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We consider algorithms that, from an arbitrarily sampling of N spheres (possibly 
overlapping), find a close packed configuration without overlapping. These problems can 
be formulated as minimization problems with non-convex constraints. For such packing 
problems, we observe that the classical iterative Arrow–Hurwicz algorithm does not 
converge. We derive a novel algorithm from a multi-step variant of the Arrow–Hurwicz 
scheme with damping. We compare this algorithm with classical algorithms belonging to 
the class of linearly constrained Lagrangian methods and show that it performs better. 
We provide an analysis of the convergence of these algorithms in the simple case of two 
spheres in one spatial dimension. Finally, we investigate the behaviour of our algorithm 
when the number of spheres is large in two and three spatial dimensions.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Particle packing problems can be encountered in many different systems, from the formation of planets or cells in 
live tissues to the dynamics of crowds of people. They have been widely investigated in the study of granular media [1], 
glasses [2] and liquids [3]. More recently, particle packings have revealed to be important tools in biology [4] and social 
sciences, in particular in crowd dynamics [5].

Packing problems give rise to NP-hard non-convex optimization problems [6] and the optimal solution is in general 
not unique, since permutations, rotations or reflections may generate equivalent solutions. We refer the reader to [6] for a 
review on packing problems. In the literature, one can find numerical studies involving particles with various shapes such as 
ellipses [7] or even non-convex particles [8]. However, in the present work we assume that the particles are simply identical 
spheres with diameter d in Rb , b = 1, 2, 3, but the methodology is general and will be extended to other cases in future 
work. We consider algorithms that, given an initial configuration of N spheres (possibly overlapping), find a nearby packed 
configuration without overlapping. Indeed, in many natural systems individuals or particles only seek to achieve a locally 
optimal solution. Therefore, it is more likely that they reach a local configuration that does not necessarily correspond to 
a global optimum. By combining our method with, for example, simulated annealing techniques [9], we could convert our 
algorithms into global minimum search algorithms. It is however not the objective we pursue here.

Classical procedures to solve non-convex minimization problems include Uzawa–Arrow–Hurwicz type algorithms [10], 
augmented Lagrangian [11,12], linearly constrained Lagrangian (LCL), sequential quadratic programming (SQP) [13], among 
others. The SQP and the Uzawa–Arrow–Hurwicz algorithms are widely used. However they require the Hessian matrix of 
the function to be minimized to be positive definite, which is not always the case in this type of problems (see the example 
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presented in section 3). In general, all these methods perform well with a small number of particles. However we are 
interested in the case where this number becomes large.

In [14,15] the authors study the shape of three dimensional clusters of atoms under the effect of soft potentials by 
using molecular dynamics. This approach differs from ours with regard to the non-overlapping constraints, which are ap-
proximated by soft potentials, producing soft dynamics. Although being more costly when dealing with a large number of 
particles, we have opted by the hard dynamics approach, since it allows for a higher precision in the treatment of the con-
straints. This proves effective when dealing with interaction between rigid bodies, where the effect of the rigid boundaries 
plays an important role. This motivates the present work.

We start in section 2.1 by presenting two formulations of the problem. The first one is the classical minimization ap-
proach. The second one considers a constrained dynamical system in the spirit of [16]. We also present two equivalent 
types of non-overlapping constraints involving smooth or non-smooth functions which are found in the literature [6,17]. 
To solve the non-convex minimization problems arising in these formulations, we first consider in section 2.2 the classical 
Arrow–Hurwicz algorithm (AHA). In section 2.3 we introduce a novel multi-step scheme based on a second-order ODE in-
terpretation of the minimization problem: the damped Arrow–Hurwicz algorithm (DAHA). We test the DAHA against two 
methods taken from the widely known class of linearly constrained Lagrangian algorithms [13,16]. These algorithms consist 
of a sequence of convex minimization problems, for we refer to them as nested algorithms (NA) and they shall be referred 
to as the NAP and NAV. The convergence of the four algorithms (the AHA, DAHA, NAP and NAV) is analyzed in section 3
and Appendix A for the case of two spheres in one dimension. In section 4 the algorithms are numerically compared for the 
cases of many spheres in two dimensions. A brief numerical study of the packing density in two and three dimensions is 
also presented. Finally, conclusions and future works are presented in section 5. We also refer to [18] for a detailed analysis 
of the minimization problem. In particular we prove that minimizers are not saddle points of the Lagrangian. This analysis 
requires development that are beyond the scope of the paper.

2. The damped Arrow–Hurwicz algorithm (DAHA)

2.1. Minimization problems for sphere packing

We first recall two different formulations of generic minimization problems. Let N and b be two given positive integers. 
We consider first the problem of finding a configuration X̄ such that

X̄ ∈ argmin
φk�(X)≤0, k,�=1,...,N, k<�

W (X), (2.1)

where W : RbN → R is a convex function (not necessarily strictly convex). The functions φk� : RbN → R, k, � = 1, ..., N , 
k < � are continuous but not necessarily convex. We suppose that W has a minimum in the set of admissible solutions 
{X ∈ R

bN |φk�(X) ≤ 0}. In these conditions, X̄ exists but may not be unique. We also assume that φk� , k, � = 1, ..., N , k < �

and W are C1 functions in the neighbourhood of X̄. In what follows, d will denote the diameter of a sphere, N the number 
of spheres, b the spatial dimension, X the position of the center of the spheres and φk� the non-overlapping constraint 
functions between the kth and �th spheres. The non-overlapping constraints for a system of identical spheres in Rb can be 
expressed by means of a smooth or a non-smooth function as specified bellow. Although leading to equivalent constraints, 
each form has an impact on the convergence of the numerical method towards a local minimizer, as we will see in sections 3
and 4.

Definition 2.1. We call non-smooth form of the constraint functions (NS) the following function

φk�(X) = d − |Xk − X�|,k, � = 1, ..., N, k �= �

and smooth form of the constraint functions (S) the following function

φk�(X) = d2 − |Xk − X�|2,k, � = 1, ..., N, k �= �.

An illustration of the non-overlapping constraints, as well as, a possible solution for N = 7 are presented in Fig. 1.
We now present a second formulation consisting in solving a minimization problem associated with a discrete dynamical 

system which has X̄ as a fixed point. Let | · | denote the Euclidean norm on Rb . The problem is formulated iteratively: given 
an initial configuration X0 = {X0

i }i=1,...,N , we pass from iterate Xp to iterate Xp+1 as follows⎧⎪⎪⎨
⎪⎪⎩

Xp+1 = Xp + τ Vp+1 (a)

Vp+1 ∈ argmin
φk�(Xp+τ V)≤0, k,�=1,...,N, k<�

1

2

N∑
i=1

|V i + ∇Xi W (Xp)|2, (b)
(2.2)

where τ > 0 is a given parameter and V = {V i}i=1,...,N . We define X̃ as a fixed point of this problem. Consequently, X̃ satisfies
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Fig. 1. Representation of the non-overlapping constraints, a, and a possible optimal solution of (2.1) for N = 7, b.

