+ at time = 300 min using the diffusion-free model (2.20), in dependence on the number
of Fourier modes K. Varied were the CFL condition and the number of spatial discretization points
Nx. (B): With diffusion. As (A), but using the diffusion-corrected model (3.1) with δ = 0.8. All
other parameters were listed in Tables 1 and 2.
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To test the influence of diffusion wavelengths, we repeat the same simulations,
using the diffusion-corrected model (3.1). Figure 11(B) shows that now the behavior
is consistent for different ∆x and the maximal number of waves is controlled. Since
in the IBM we observe regular waves of relatively fixed wavelengths, we conclude
that a small amount of density diffusion is inherent in the IBM and leads to a control
in wavelength. This diffusion is lost during the derivation of the SOH model, but is
necessary to avoid very small wavelengths (see discussion in Sec. 3.2).
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