
HAL Id: hal-02499357
https://hal.science/hal-02499357

Submitted on 12 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IoT composition based on self-controlled services
Frédéric Lemoine, Tatiana Aubonnet, Noëmie Simoni

To cite this version:
Frédéric Lemoine, Tatiana Aubonnet, Noëmie Simoni. IoT composition based on self-controlled
services. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, pp.5167 - 5186.
�10.1007/s12652-020-01831-4�. �hal-02499357�

https://hal.science/hal-02499357
https://hal.archives-ouvertes.fr


Journal of Ambient Intelligence and Humanized Computing 11, 5167-5186 (2020)
This is the author’s accepted manuscript version of the article.
The final publication is available at https://doi.org/10.1007/s12652-020-01831-4

IoT composition based on self-controlled services

Frédéric Lemoine · Tatiana Aubonnet · Noëmie Simoni

Received: 28 January 2019 / Accepted: 21 February 2020 / Published: 04 March 2020

Abstract The Internet of Things (IoT) includes a large

diversity of devices as well as embedded sensors or ac-

tuators. The frontier between the physical and digi-

tal worlds is becoming more and more blurred. Ap-

plications are now being constructed as micro-service

compositions integrating more and more functionalities.

Services are at the heart of architecture.

We propose a service composition entity called Self-

Controlled service Component (SCC) for IoT and show,

thanks to it, that we control the QoS of a whole IoT

application. We control the QoS of each micro-service

and the whole composition.

We have described our proposals through human-

machine interaction which is at the heart of IoT appli-

cations. Human-machine interaction will indeed play a

more important role in the future IoT. As the number of

objects increases, human-machine interaction with the

IoT becomes more and more complex and should be

controlled, especially in critical domains such as auto-

motive, aerospace, or health. Modelling such controlled

interactions is particularly challenging. Human-machine

interfaces will have a crucial role to play in the IoT

F. Lemoine
Corresponding author.
Conservatoire National des Arts et Métiers
CEDRIC
292 rue Saint-Martin, Paris, France
E-mail: frederic.lemoine@cnam.fr

T. Aubonnet
Conservatoire National des Arts et Métiers
CEDRIC
292 rue Saint-Martin, Paris, France
E-mail: tatiana.aubonnet@cnam.fr

N. Simoni
Télécom ParisTech
46 rue Barrault, Paris, France
E-mail: simoni@telecom-paristech.fr

when human decision-making is necessary, especially in

critical and urgent situations. The interaction quality

of service must be controlled. We have applied our ap-

proach through human-machine interaction in the fol-

lowing way: we show how IoT human-machine interac-

tion can be decomposed into elementary self-controlled

micro-services and show, thanks to them, that we con-

trol the quality of service rendered for the interaction.

Furthermore, the self-controlling mechanisms inte-

grated in the SCCs introduce the necessary automation

for dynamic reactions. The objective of this new con-

cept is to control the quality of service for the whole of

an IoT composite application.

Keywords Internet of things · quality of service ·
self-control · service composition

1 Introduction

The Internet of Things (IoT) includes a large diversity

of devices as well as embedded sensors or actuators.

The frontier between the physical and digital worlds

is becoming more and more blurred. Software compo-

nents and physical objects are deeply correlated, each

interacting both with each other and with users. The

integration of numerous real-world objects (or things)

onto the Internet, which aim is to create new high-level

interactions with the physical world, is at the heart of

the Internet of Things.

Cloud computing and future Internet of Things promise

a new ecosystem where everything is ”as a service”, ac-

cessible and connectible everywhere and at any time.

Each one can obtain a composition of services that

meets his needs. Architects migrate to service-centric

architecture. We are in the age of services and the micro-

service is at the heart of architecture. Applications are

https://doi.org/10.1007/s12652-020-01831-4


2 Frédéric Lemoine et al.

now being constructed as micro-service compositions

(IBM Bluemix 2019; Amazon Web Services 2019; Mi-

crosoft Azure 2019) integrating more and more func-

tionalities.