0 ∈ argmin
φk�(X̃+τ V)≤0, k,�=1,...,N, k<�

1

2

N∑
i=1

|V i + ∇Xi W (X̃)|2. (2.3)

Note that the minima of (2.2)(b) exist, but may not be unique.
The minimization problem (2.1) can be formulated in terms of the Lagrangian L : RbN × (R+

0 )N(N−1)/2 →R defined by

L(X,λ) = W (X) +
∑

k,�∈{1,...,N}, k<�

λk�φk�(X),

where λ = {λk�}k,�=1,...,N, k<� represents the set of Lagrange multipliers. If X̄ is a solution of the minimization problem (2.1), 
then, the Abadie constraint qualification (ACQ) [19] holds at X̄ and, consequently, there exists λ̄ ∈ (R+

0 )N(N−1)/2 such that 
(X̄, ̄λ) is a critical-point of the Lagrangian, namely, (X̄, ̄λ) satisfies the KKT-conditions [20,21]:{∇XiL(X̄, λ̄) = 0, i = 1, ..., N(∇λk�

L(X̄, λ̄) = 0 and λ̄k� ≥ 0
)

or
(∇λk�

L(X̄, λ̄) < 0 and λ̄k� = 0
)
, k, � = 1, ..., N,k < �

which is equivalent to⎧⎨
⎩

∇Xi W (X̄) + ∑
k,�∈{1,...,N}, k<�

λ̄k�∇Xi φk�(X̄) = 0, i = 1, ..., N(
φk�(X̄) = 0 and λ̄k� ≥ 0

)
or

(
φk�(X̄) < 0 and λ̄k� = 0

)
, k, � = 1, ..., N,k < �.

(2.4)

We have reduced our original problem (2.1) to a critical-point system, with a possible enlargement of the set of solutions. 
Contrarily to convex optimization, in the case of packing problems, these critical-points may not be saddle-points. In refer-
ence [18] we provide a detailed analysis of this point, which requires new technical developments that go beyond the scope 
of the present paper.

We also formulate the minimization problem (2.2)(b) in terms of a Lagrangian Lp ,

Lp(V,μ) = 1

2

N∑
i=1

|V i + ∇Xi W (Xp)|2 +
∑

k,�∈{1,...,N}, k<�

μk�φk�(Xp + τ V),

where μ = {μk�}k,�=1,...,N, k<� is the set of Lagrange multipliers associated to the constraints. The gradients of the La-
grangian are given by

∇V iL
p(V,μ) = V i + ∇Xi W (Xp) + τ

∑
k,�∈{1,...,N}, k<�

μk�∇Xi φk�(Xp + τ V), i = 1, ..., N

∇μk�
Lp(V,μ) = φk�(Xp + τ V), k, � = 1, ..., N.

The dynamical system is written: X̃p+1 = X̃p + τ Ṽp+1 such that (Ṽp+1, μ̃p+1
) is a solution of the critical-point problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṽ p+1
i + ∇Xi W (X̃p) + τ

∑
k,�∈{1,...,N}, k<�

μ̃
p+1
k�

∇Xi φk�(X̃p + τ Ṽp+1) = 0, i = 1, ..., N(
φk�(X̃p + τ Ṽp+1) = 0 and μ̃

p+1
k�

≥ 0
)

or(
φk�(X̃p + τ Ṽp+1) < 0 and μ̃

p+1
k�

= 0
)

, k, � = 1, ..., N, k < �

(2.5)

Likewise, the fixed point X̃ of the dynamical system is defined such that there exists μ̃ such that
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⎧⎪⎨
⎪⎩

∇Xi W (X̃) + τ
∑

k,�∈{1,...,N}, k<�

μ̃k�∇Xi φk�(X̃) = 0, i = 1, ..., N(
φk�(X̃) = 0 and μ̃k� ≥ 0

)
or

(
φk�(X̃) < 0 and μ̃k� = 0

)
, k, � = 1, ..., N, k < �.

(2.6)

Then, it is clear that problems (2.4) and (2.6) are equivalent for all values of τ > 0 by setting λ̄ = τ μ̃. However, the 
choice of τ is important to ensure convergence of the dynamical system (2.5) to the fixed point.

As it will be obvious below, all functions W and φk� used throughout the paper will satisfy the conditions considered 
in this section. The nonlinear systems (2.4) or (2.5) will have to be solved by an iterative algorithm. We now present the 
algorithms considered in the paper.

2.2. The Arrow–Hurwicz algorithm (AHA)

The classical Arrow–Hurwicz iterative algorithm [10] searches a saddle-point of the Lagrangian by alternating steps in 
the direction of −∇XL and +∇λL. Using this idea, a saddle-point is then a steady-state solution of the Arrow–Hurwicz 
system of ODE’s (AHS) which is defined next.

Definition 2.2. The Arrow–Hurwicz system (AHS) is defined by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋi = −α

⎛
⎝∇Xi W (X) +

∑
k,�∈{1,...,N}, k<�

λk�∇Xi φk�(X)

⎞
⎠ , i = 1, ..., N (a)

λ̇k� =
{

0, if λk� = 0 and φk�(X) < 0

βφk�(X), otherwise
, k, � = 1, ..., N, k < �, (b)

(2.7)

where α and β are positive constants. Considering a small time-step �t , a semi-implicit Euler discretization scheme of the 
previous system leads to the Arrow–Hurwicz algorithm (AHA), which is defined iteratively by⎧⎪⎨

⎪⎩
Xn+1

i = Xn
i − α

[
∇Xi W (Xn) + ∑

k,�∈{1,...,N}, k<�

λn
k�

∇Xi φk�(Xn)

]
, i = 1, ..., N

λn+1
k�

= max{0, λn
k�

+ βφk�(Xn+1)}, k, � = 1, ..., N, k < �

(2.8)

where α and β now correspond to α̃ = α�t and β̃ = β�t and the tildes have been dropped for simplicity.

The original AHA was formulated using a fully explicit Euler scheme, but it has proved more accurate to use a semi-
implicit scheme. Finding a local steady-sate solution of (2.7)(a)–(2.7)(b) in the case of a packing problem has revealed not 
to be always possible because it often happens that no critical-point is a saddle-point [18]. This manifests itself by the 
existence of periodic solutions of the AHS which do not converge to the critical-point. In order to overcome this difficulty 
we propose the damped Arrow–Hurwicz algorithm which is presented next. This method is based on a modification of the 
dynamics of the AHS that transforms an unstable critical-point into an asymptotically stable one. The performance of our 
method will be tested by comparing with previous approaches [13,16], which are based on a modification of the Lagrangian 
by linearly approximating the constraints. These approaches are presented in section 2.4.

2.3. The damped Arrow–Hurwicz algorithm

In order to avoid periodic solutions we will add a damping term as described below. Note that we are not interested on 
the transient dynamics of the system, but rather on its asymptotic behaviour.

We propose the following definition.

Definition 2.3. We define the damped Arrow–Hurwicz system (DAHS) as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ẍi = −α2[∇Xi W (X) +
∑

k,�∈{1,...,N}, k<�

λk�∇Xi φk�(X)]

− αβ
∑

k,�∈{1,...,N}, k<�

φk�(X)λk�∇Xi φk�(X) − c Ẋi, i = 1, ..., N (a)

λ̇k� =
{

0, if λk� = 0 and φk�(X) < 0

βφk�(X), otherwise
, k, � = 1, ..., N, k < � (b)

(2.9)

where α, β and c are positive constants and the damped Arrow–Hurwicz algorithm (DAHA) as the corresponding semi-
implicit discrete scheme:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xn+1
i = 1

1 + c/2

(
2Xn

i − (1 − c/2)Xn−1
i

)
− α2

1 + c/2
[∇Xi W (Xn) +

∑
k,�∈{1,...,N}, k<�

λn
k�∇Xi φk�(Xn)]

− αβ

1 + c/2

∑
k,�∈{1,...,N}, k<�

φk�(Xn)λn
k�∇Xi φk�(Xn), i = 1, ..., N (a)

λn+1
k�

= max{0, λn
k� + βφk�(Xn+1)}, k, � = 1, ..., N, k < �, (b)

(2.10)

where α, β and c correspond now to numerical parameters.

Note that the DAHA is a multi-step scheme, since not only one, but two previous configurations Xn−1 and Xn are used 
to obtain Xn+1. By setting c = 2, the method is reduced to a one-step method.

A second-order ODE system with damping has previously been proposed within the scope of convex programming [22,
23]. Besides comprising the non-convex case, our approach differs from this with regard to the extra term αβ in equa-
tion (2.9)(a).

In the following we present the derivation of the DAHS. We start by considering the AHS (2.7)(a)–(2.7)(b) presented in 
the previous section. We then take the second-order version of (2.7)(a). For each i = 1, ..., N we have

Ẍi = −α

N∑
m=1

∇Xm

[∇Xi W (X) +
∑

k,�∈{1,...,N}, k<�

λk�∇Xi φk�(X)
]

Ẋm

− α
∑

k,�∈{1,...,N}, k<�

λ̇k�∇Xi φk�(X). (2.11)

Using (2.7)(b), we can replace λ̇k� in (2.11) by βφk�(X)H(λk�), where H is the Heaviside function. Moreover, in order to keep 
the same steady states as the AHS, we replace H(λk�) by λk� , as at equilibrium λk�φk� = 0. Note that other choices could be 
made, such as a power of λk� for instance, which would influence the speed of convergence of the algorithm. However we 
do not explore this aspect further here. We get

Ẍi = −α

N∑
m=1

∇Xm

[∇Xi W (X) +
∑

k,�∈{1,...,N}, k<�

λk�∇Xi φk�(X)
]

Ẋm (2.12)

−αβ
∑

k,�∈{1,...,N}, k<�

φk�(X)λk�∇Xi φk�(X). (2.13)

It turns out that passing to the second-order introduces exponentially growing modes (see Remark 2.1).

Remark 2.1. Consider the simple ODE u̇ = −αu whose solution is u(t) = u0e−αt , where u0 is the initial configuration. 
Differentiating both sides of the equation and substituting u̇ by −αu yields ü = α2u, whose solution includes now an expo-
nentially growing mode: u(t) = c1e−αt + c2eαt , where c1 and c2 are real constants determined by the initial configurations.

In order to remove these modes, we replace the term in (2.12) by a simple second-order dynamics in the force field 
given by the right hand side of (2.7)(a). We get:

Ẍi = −α2

⎡
⎣∇Xi W (X) +

∑
k,�∈{1,...,N}, k<�

λk�∇Xi φk�(X)

⎤
⎦

− αβ
∑

k,�∈{1,...,N}, k<�

φk�(X)λk�∇Xi φk�(X). (2.14)

Now, we just add a velocity damping term in the form of −c Ẋi and we finally obtain (2.9)(a). We end up with the sys-
tem (2.9)(a)–(2.9)(b).

Remark 2.2. We can interpret the first term, at the right hand side of (2.14) as a second-order dynamics version of (2.7)(a). 
Denoting by T1 and T2 the terms in (2.14) which are multiplied by −α2 and −αβ , respectively, we recover (2.7)(a) in an 
over-damped limit ε

[
Ẍi + αβT2

] = −α2T1 − c Ẋi , with ε → 0 and c = 1.

Proposition 2.4. The AHS (2.7)(a)–(2.7)(b) and the DAHS (2.9)(a)–(2.9)(b) have the same equilibrium solutions.
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Proof. If (λ∗, X∗) is a steady state of the AHS, then either φk�(X∗) = 0 or λ∗
k�

= 0. Consequently, λk�φk�(X∗) = 0, which 
implies that the second part of equation (2.9)(b) is null and Ẍ∗ = 0. Using a similar argument we conclude that a steady 
state of DAHS is also a steady state of AHS. �
2.4. Previous approaches

A common approach to solve the generic minimization problems (2.1) and (2.2)(a)–(2.2)(b) is based on the linearization 
of the constraint functions φk� around a certain configuration Xp , which we denote by φp

k�
(X), i.e.,

φ
p
k�

(X) = φk�(Xp) + ∇Xφk�(Xp) · (X − Xp). (2.15)

The solution Xp+1 of the resulting linearly constrained optimization problem is used to improve the linearization of the 
constraint functions and this process is iterated until convergence. Note that this transformation turns the non-convex 
minimization problems (2.1) and (2.2)(a)–(2.2)(b) into a sequence of convex problems, for which there are many tools 
available [24]. We have chosen the Arrow–Hurwicz algorithm, however, any other method for convex optimization problems 
would suit our purpose.

This method belongs to the class of linearly constrained Lagrangian (LCL) methods [13] which have been used for large 
constrained optimization problems.

2.4.1. The nested algorithm for the positions (NAP)
Consider the system (2.4) with linearized constraint functions. We propose the following definition.

Definition 2.5 (Nested Algorithm for the Positions (NAP)). Let (Xp, λp) be given. Define Xp,0 = Xp , λp,0 = λp and φp
k�

as 
in (2.15). For a given (Xp,n, λp,n), let the step of the inner-loop be defined as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
X p,n+1

i = X p,n
i − α

⎡
⎣∇Xi W (Xp,n) +

∑
k,�∈{1,...,N}, k<�

λ
p,n
k�

∇Xi φ
p
k�

(Xp,n)

⎤
⎦ , i = 1, ..., N (a)

λ
p,n+1
k�

= max
{

0, λ
p,n
k�

+ βφ
p
k�

(Xp,n+1)
}

, k, � = 1, ..., N, k < �, (b)

(2.16)

then (Xp+1, λp+1) = limn→∞(Xp,n, λp,n).

If we only compute one step of the inner-loop per iteration of the outer-loop we get a variant of the AHA formulation, 
where φk�(Xp+1) is replaced by φp

k�
(Xp+1) in (2.16)(b).

2.4.2. The nested algorithm for the velocities (NAV)
We consider the minimization problem (2.5) with linearized constraint functions.

Definition 2.6 (Nested Algorithm for the Velocities (NAV)). Let τ > 0 and (Xp, Vp, μp) be given. Define Vp,0 = Vp , μp,0 = μp

and φp
k�

as in (2.15). For a given (Vp,n, μp,n), let the step of the inner-loop be defined as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V p,n+1
i = V p,n

i − α

⎛
⎝V p,n

i + ∇Xi W (Xp) + τ
∑

k,�∈{1,...,N}, k<�

μp,n
k�

∇Xi φ
p
k�

(Xp + τVp,n)

⎞
⎠ , i = 1, ..., N (a)

μ
p,n+1
k�

= max
{

0,μ
p,n
k�

+ βφ
p
k�

(Xp + τVp,n+1)
}

, k, � = 1, ..., N, (b)

(2.17)

then (Vp+1, μp+1) = limn→∞(Vp,n, μp,n) and Xp+1 = Xp + τ Vp+1.

The NAV corresponds to an adaptation of the method developed by Maury in [16].