The control of these compositions is important es-

pecially in critical applications as we will see later. We

present in this paper an approach to control the be-

haviour of IoT services. Our approach is designed to be

generic and can apply to any type of services. We de-

scribe it through human-machine interaction which is

at the heart of IoT applications.

Human-machine interaction will play a more impor-

tant role in the future IoT. It is described as the inter-

action and communication between human users and a

machine via a human-machine interface (HMI). It en-

compasses the underlying processes which produce the

interactions, its design and implementation. The HMI

can be described as the point of communication be-

tween the human user and the machine. It can be of

different natures (visual, audio, etc.). As the number

of objects, including sensors and actuators, increases,

human-machine interaction with the Internet of Things

becomes more and more complex and should be con-

trolled, especially in critical domains such as aerospace,

digital health information, automotive with connected

cars, manufacturing or industrial control systems. Mod-

elling such controlled interactions is particularly chal-

lenging.

Human-machine interfaces will have a crucial role

to play in the Internet of Things when human decision-

making is necessary, especially in critical and urgent

situations. HMIs, which provide crucial data in a read-

ily understandable form and simplify order entry, will

greatly improve the relevance of decisions and acceler-

ate order execution. We propose to answer the following

questions:

– Can we design IoT human-machine interaction us-

ing micro-services?

– How to control the quality of service (QoS) rendered

for this interaction and for each micro-service that

composes it?

If we want to control the interaction, we should

break down the interaction into micro-services, this would

help to better locate the faulty function. Indeed, if the

whole end-to-end composition does not fulfil its QoS, it

would be easy to deduce the cause because we would

immediately know the defective micro-service. To make

this possible, we should base our approach on a service

component integrating self-control mechanisms and com-

posable with others.

Our main contributions are as follows:

1. We propose a self-controlled service component for

IoT (Section 3.2.1 and 3.2.2). This component can

be composed with others to build self-controlled ser-

vice composition.

2. We show, thanks to our component, that we are

able to control the QoS of a whole application. We

control the QoS of each micro-service and the whole

composition (Section 3.2.2).

We describe them through human-machine interac-

tion which is at the heart of IoT applications (Sections

3.2.3 and 3.2.4).

After reviewing related works (Section 2), we present

our proposals in the section 3. A case study illustrates

our propositions (Section 4). Discussion is in Section 5.

Finally, a conclusion (Section 6) ends the article.

2 Related Works

First, we analyse, in the following, how IoT platforms

understand the integration of objects and how they de-

sign applications as service composition, and then we

focus on human-machine interaction in IoT.

BlueMix (IBM Bluemix 2019) is a platform ”as-a-

service” (PaaS) cloud, developed by IBM. It supports

rapid development of analytic applications, visualisa-

tion dashboard, and mobile IoT applications. IBM se-

cures the platform and infrastructure and provides the

user with the tools to secure his application and con-

nect his device data with it. IBM IoT foundation (IoTF)

(IBM Watson IoT Platform 2015) is the hub where the

user can set up and manage your connected devices. A

device, in order to be connected, will require a device

management agent that is a collection of logic installed

on a device that allows it to connect to the Cloud In-

ternet of Things services as a managed device.

AWS IoT (AWS IoT 2019) is a platform that enables

users to connect devices to AWS Services (Amazon Web

Services 2019) and other devices, secure data and inter-

actions, process and act upon device data, and enable

applications to interact with devices even when they are

offline. It provides secure, bidirectional communication

between Internet-connected things (such as sensors, ac-

tuators, embedded devices, or smart appliances) and

the Amazon Web Services (AWS) cloud. This enables

users to collect telemetry data from multiple devices

and store and analyse the data. The rules engine makes

it possible to build IoT applications that gather, pro-

cess, analyse and act on data generated by connected

devices at global scale without having to manage any

infrastructure.

Azure IoT Hub (Microsoft Azure IoT Hub 2019) is a

fully managed service that enables reliable and secure



IoT composition based on self-controlled services 3

bidirectional communications between millions of IoT

devices and a solution back end. Azure IoT Hub can

reliably receive, process or store millions of events per

second from devices for analysis and provides extensive

monitoring for device connectivity and device identity

management events.