3. Linear analysis

3.1. Preliminaries

Under the assumptions considered in the previous section, the associated ODE systems are piecewise smooth. In partic-
ular, they are smooth in a neighbourhood of X̄, which allows us to carry out the linear stability analysis in order to study 
the local convergence of the solution towards a steady state.

We consider here a physical system where N rigid spheres in Rb attract each other through a global potential which is 
given by a quadratic function of the relative distance,

W (X) = 1

2N

∑
i, j∈{1,...,N}, i< j

|Xi − X j|2. (3.1)



P. Degond et al. / Journal of Computational Physics 332 (2017) 47–65 53
Definition 3.1. A steady state x∗ of the ODE system ẋ = f (x), t ≥ 0, is called

• stable (in the sense of Lyapunov) if for all ε > 0, there exists a δ > 0 such that ‖x̄(0) − x∗‖ < δ implies ‖x̄(t) − x∗‖ < ε , 
for all t > 0 and for all solution x̄;

• asymptotically stable if it is stable and limt→∞ ‖x̄(t) − x∗‖ = 0;
• unstable if it is not stable.

Note that this definition assumes that the initial configuration is chosen close enough to the steady state. Alternative 
notions of stability could have been used [25,26]. The one we consider here allows us to get insight into the behaviour 
of the algorithm as it is described below. The next theorem allows us to obtain conclusions about the original nonlinear 
system from the corresponding linearized system.

Theorem 3.2. Consider the ODE system ẋ = f (x) and a steady state x∗ , where f is smooth at x∗. If x∗ is an asymptotically stable 
(unstable) solution of the linearized system about x∗, i.e., ˙̃x = f ′(x∗)(x̃ − x∗), then it is an asymptotically stable (unstable) solution of 
the original system.

Proof. See [27], Thm. 2.42, p. 158. �
In order to ensure convergence of the ODE system towards a steady state, we only need to ensure that the eigenvalues of 

f ′(x∗) all have negative real part. If at least one eigenvalue has positive real part, then x∗ is unstable, and if all eigenvalues 
are pure imaginary, then x∗ is a center equilibrium, i.e. if a solution starts near it then it will be periodic around it. In the 
latter case, we cannot conclude anything about the nonlinear system. The analysis presented next is made for the case of 
two spheres in R.

3.2. The Arrow–Hurwicz algorithm (AHA)

3.2.1. AHA-NS
Let φ(X) = d − |X | and consider the potential (3.1). The ODE system associated to the DAHA-NS in the case of two 

spheres in R where one sphere is fixed at the origin can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ = −α

(
1 − λ

|X |
)

X (a)

λ̇ =
{

0, if λ = 0 and d < |X |
β(d − |X |), otherwise.

(b)
(3.2)

Lemma 3.3. The steady states of the system (3.2)(a)–(3.2)(b), (X∗, λ∗) = (d, d) and (X∗, λ∗) = (−d, d), are both asymptotically 
stable, for any α and β positive.

Proof. Since the dynamics around each steady state is identical, we only need to carry out the analysis of the first steady 
state. Suppose X > 0 and consider the change of variables Y = X − d and μ = λ − d. The system on the new variables is 
given in matrix form by[

Ẏ
μ̇

]
= A

[
Y
μ

]
, A =

[−α α
−β 0

]
.

We want the eigenvalues of matrix A to be real and negative in order to have a fast convergence to the steady state. 
The roots of the characteristic polynomial P(λ) = λ2 + αλ + βα, have both negative real part, therefore the steady state is 
asymptotically stable. �

Any solution to the ODE system (3.2)(a)–(3.2)(b) converges to a steady state for all α, β > 0 and the fastest convergence 
is achieved when α = 4β . Contrarily to the one dimensional case, in higher spatial dimensions the constraints are no 
longer piecewise linear. Consequently, we cannot directly extrapolate the conclusions drawn in this section. In particular, in 
dimension b = 2, the numerical simulations show oscillations around the steady state for N > 3 without never converging 
to it. The non-convergence in this case is due to the non-existence of a saddle-point of the Lagrangian [18].

3.2.2. AHA-S
Let φ(X) = d2 −|X |2 and consider the potential (3.1). The ODE system associated to the AHA-S in the case of two spheres 

in R where one sphere is fixed at the origin can be written as
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Fig. 2. Phase portrait of the system (3.3)(a)–(3.3)(b) with (α, β, d) = (0.01, 0.01, 2) and initial condition X0 = 0.2. The dynamics do not converge to the 
equilibrium (2, 12 ).

⎧⎪⎨
⎪⎩

Ẋ = −α (1 − 2λ) X (a)

λ̇ =
{

0, if λ = 0 and d < |X |
β(d2 − X2), otherwise.

(b)
(3.3)

Lemma 3.4. The steady states of the system corresponding to the linearization of (3.3)(a)–(3.3)(b), (X∗, λ∗) = (d, 1/2) and (X∗, λ∗) =
(−d, 1/2), are both center equilibria, for any α and β positive.

Proof. As before, we will only carry out the analysis of the first steady state.
Suppose X > 0 and consider the change of variables Y = X − d and μ = λ − 1/2. The linearized system on the new 

variables is given in matrix form by[
Ẏ
μ̇

]
= A

[
Y
μ

]
, A =

[
0 2dα

−2dβ 0

]
.

The roots of the characteristic polynomial P(λ) = λ2 + 4d2αβ are both purely imaginary, therefore the steady state of the 
linearized system is a center equilibrium. �

The linear analyses does not allow us to conclude anything about the asymptotic behaviour of the nonlinear system 
(see Theorem 3.2). Nevertheless, the phase portrait plotted in Fig. 2 reveals that a solution to the nonlinear system should 
converge towards a periodic orbit around the steady state. As we will see in the next section, the damping term applied to 
the Arrow–Hurwicz system (2.7)(a)–(2.7)(b) ensures asymptotic stability of the steady state, under certain conditions on the 
parameters.

3.3. The damped Arrow–Hurwicz algorithm (DAHA)

3.3.1. DAHA-NS
Let φ(X) = d − |X | and consider the potential (3.1). The ODE system associated to the DAHA-NS in the case of two 

spheres in R where one sphere is fixed at the origin can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẍ = −α2
(

1 − λ

|X |
)

X + αβλ(d − |X |) X

|X | − c Ẋ (a)

λ̇ =
{

0, if λ = 0 and d < |X |,
β(d − |X |), otherwise.

(b)
(3.4)

Lemma 3.5. Let α, β, c > 0. If (α + βd)c − βα > 0, then the steady states of the system (3.4)(a)–(3.4)(b), (X∗, Ẋ∗, λ∗) = (d, 0, d)

and (X∗, Ẋ∗, λ∗) = (−d, 0, d), are both asymptotically stable.

Proof. Suppose X > 0 and consider the change of variables Y = X − d, Z = Ẏ and μ = λ − d. The linearized system on the 
new variables is given in matrix form by⎡

⎣ Ẏ
Ż
μ̇

⎤
⎦ = A

⎡
⎣ Y

Z
μ

⎤
⎦ , A =

⎡
⎣ 0 1 0

−α2 − αβd −c α2

−β 0 0

⎤
⎦ .

The eigenvalues of matrix A are the roots of the characteristic polynomial in λ, which is given by P(λ) = λ3 + cλ2 + (α2 +
αβd)λ + βα2. Consider in general a cubic polynomial of the form P(λ) = λ3 + c2λ

2 + c1λ + c0, with c0, c1, c2 ∈ R
+ . Let 

z1, z2 and z3 be the (complex) roots to this polynomial. We want to ensure that all roots have negative real part. Since all 
coefficients are positive, if the roots are real then they must be negative. Suppose now that two roots are complex conjugate, 
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for example, z1 = a + ib, z2 = a − ib, a, b ∈ R and z3 ∈ R
− . In order to find a condition on the coefficients which ensures 

that a is non-positive, we start by identifying the coefficients of the equation with its roots:

z1 + z2 + z3 = −c2, z1z2 + z1z3 + z2z3 = c1, z1z2z3 = −c0

Rewriting in terms of a, b and z3 we get

2a + z3 = −c2, a2 + b2 + 2az3 = c1, (a2 + b2)z3 = −c0 (3.5)

From (3.5) we deduce that a satisfies the cubic polynomial

8a3 + 8c1a2 + 2(c1 + c2
2)a + c1c2 − c0 = 0.

Consequently, if c1c2 − c0 > 0, then a is necessarily negative.
Back to our case, we have c2 = c, c1 = α2 + αβd and c0 = βα2 and a sufficient condition for the steady state to be 

asymptotically stable is (α2 + αβd)c − βα2 > 0, i.e., (α + βd)c − βα > 0. Note that since the steady state is asymptotically 
stable as a solution to the linearized system, then it is also asymptotically stable (see Theorem 3.2). �
3.3.2. DAHA-S

Let φ(X) = d2 − |X |2 and consider the potential (3.1). For the case of two spheres in R where one sphere is fixed at the 
origin, the ODE system associated to the DAHA-S can be written as⎧⎪⎨

⎪⎩
Ẍ = −α2 (1 − 2λ) X + 2αβλ(d2 − |X |2)X − c Ẋ (a)

λ̇ =
{

0, if λ = 0 and d < |X |
β(d2 − |X |2), otherwise.

(b)
(3.6)

Lemma 3.6. Let α, β, c > 0. If c − 2α > 0, then the steady states of the system (3.6)(a)–(3.6)(b), (X∗, Ẋ∗, λ∗) = (d, 0, 1/2) and 
(X∗, Ẋ∗, λ∗) = (−d, 0, 1/2), are both asymptotically stable.

Proof. As before, suppose X > 0 and consider the change of variables Y = X − d, Z = Ẏ and μ = λ − 1/2. The linearized 
system on the new variables is given in matrix form by⎡

⎣ Ẏ
Ż
μ̇

⎤
⎦ = A

⎡
⎣ Y

Z
μ

⎤
⎦ , A =

⎡
⎣ 0 1 0

−2αβd2 −c 2dα2

−2dβ 0 0

⎤
⎦ .

The eigenvalues of matrix A are the roots of the characteristic polynomial in λ:

P(λ) = λ3 + cλ2 + 2αβd2λ + 4d2βα2

Using the same reasoning as before we have c2 = c, c1 = 2αβd2 and c0 = 4d2βα2. A sufficient condition for the steady 
state to be asymptotically stable is 2cαβd2 − 4d2βα2 > 0, i.e., c − 2α > 0. �
Remark 3.1. We see that as long as the damping coefficient, c, is large enough, the sufficient conditions for stability of 
both the DAHA-NS and DAHA-S are fulfilled. Furthermore, the parameter space corresponding to the stability of DAHA-NS 
is larger than the one of the DAHA-S.

The corresponding analyses for the NAP and the NAV algorithms are presented in the Appendix A.

4. Numerical results

In this section we investigate and compare the numerical results obtained from the damped Arrow–Hurwicz algorithms 
(DAHA-NS, DAHA-S) and the nested algorithms (NAP-NS, NAP-S and NAV-NS) for the potential defined in (3.1). Due to the 
difficulty in finding the optimal parameters (α, β) for each method and for each N , we have restricted this study to the cases 
N = 7 and N = 100 in two spatial dimensions (i.e. b = 2). We address the convergence time and the robustness of the 
convergence time with respect to the initial configurations. Additionally, we compare the accuracy of the methods for the 
case N = 7 only. Indeed, in the case N = 7, the stable steady state of the dynamical systems associated to the algorithms is 
unique (apart from translations, rotations and reflections) and is represented in Fig. 1b. This guarantees that all algorithms 
converge to the same minimum for any initial configuration. In particular, this allows us to assess the accuracy of the 
algorithms by comparing the computed minimum with the exact one. We finally show some examples of configurations 
obtained with the DAHA-S for the case N = 2000 in two and three dimensions.

In order to adjust the spatial dimensions, the numerical parameters must satisfy α, β, c ∼ O(1) for the methods with 
the non-smooth form of the constraint functions and α, c ∼ O(1) and β ∼ O(1/d2) for the methods with the smooth form 
of the constraint functions. In the following we have considered d = 1.
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In order to be able to compare the nested algorithms with the DAHA regarding convergence time, we only consider the 
evolution of X and V and we do not consider the evolution of λ. We denote by ‖ · ‖ the Euclidean norm in RbN . For a given 
small and positive ε , the stopping criterion for the minimization algorithms associated to the NAP, is given by the following 
condition on the relative error

‖Xn+1 − Xn‖
‖Xn‖ < εinner . (4.1)

For the case of the minimization problem formulated in terms of the velocities, the stopping criterion is similar but instead 
of X we write V and instead of normalizing by Vn , we normalize by Xn , yielding

‖Vn+1 − Vn‖
‖Xn‖ <

εinner

τ
. (4.2)

By using the Euler step Xn+1 = Xp + τ Vn+1 we show that the two conditions (4.1) and (4.2) are equivalent. As we will 
see, in order to get a fast convergence with the nested algorithms, one does not need to wait for the convergence of the 
inner-loop. We introduce a new parameter, Iinner , which stands for the maximum number of iterations of the inner-loop 
allowed per outer-loop iteration. Finally, the stopping criterion for both the outer-loop of the NAP and the NAV, as well as, 
for the DAHA reads

‖Xp+1 − Xp‖
‖Xp‖ < ε. (4.3)

The assessment and comparison of the methods will be made through the comparison of statistical indicators obtained 
from averaging certain quantities over a set of different initial configurations. These indicators are introduced bellow.

Definition 4.1. Consider a set of m initial configurations for which an algorithm converges, i.e., the stopping criterion is 
satisfied in a finite number of iterations. Let T� be the number of iterations needed for the algorithm to converge when 
starting with the �th initial configuration. Let Aij be the overlapping area of spheres i and j at convergence and Atotal =
Nπ(d/2)2.

We define the following statistical indicators mean convergence time, variance of the convergence time and the mean 
proportion of overlapping area per sphere as

T = 1

m

m∑
�=1

T�, σ 2 = 1

m − 1

m∑
�=1

(T� − T )2 and A = 1

mN Atotal

∑
i, j∈{1,...,N}, i< j

Ai j,

respectively.

The indicator T measures the efficiency of an algorithm with respect to the convergence time, A and W measure the 
accuracy of the final configuration and σ 2 measures the robustness of the convergence time with respect to the initial 
configurations. For simplicity we assume that the time interval between iterations is constant and invariant among the 
different algorithms. As a consequence of this simplification, we will use the number of iterations as the time unit of T .