Service composition is often done manually by a

software architect or sometimes computed automati-

cally. (Cavallaro et al. 2010) presents an approach al-

lowing to develop a service-oriented system, based on

a model called service tiles, by building an assembly

of service components that accomplishes a given goal.

The assembly is computed automatically starting from

the specification of a subset of the whole system, a few

constraints, and the goals the application should fulfil.

MACODO (Weyns et al. 2010b,a) uses a partially

distributed architecture based on a master-slave schema.

The master has complete knowledge of the assembly

state and controls the dynamics in a centralised way.

Masters of different assemblies can cooperate to achieve

a given goal.

(Schuhmann et al. 2013) presents algorithms for ho-

mogeneous and heterogeneous environments whose goal

is to choose the most efficient assembly method for a

given environment while minimising the assembly time.

The organisation latency is reduced by caching and

reusing partial application assemblies.

FlashMob (Sykes et al. 2011) is based on dynamic

service assembly and requires a backtracking phase to

explore alternative solutions in case of the assembly

fails and has no global QoS goal. Its self-assembly pro-

cedure is decentralised. Global state information deal-

ing with the whole assembly is disseminated among the
services.

Calvin (Calvin 2018; Persson and Angelsmark 2015)

is an open-source IoT middleware from Ericsson. IoT

applications building is based on actors which are reusable

software components that can represent a device, a com-

putation, or a service. It comprises both a development

framework for IoT application developers, and a run-

time environment which handles the running applica-

tion. Compositions are made by writing scripts called

CalvinScript. Basically, an application consists of actor

instances and connections between the ports of the ac-

tors, forming a data flow graph. To allow reuse scripts,

it is also possible to define components. An application

script can also contain deployment rules.

CHOReOS (Autili et al. 2014) composes distributed

services by considering a global specification, called Chore-

ography, of the interactions between the participant

services. It enables large scale compositions or chore-

ographies of QoS-aware, and heterogeneous services in

IoT. It includes i) extensible service discovery to man-

age protocols and processes for discovery of services and

things, and ii) executable service composition to coor-

dinate the composition of services and things. Semantic

thing-based service compositions are automatically ex-

ecuted, with no involvement from end users.

Heterogeneity is solved by the installation of spe-

cific agents on the object itself to remote control. These

objects are connected to a cloud platform that pro-

vides data collection and analysis services. The Cloud

remains essential and is the cornerstone of these plat-

forms. The objects are connected to it and enslaved to

it. The Cloud collects and processes their data. Decision-

making is done at its level. Many IoT ecosystems are

based on centralised communication models. All devices

are identified, authenticated, and connected through

cloud servers that provide massive processing and stor-

age capabilities. These IoT ecosystems will not be able

to handle the growing number of devices. Cloud servers

are a bottleneck that can disrupt the entire network.

A distributed service approach would solve the afore-

mentioned problems by spreading computational and

storage requirements among the billions of devices that

will form the IoT networks of the future. Computing

power and storage are already widespread in many de-

vices from home to cars. Devices now have as much

computing power and connectivity as the first smart-

phones. Connectivity and intelligence will be integrated

into almost everything around us. Some services should

stay close to the object instead of residing only in the

cloud.

The growing number of IoT devices also raises the

problem of their management to achieve specific com-

mon goals. Automation is necessary. In addition, a fixed

control centre, sufficiently powerful and capable of con-

trolling the state of the entire system and manoeuvring

its behaviour, is generally unreasonable. Service control

should therefore be decentralised and automated.

When a composition is defective from end to end,

it’s difficult to know which composite service is the

cause. A control mechanism should reside on each ser-

vice in addition to the composition itself. Maximum of

automatisms should reside on the objects themselves,

thus unloading the cloud from this work. Service be-

haviour should be controlled by the object itself rather

than by the cloud. We would gain efficiency and reac-

tion time.

The IoT vision defines a global network of intercon-

nected services and smart objects that support humans

in everyday life activities with their sensing, comput-

ing and communication capabilities. IoT will enable a

global connectivity between devices, and people. The

IoT links physical activities and real life with the vir-

tual world (Khriyenko et al. 2012).