4.1. Case N = 7

We present a detailed numerical study for the case of N = 7 spheres in dimension b = 2. The 20 different initial configu-
rations considered in this section were generated from a standard Gaussian distribution. We choose the tolerances ε = 10−6

and εinner = 10−9 and the maximum number of iterations of the inner-loop Iinner = 10. In order to study the relation be-
tween the damping parameter c and the convergence time of the DAHA with smooth and non-smooth constraints, we plot 
in Fig. 3 the maximum number of iterations over 20 different randomly generated initial configurations as a function of 
c ∈ (0, 10]. We observe that the lower convergence time is attained when c ≈ 2, for both the DAHA with the smooth and 
with the non-smooth constraints. In Fig. 4 we plot the relative error as a function of iteration number, n, for different values 
of c. If c = 0 we observe that the relative error oscillates and never drops bellow 10−1. As we increase c the oscillations 
tend to diminish. In the following we have used c = 2. Note that this choice for c eliminates the dependence on Xn−1

in (2.10)(a)–(2.10)(b), in this case, the DAHA can be seen as a discretization of the following first-order ODE system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋi = −1

2
α2[∇Xi W (X) +

∑
k,�∈{1,...,N}, k<�

λk�∇Xi φk�(X)]

− 1

2
αβ

∑
k,�∈{1,...,N}, k<�

φk�(X)λk�∇Xi φk�(X), i = 1, ..., N

λ̇k� =
{

0, if λk� = 0 and φk�(X) < 0

βφk�(X), otherwise
, k, � = 1, ..., N, k < �.
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Fig. 3. Maximum number of iterations needed for the DAHA to converge over a set of 20 randomly generated initial configurations as a function of c for 
N = 7 and ε = 10−6. The numerical parameters used are: (a) (α, β) = (0.3, 3) and (b) (α, β) = (0.3, 1.4).

Fig. 4. Relative error on log scale, p, averaged over a set of 20 randomly generated initial configurations as a function of iteration number, n, for different 
values of c and for N = 7 and ε = 10−6. The numerical parameters used are: (a) (α, β) = (0.3, 3) and (b) (α, β) = (0.35, 1.4). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

We now consider the five methods, namely, the DAHA-NS, DAHA-S, NAP-NS, NAP-S and NAV-NS. The numerical simula-
tions suggest that α has influence in the attraction and β in the repulsion between spheres, which can also be observed by 
looking directly at the equations. If β is too large we observe oscillations, if α or both parameters are too large we observe 
numerical instability and if α is small we observe a very slow dynamics. The optimal set of parameters should then be 
chosen near the parameters that lead to numerical instability, which may be a problem, since an algorithm may be very ef-
ficient for some set of initial configurations, however it may be numerical unstable for another. Moreover, we have observed 
that the final positions obtained from each method by varying the numerical parameters are naturally not always the same. 
Only the relative positions (apart from permutations) are invariant. As an exception, the NAV leads to nearly exactly the 
same configurations. In fact, we can see from equations (2.2)(a)–(2.2)(b) that the dynamics of the particles in the NAV is 
not directly affected by a change of the numerical parameters, since the parameters are only involved in the computation 
of the velocity. Contrarily, in the NAP and DAHA a change in the parameters produces a different dynamics, which leads to 
different final configurations. This is comprehensible, since the parameters in those algorithms are directly related to the 
attraction and repulsion forces between the spheres. The previous observation could be statistically verified by comparing 
all the final configurations produced by each method and checking how different (how far away from each other) they are.

In the following, we have chosen the numerical parameters (α, β) that correspond to a fast convergence of each method 
for all the 20 sets of initial configurations. We plot in Fig. 5 the relative error on log scale as a function of iteration number 
for 20 randomly generated initial configurations and for each method. We observe that the profile of the relative error 
follows the pattern: non-monotone behaviour, followed by an approximately linear decay at a certain speed, which seems 
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Fig. 5. Relative error on log scale, p, as a function of iteration number, n, for 20 randomly generated initial configurations computed by each algorithm for 
N = 7 and ε = 10−6. The numerical parameters used are: (a) (α, β, c) = (0.3, 3, 2), (b) (α, β, c) = (0.35, 1.4, 2), (c) (α, β, Iinner , εinner) = (0.6, 0.46, 10, 10−9), 
(d) (α, β, Iinner , εinner) = (0.25, 0.28, 10, 10−9) and (e) (α, β, Iinner , εinner , τ ) = (0.48, 126, 10, 10−9, 0.1).

to be invariant with respect to the initial configuration. The faster decay is observed in the NAP-NS (see Fig. 5c). The 
efficiency of the NAV-NS (see Fig. 5e) is apparently highly dependent on the initial configuration.

In order to quantify and compare the efficiency, as well as, the accuracy of the final configurations generated by each 
algorithm we consider three different tolerances, ε = 10−4, ε = 10−6 and ε = 10−8, and we compute the mean convergence 
time, T , the variance of the convergence time, σ 2, the mean proportion of overlapping area per sphere A and the difference 
between the theoretical optimum and the value of W at convergence. The results are presented in Table 1 and they are 
averaged over a set of 20 randomly generated initial configurations. We observe that the NAP-NS (in bold) performs better 
than any other method, while the NAV-NS is the least robust to initial configurations, the slowest to reach convergence and 
it only produces an accurate solution for ε = 10−8. In the case of the methods with smooth constraints, we also observe 
in Table 1 that the DAHA-S converges faster and produces more accurate solutions than the NAP-S. Indeed, for ε = 10−6

for example, we observe that the mean convergence time is T = 133 for the DAHA-S and T = 246 for the NAP-S and the 
difference between the theoretical optimum and the computed one is of order 10−10 for the DAHA-S and 10−6 for the 
NAP-S.
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Table 1
Results of the assessment of the final configurations averaged over a set of 20 initial configurations and obtained by each algorithm for 
N = 7 and for three different values of ε , namely, 10−4, 10−6 and 10−8. The parameters used are DAHA-NS (α, β, c) = (0.3, 3, 2), DAHA-
S (α, β, c) = (0.35, 1.4, 2), NAP-NS (α, β, Iinner , εinner) = (0.6, 0.46, 10, 10−9), NAP-S (α, β, Iinner , εinner) = (0.25, 0.28, 10, 10−9) and NAV-NS 
(α, β, Iinner , εinner , τ ) = (0.48, 126, 10, 10−9, 0.1).

(ε, εinner) (10−4,10−7) (10−6,10−9) (10−8,10−11)

Mean convergence time (T )
DAHA-NS 103 145 198
DAHA-S 85 133 182
NAP-NS 81 107 131
NAP-S 165 246 325
NAV-NS 248 283 535

Order of accuracy (A, W − 3)

DAHA-NS (10−6,−10−6) (10−9,−10−9) (10−12,−10−13)

DAHA-S (10−7,−10−6) (10−10,−10−10) (10−12,−10−13)

NAP-NS (10−9,10−8) (10−12,10−12) (10−15,0)

NAP-S (10−8,−10−5) (10−11,10−6) (10−13,−10−8)

NAV-NS (10−8,10−1) (10−10,−10−1) (10−14,10−9)

Variance of the convergence time (σ 2)
DAHA-NS 1.08 × 103 1.21 × 103 1.70 × 103

DAHA-S 4.19 × 102 4.49 × 102 5.65 × 102

NAP-NS 3.00 × 102 4.13 × 102 2.93 × 102

NAP-S 5.74 × 102 4.68 × 102 4.68 × 102

NAV-NS 1.03 × 104 1.04 × 104 1.80 × 105

4.2. Case N = 100

We present in the following a short study for the case of N = 100 spheres. The 5 different initial configurations consid-
ered in this section were generated from a standard Gaussian distribution. In this case where the initial configurations are 
very dense, one may observe two different types of behaviours depending on the choice of the numerical parameters: either 
the spheres disperse initially very rapidly before they start to concentrate again while trying to avoid overlapping with other 
spheres or they disperse slowly while trying to rearrange in a non-overlapping configuration. We keep the choice ε = 10−6

and εinner = 10−9, and we choose Iinner = 103. Similarly to the case N = 7, the best value for the damping parameter c
should be of order O(1). We keep the choice c = 2.

We now consider the five methods, namely, the DAHA-NS, DAHA-S, NAP-NS, NAP-S and NAV-NS. In the following we 
have chosen the numerical parameters (α, β) that correspond to a fast convergence of each method for all the 5 sets of 
initial configurations. We plot in Fig. 6 the relative error on log scale as a function of iteration number. Contrarily to the 
case N = 7 the DAHA seems to converge faster than the NAP (see Figs. 6a–6d). The efficiency of the nested algorithms (see 
Figs. 6c–6e) seems to be highly dependent on the initial configuration.

Note that the performance of the methods depends not only on the numerical parameters, but also on the initial con-
figuration. In this study, we have only considered initial configurations that are very concentrated around one point. In the 
other case, i.e., if the spheres are initially far away from each other, then all the simulations must be redone and different 
conclusions may be drawn.

4.3. Case N = 2000

Numerical simulations were successfully performed with the DAHA for N large, up to N = 2000. In order to obtain 
a faster convergence towards a local minimizer [18], a fourth parameter, γ , was introduced in the first equation of the 
original formulation of the DAHA (2.10)(a)–(2.10)(b), yielding,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xn+1
i = 1

1 + c/2

(
2Xn

i − (1 − c/2)Xn−1
i

)
− α2

1 + c/2
[∇Xi W (Xn) +

∑
k,�∈{1,...,N}, k<�

λn
k�∇Xi φk�(Xn)]

− γ 2

1 + c/2

∑
k,�∈{1,...,N}, k<�

φk�(Xn)λn
k�∇Xi φk�(Xn), i = 1, ..., N

λn+1
k�

= max{0, λn
k� + βφk�(Xn+1)}, k, � = 1, ..., N, k < �.

While using γ �= √
αβ cannot be obtained from the derivation presented in section 2.3, it seems to bring additional 

flexibility to the algorithm that can be used to improve speed and accuracy. The detailed study of the influence of this 
parameter is deferred to [18].
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Fig. 6. Relative error on log scale, p, as a function of iteration number, n, for 5 randomly generated initial configurations computed by each algo-
rithm for N = 100 and ε = 10−6. The numerical parameters used are: (a) (α, β, c) = (0.07, 0.5, 2), (b) (α, β, c) = (0.04, 0.15, 2), (c) (α, β, Iinner , εinner) =
(0.1, 0.16, 103, 10−9), (d) (α, β, Iinner , εinner) = (0.015, 0.026, 103, 10−9) and (e) (α, β, Iinner , εinner , τ ) = (0.31, 41, 103, 10−9, 0.1).

Note that the parameter γ is imperative for the dynamics to converge. If we set γ = 0 with c = 2, the DAHA is reduced 
to the AHA (up to a scaling factor) and the algorithm presents an oscillatory behaviour as observed in Fig. 2.

In Fig. 7 we present an example of four configurations that were obtained at intermediate steps, namely, n = 1, n = 101, 
n = 1001 and n = 10001 for N = 2000 with the DAHA-S. The initial configuration was generated from a standard Gaussian 
distribution. For a tolerance of ε = 10−5 an optimal configuration was obtained in less than 13000 iterations.

We observe numerically that the stationary state is close to an optimal packing configuration, which corresponds to the 
hexagonal lattice. In order to quantify this observation, we measure the packing density, denoted by φ, which corresponds 
to the ratio of the area covered by the particles over a disc centered at the center of mass X̄ = 1

N

∑
i=1,...,N Xi for different 

radii R (see Fig. 8). We observe that the packing density (φ ≈ .87) is close to the optimal packing density (i.e. π
2
√

3
≈ .909) 

for a wide range of radius sizes R . For R > 25, the packing density quickly decays since there are not enough particles to 
cover the domain considered.
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Fig. 7. Sequence of configurations produced at intermediate steps, namely, n = 1, n = 101, n = 1001 and n = 10001 with the DAHA-S and for N = 2000. The 
numerical parameters used are: (α, β, γ , c) = (7.8 × 10−3, 2.8 × 103, 1.6 × 10−2, 2).

Fig. 8. The packing density φ is estimated by taking the ratio of the area covered by the particles over a disc of size R centered at X̄ = 1
N

∑
i=1,...,N Xi , with 

N = 2000 (a). The packing density is close to the optimal configuration for a wide range of radius R (b).

4.4. Case N = 2000 in R3

Finally, we would like to explore how the DAHA performs in R3. We use a similar setting as in R2, i.e., we choose 
the same parameters with an initial configuration generated from a standard Gaussian distribution. In Fig. 9, we plot the 
configuration after 104 iterations and remove a segment to visualize its interior. The color corresponds to the pressure 
exerted by nearby particles and estimates as μi = ∑

j λi j . Notice that numerically the dynamics has not yet reached a 
stationary state but it would require a new investigation to analyze when equilibrium will be reached.
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Fig. 9. Configuration after n = 104 iterations of the DAHA-S algorithm in R3 with N = 2000 particles. The color corresponds to the pressure exerted by 
nearby particles denoted μ. The numerical parameters used are: (α, β, γ , c) = (2.8 × 10−2, 2.2 × 102, 5.6 × 10−2, 2). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Packing density for the three dimensional configuration of Fig. 9 (a). Histogram of the number of neighbours for all particles (b).

We estimate the packing density of the configuration using the same method as in R2 except that the domain considered 
is a ball (centered at the center of mass X̄ = 1

N

∑
i=1,...,N Xi with radius R) instead of a disc. In Fig. 10a, we observe that the 

packing density φ reaches a maximum around 0.65. The value φ ≈ 0.64 is actually the packing density for a random close 
packing [28]. However, the optimal configuration for sphere packing would give a packing density of φ = π

3
√

2
≈ 0.741. It is 

an open problem to determine if one could get closer to this optimal value by using a different set of parameters.
Another useful information is to study the number of neighbours each particle has. Numerically, two particles are neigh-

bours if their relative distance is less than 1.1 (1 being the distance for two discs in contact). In Fig. 10b, we observe that 
particles have mainly between 8–10 neighbours. In an optimal packing configuration, each particle would have 12 neigh-
bours.

4.5. Summary of the results

We confront in Table 2 the results obtained from the theoretical analysis for the case of two spheres (N = 2) in one 
dimension (b = 1) and the results of the numerical simulations for the case of N > 2 spheres in two dimensions (b = 2). 
If the system converges to a non-overlapping configuration within a reasonable number of iterations and for some set of 
parameters we write ✓, otherwise we write ✗.
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Table 2
Summary of the results obtained from the analysis for N = 2 in one spatial dimension 
and numerical simulations for N ≥ 2 in two spatial dimensions.