4 Frédéric Lemoine et al.

Human-machine interaction (Czerniak et al. 2017),

also called human-computer interaction (Dix 2017), or

human-device interaction (Choi et al. 2014), involves

the translation of human intention into devices’ control

commands. Furthermore, interaction involves a bidirec-

tional communication, translating data into informa-

tion comprehensible by humans. Human-Machine In-

teraction is a cross-disciplinary area that deals with

the theory, design, implementation, and evaluation of

the ways humans use to interact with computing de-

vices (Kim 2015). (Kashyap et al. 2015) have under-

lined that when data sensed by sensors are rendered

on an interface, processing them in real time, there are

possibilities that they might be incomplete, missing or

uncertain. Interacting with next generation smart envi-

ronments and how users will interact with them is at the

heart of number of recent research (Balta-Ozkan et al.

2013). (Poslad 2009) and (Gilman et al. 2013) provide

a good overview of existing interaction systems.

Human-machine interaction has three main objec-

tives. First, identify and understand how users interact

with their devices. Second, design and implement inter-

faces for high usability i.e., resulting interfaces which

are easy to use and efficient. Third, design engaging

systems that could positively contribute towards the

overall user experience (Scerri et al. 2015) by improv-

ing the usability, accessibility, and pleasure provided in

the interaction. In this context, devices are at the ser-

vice of users, providing actions that users want them to

do e.g., give information about the traffic or make an

emergency call.

Human-to-thing interactions tend to be harmonious

and natural. Next-generation Internet will promote har-
monious symbiosis between humans, computers, and

things (Zhong et al. 2013). Many of the new IoT appli-

cations will intimately involve humans thus humans and

things need to operate as a whole (Pintus et al. 2015;

Stankovic 2014). Natural interactions are discussed in

(Hsiao et al. 2017). Natural user interfaces (Jain et al.

2011) aim that interaction between human and devices

happens in the way people interact with the real world.

User-specific computational tasks are executed on IoT

devices. Human’s cognitive load is reduced by this method.

Users initiate interactions and stay in the full control

of the system operation.

Quality in the service and interaction areas can be

evaluated from different perspectives and therefore us-

ing different measurement methods: i) the first is re-

lated to the reliability of the software or equipment and

can be measured accurately via technical means. ii) the

second is intended to measure the subjective satisfac-

tion of the customer and there is often no other means

than a survey to get it (for example, usability tests like

the SUS (Affairs 2013)).

Objective and subjective measurements may be use-

fully combined for a better assessment of the whole user

approach and is what we call Quality of Experience

(QoE). The subjective part is what we name User Ex-

perience (UX). The UX design is quite similar to In-

teraction Design (IxD) in its approach. IxD defines the

structure and behaviour of interactive systems (IxDA

2018).

Today, most research tends to improve the user sub-

jective satisfaction (QoE, UX). In some areas, however,

the end-to-end QoS remains essential and, from a user’s

viewpoint, is the most relevant. In a critical situation,

as aeronautic, processing time is important. The time

between the measures done by sensors and their repre-

sentation on the screen must be controlled. If the pro-

cessing time is too long, displayed data no longer repre-

sents the reality, which can put the crew at risk. Pilots

can have a good perceived QoE (fluidity, responsive-

ness, etc.) but if the end-to-end QoS (processing time)

is too long, information displayed on the screen may be

obsolete, creating a delay between the screen and the

reality, while maintaining a good apparent fluidity.

An interactive system consists of a functional core

(FC) and a Human Machine Interface. The FC groups

all the treatments independently of any representation

to the user. The HMI makes the presentation choices

given the current usage context and the ergonomic prop-

erties to be satisfied. Architectures such as Arch (Arch

1992), Model-view-controller or PAC (Duval 2010) sep-

arate the FC and the HMI.

Several approaches have emerged to compose a Human-

Machine Interface.

Portlets (Portlet Specification 2015) are reusable

web modules running on a portal server. From the user’s

point of view, a portlet is a window contained in a por-

tal site, which provides a service or specific information,

such as a calendar. Portlets are web modules designed

to run into a portlet container integrated into a portal

server.

Windows Presentation Foundation (WPF) (Windows

Presentation Foundation 2019) is a user interface infras-

tructure that creates client desktop applications. The

WPF development platform supports a wide range of

application development features including an appli-

cation template, resources, controls, graphics, layout,

data binding, documents, and security. It uses the eX-

tensible Application Markup Language (XAML) to im-

plement declaratively the appearance of an application.

It is typically used to create windows, dialog boxes,

pages, and user controls. The main behaviour of an

application is to implement features that respond to



IoT composition based on self-controlled services 5

user input, including event handling (for example, click-

ing on a menu, toolbar, or button), and therefore the

call to business logic and data access logic. In WPF,

this behaviour is typically implemented in code asso-

ciated with the markup. This type of code is called

code-behind.

Java Server Faces (JSF) (JavaServer Faces Tech-

nology 2019) is a technology that aims to provide a

framework that facilitates and standardises the devel-

opment of web applications with Java. JSF is a server-

side technology that aims to facilitate the development

of the user interface by clearly separating the ”inter-

face” part from the ”business” part. JSF offers the as-

sembly of server components which generate the code

of their rendering and the management of the state of

the graphical interface components. JSF is based on

the notion of components, like that of Swing or Stan-

dard Widget Toolkit, where the state of a component

is recorded when rendering the page, and then restored

when the query returns. JSF is agnostic with presen-

tation technology. It uses Facelets by default. Facelets

are a presentation technology for the development of

web applications in Java. It creates JavaServer Faces

(JSF) views using HTML style templates and creates

component trees.

The composition of the functional core is studied in

software engineering, and more specifically in compo-

nent and service approaches.

Several approaches have been proposed: objects ap-

proach (Booch 2007), component approach (Bruneton

et al. 2006) and service-oriented approach (Service Com-

ponent Architecture 2011). Service-oriented approach

aims to provide a great flexibility in the development

of applications (Service Component Architecture 2011)

and eliminates the dependencies between the different

elements of an application. The general idea is to cre-

ate modular applications with loose coupling to adapt

the development of applications to the needs. Based on

service-oriented architecture, the service represents the

abstraction unit for application development.

The cited different approaches propose to compose,

to juxtapose components horizontally in the manner of

a puzzle in order to assemble them to design a new

interface. None offers vertical management of the in-

terface, namely to conceive a complete human-machine

interaction in the form of a service composition inte-

grating both the rendering and the management of the

interactions.

Moreover, even if all the studied approaches deal

with the design of interfaces or the functional core by

composition, no approach integrates the control of the

functioning of its interaction with the user and offers a

controlled QoS from end to end.

3 Proposals

After presenting in section 3.1 our service composition

entity, we detail our main contributions in section 3.2.

3.1 Self-Controlled service Component

In the service era, the service is the centre of architec-

ture, to enjoy all the benefits expected from this con-

cept, we have proposed, in previous works (Aubonnet

and Simoni 2014), a component called Self-Controlled

service Component (SCC), which we recall the descrip-

tion. Our component has proved its worth in the Cloud.

We propose now to apply it to the IoT domain.

This component encapsulates a single service. These

services can be of different sizes and natures: real-time

image analysis service (face recognition, character recog-

nition, barcode recognition) in the case of the Internet

of Things, algorithms (sorting, encryption), image cap-

ture, etc.

To describe the behaviour of our components and

permit homogeneous quality of service management,

we define a generic QoS model (Tatiana Aubonnet and

Noëmie Simoni 2013). Four criteria are proposed to de-

scribe the QoS: availability, reliability, time, and capac-

ity.

– Availability represents the accessibility rate of the

service component.

– A system is said to be reliable when its behaviour,

over a given duration, is in conformity with that

expected.

– Time represents the time required for request pro-

cessing.

– Capacity represents the maximum load the service

component can handle.

This revealed to be useful and sufficient in all the prac-

tical cases we studied.

To increase the structural decomposition and the

reuse of non-functional QoS components, we have sep-

arated its internal functions and proposed an archi-

tecture that separates the monitoring and QoS func-

tions of the remaining functions called ”control”. We

have specified this model in the OpenCloudware project

(The OpenCloudware project 2015) to address the be-

havioural aspects through QoS.