Smooth constraints Non-smooth constraints

Analysis Simulations Analysis Simulations

AHA ✗ ✗ ✓ ✗

DAHA ✓ ✓ ✓ ✓

NAP ✓ ✓ ✓ ✓

NAV ✓ ✗ ✓ ✓

5. Conclusions and future work

We have deduced a promising algorithm for solving a non-convex minimization problem, which was derived from a 
multi-step variant of the Arrow–Hurwicz algorithm: the damped Arrow–Hurwicz algorithm. This algorithm can be seen as a 
generalization of the AHA, when an additional parameter, γ , is considered. For the packing problems, the DAHA has revealed 
to perform better for a large number of spheres when compared to other classical algorithms. However, further studies 
should be done in order to explore both the advantages and limitations of this method. In particular, a detailed analysis on 
the stability of a steady state of the corresponding ODE system for the general case of N spheres in Rb is still missing, as 
well as, the analysis of the numerical stability. In the present work, the DAHA was assessed in the case of a global potential 
and highly dense initial configurations, which we believe to correspond to the worst scenario possible. Nevertheless, the 
results obtained here do not necessarily apply to other types of potentials or initial configurations, and hence similar studies 
should be conducted for those cases. The estimated packing density of a three dimensional configuration obtained with 
the DAHA shows that this algorithm is capable of generating random close packings. Whether a higher density could be 
achieved by choosing a different set of parameters remains an open problem. In the next work we should consider more 
general particle systems with different sized spheres or ellipsoids. The applications of hard-particle systems are vast, for we 
believe these type of algorithms are going to be very useful in the study of many biological, physical and social systems.
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Appendix A. Linear analysis: previous approaches

A.1. NAP-NS

Let φ(X) = d − |X | and consider its linearization around X p �= 0, i.e., φp(X) = d − X p

|X p | X , and the potential (3.1). The ODE 
system associated to the inner-loop of the NAP-NS in the case of two spheres in R where one sphere is fixed at the origin 
can be written as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋ = −α

(
X − X p

|X p|λ
)

(a)

λ̇ =

⎧⎪⎪⎨
⎪⎪⎩

0, if λ = 0 and d − X p

|X p| X < 0

β(d − X p

|X p| X), otherwise,

(b)
(A.1)

with the initial condition (X, λ)(0) = (X p, λp).

Lemma A.1. If X0 �= 0, then the steady state of the system (A.1)(a)–(A.1)(b), (X∗, λ∗) = d 
( |X p |

X p ,1
)

, is asymptotically stable for any 
α and β positive and the outer-loop converges in one iteration.
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Proof. The stability analysis shows that the steady state of (A.1)(a)–(A.1)(b), namely, (X∗, λ∗) = d 
( |X p |

X p ,1
)

, is asymptotically 

stable. Furthermore, if X0 �= 0, the outer-loop is defined recursively by X p+1 = d |X p |
X p and it converges in one iteration. In 

fact, X1 = d |X0|
X0 and X p = X1 for all p > 1. �

The conclusions of the analysis in the one dimensional case cannot be directly extrapolated to higher dimensional cases, 
where the constraint functions are no more piecewise linear. In section 4, we resort to numerical simulations to get some 
insight about the behaviour of the system in two spatial dimensions.

A.2. NAP-S

Let φ(X) = d2 − |X |2 and consider its linearization around X p , i.e., φp(X) = d2 + |X p |2 − 2X p · X and the potential (3.1). 
The ODE system associated to the inner-loop of the NAP-S in the case of two spheres in R where one sphere is fixed at the 
origin can be written as⎧⎪⎨

⎪⎩
Ẋ = −α

(
X − 2X pλ

)
(a)

λ̇ =
{

0, if λ = 0 and d2 + (X p)2 − 2X p X < 0

β(d2 + (X p)2 − 2X p X), otherwise,
(b)

(A.2)

with the initial condition (X, λ)(0) = (X p, λp).

Lemma A.2. If X0 �= 0, then the steady state of the system (A.2)(a)–(A.2)(b), (X∗, λ∗) = d2+(X p)2

2(X p)2 (X p, 12 ), is asymptotically stable for 

any α and β positive and the outer-loop generates the sequence {X p}p∈N defined iteratively by X p+1 = d2+(X p)2

2X p , which is convergent.

Proof. The stability analysis shows that the steady state of (A.2)(a)–(A.2)(b), namely, (X∗, λ∗) = d2+(X p)2

2(X p)2 (X p, 12 ), is asymp-

totically stable. Consequently, the outer-loop generates the sequence defined recursively by X p+1 = d2+(X p)2

2X p , which is 
well-defined for X0 �= 0. If this sequence is convergent to, say, L, then L must satisfy L = d2+L2

2L i.e., L = ±d. Now, if X p > d
then

X p+1

X p
= 1

2

(
d2

(X p)2
+ 1

)
< 1,

therefore X p+1 < X p , i.e., the sequence decreases. Furthermore, if we write X p in the form X p = d + ε , ε > 0, we then have 
that

X p+1 − d = 1

2

(
d2

d + ε
+ d + ε

)
− d

= 1

2(d + ε)
(d2 + (d + ε)2 − 2d(d + ε))

= ε2

2(d + ε)
> 0

i.e., X p+1 > d. On the other hand, if 0 < X p < d then the sequence increases. Consequently, we finally conclude that if 
X0 > 0 then the sequence {X p}p∈N converges towards d. Using the same reasoning we conclude that if X0 < 0 then {X p}p∈N
converges towards −d. We see that for the case of the smooth form of the constraint functions, the sequence generated by 
the outer-loop converges. �
A.3. NAV-NS

Let φ(X) = d − |X | and consider the linearization of φ around X p �= 0 evaluated at X p + τ V , i.e., φp(X p + τ V ) =
d − |X p| − τ X p

|X p | V and the potential (3.1). In the particular case of two spheres in R where one sphere is fixed at the origin, 
the ODE system corresponding to the inner-loop is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V̇ = −α

(
V + X p − τ λ

X p

|X p|
)

(a)

λ̇ =

⎧⎪⎪⎨
⎪⎪⎩

0, if λ = 0 and d − |X p| − τ
X p

|X p| V < 0

β

(
d − |X p| − τ

X p

|X p| V

)
, otherwise,

(b)
(A.3)

with the initial condition (V , λ)(0) = (V p, λp).
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Lemma A.3. If X0 �= 0, then the steady state of the system (A.3)(a)–(A.1)(b) is asymptotically stable for any α and β positive and the 
outer-loop converges in one iteration.

Proof. The stability analysis shows that the steady state,

V ∗ = d − |X p|
τ

|X p|
X p

, λ∗ = 1

τ 2
(d − |X p|(1 − τ )),

is asymptotically stable. Consequently, the outer-loop generates the sequence defined recursively by X p+1 = d |X p |
X p . If X0 �= 0

the sequence is well-defined and X1 = d |X0|
X0 and Xp = X1 for all p > 1, hence the outer-loop converges in one iteration. �

The NAV with the smooth form of the constraint functions did not show numerically good convergence results, for we do 
not explore it in this paper. We note that in [16], the author has also only considered the non-smooth form of the constraint 
functions.
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