The membrane of our SCC includes (Fig. 1):

– Input monitoring (InMonitor) and output monitor-

ing (OutMonitor) components. They play an inter-

ceptor role. Incoming service requests are intercepted

and transmitted (unchanged) to the functional com-

ponent via the corresponding internal interfaces. The



6 Frédéric Lemoine et al.

Fig. 1 Self-Controlled service Component (SCC)

OutMonitor intercepts outgoing service requests. They

provide measurement information on the flow they

intercept.

– A QoS component (QoSControl), associated with

the business component.

– A non-functional interface (client) for QoS control

(IQoSStatus), by which it will send the information

of violation of QoS contracts, i.e. ”InContract” no-

tifications when the behaviour is compliant with the

contract or ”OutContract” otherwise.

– A non-functional interface (server) of configuration

(IConfigQoS, IConfigMonitor), whose role is to re-

ceive component configuration commands.

The QoSControl component checks the current be-

haviour of the resource and its conformity with the

contract. For this, it regularly requests to the moni-

tors (InMonitor and OutMonitor) the parameter val-

ues. It compares each current value to the correspond-

ing threshold value not to exceed. It sends an Out-

Contract notification if the current value is less (or

more) than the threshold value. In this case the dy-

namic management consists of replacing on the fly the

failing component by a ubiquitous service fulfilling the

requirements. Otherwise, it sends an InContract noti-

fication. We obtain an SCC component, self-monitored

and self-controlled. The sub-components of the mem-

brane (monitors and QoS) are activated in order to

perform monitoring of the quality of service and to no-

tify its degradation. This component has been designed

so that it can be composed with others to form a self-

controlled composition (Fig. 5).

Thanks to the Self-controlled Service Component,

we will show in the next section that we are able to

control any IoT application (service composition).

3.2 Proposals for the QOS control of an IoT service

composition

We have applied SCC in the Cloud model. We now

apply it to the IoT domain. In these areas, decision-

making is based on data collected, computed, derived

from measurements, synthesised and displayed but we

are not sure about the veracity of these values. Indeed,

if the processing time is too long, the information dis-

played is obsolete and no longer corresponds to reality.

We must be sure that the processing performed by ser-

vices is valid and compliant with their designs. There

is a need for self-control mechanisms. Our component

has proved its worth in the Cloud (The OpenCloud-

ware project 2015; Tatiana Aubonnet and Noëmie Si-

moni 2013; Aubonnet et al. 2015). In this section, we

apply it to the IoT.

The integration of numerous real-world objects, or

things, onto the Internet, which aim is to create new

high-level interactions with the physical world, is at the

heart of the Internet of Things. Two types of devices

will play a major role in the IoT: sensors and actua-

tors. They are widely adopted in highly localised sys-

tems such as cars, home appliances, or mobile phones.

They now have to be ubiquitous instead of being lim-

ited to the interior of these systems. That’s why we

tend to a massive number of things network. But as

the number of sensors and actuators in networks is in-

creasing exponentially, interoperability, scalability, flex-

ibility, and quality of service challenges arise. We take

a service-centric view by abstracting a thing, which has

the ability to sense and actuate the physical world, as a

software service. We propose that IoT devices be intro-

duced in the as-a-service ecosystem of the Cloud. This

is a major direction to meet the need for remote control

and management.

In this section, we present an approach to achieve

this. We describe this approach step-by-step. In sec-

tion 3.2.1 we present the first steps for the creation of

a self-controlled service for IoT. We continue our ap-

proach, in section 3.2.2, to make it composable with

others to build self-controlled service composition. At

the end, we have our SCC for IoT. We apply our ap-

proach to human-machine interaction. we show how to

design IoT human-machine interaction based on SCC

micro-services (Section 3.2.3) and we show, thanks to

our SCC component, that we control the quality of ser-

vice rendered for this interaction (interface and func-

tional core) (Section 3.2.4). We control the QoS of each

micro-service and the whole composition.

3.2.1 Approach for a Self-Controlled Service

In this section, we present the first steps for the creation

of a self-controlled service for IoT.

Step 1: Abstraction

It is crucial to hide the heterogeneity of hardware

characterising the IoT (Chen et al. 2012). Our compo-

nent is implemented to encapsulate the object’s hard-

ware for abstracting his features and to make them

available for use with software.



IoT composition based on self-controlled services 7

Step 2: Structuration

In an ecosystem where a service is available through

a network, we need to distinguish, and thus structure,

the service according to two parts: the functional part

representing the offered functionality and the non-functional

part containing control functionality, representing the

automation and policies serving the functional part,

and the management functionality that allows the co-

herence of the global system.

Component models provide a structured program-

ming paradigm and ensure a very good re-usability of

programs. In component applications, dependencies are

defined with provided functionalities by the means of

provided/required ports. This improves program speci-

fication and thus its re-usability. We focus here mostly

on hierarchical component models because they make

the design of large-scale systems easier. A component

model is said to be hierarchical if the composition of

several components is also a component that can be

used at a higher composition level. We call primitive

components the leaves of the composition tree, i.e. the

components that contain the business code. We choose

the Grid Component Model (GCM) (Baude et al. 2014).

A strong point of GCM is the separation of concerns

(Baude et al. 2014). In GCM, the membrane, i.e. the

management part of the component, can be defined pre-

cisely with all necessary interconnections between man-

agement features and with the rest of the component

hierarchy. Membrane, proposed in the Grid Component

Model, is standardised by the European Telecommu-

nications Standards Institute (ETSI) (ETSI 2008a,b,

2009, 2010). At this stage, the component is not yet

composable with others, it is the purpose of the next

step.

Step 3: Self-control / Self-monitor

We rely on a recursive service architecture, where

a service may be composed of a set of sub-services.

For the control aspect, we propose to embed a QoS

agent to introduce the needed autonomic aspect in an

environment that is meant to scale and is subject to

become rapidly more complex. The proposed control

component checks that the initially promised QoS level

is maintained during service requests processing. This

non-functional control is integrated in the component

membrane. He is based on the triptych: InMonitor, Out-

Monitor and QoSControl. We propose a generic moni-

toring/control component template that can be placed

in each hierarchical level. An SCC component includes

a monitoring and an analysis for each functional com-

ponent. Furthermore, the monitors and the QoScontrol

surround it and are close to it.

The SCC architecture has many benefits: Our SCC

component allows self-control inside by signalling mal-

function (out contract) and automatic reacting outside.

Since we are as closely as possible to the functional

component, the analysis is faster, more relevant, and

reaction times are minimised. The analysis is done on

site. Only its result is sent so that the volume of data

exchanged and thus the communication resources are

extremely low. The code is simplified and hence re-

quires less computing resources. Monitoring and con-

trolling components are generic so they are independent

of the functional component and may be present at all

levels of architecture. They are not intrusive because

they are external to the functional component. They

are inside the service component membrane and op-

erate in parallel with the functional component. They

have no effects on the second. We measure a QoS of

each component (hardware or software) allowing bet-

ter diagnostic of various malfunctions whereas most

existing tools monitor network traffic or central pro-

cessing unit (CPU) usage when they should monitor

the functional component performance. At each addi-

tion/removal of a functional component, a monitoring

and controlling component is therefore added/removed

(Scalability, Elasticity).

Step 4: Programming

In order to be agile and not to be static and only

configurable, the proposed component has to be repro-

grammable. The reprogramming consists to change the

code of internal functional and non-functional compo-

nents (for example to improve the QoSControl compo-

nent with a better algorithm).

3.2.2 Approach for a Self-Controlled Service based

Composition

In this section, we continue our approach to make the

previous service composable with others to build self-

controlled service composition.

Step 5: As-a-service

This step aims to make sure that an offered service

component can be added, removed or composed with

other services, without destabilising the whole organi-

sation, i.e., the global service architecture. The purpose

of the ”as-a-service” design is to allow customisation,

flexibility in service composition, adaptability of offered

services and on the fly deployment. For this, a set of

properties has to be verified for an IoT SCC compo-

nent to be qualified as as-a-service: stateless, autonomy

and loose coupling.

Stateless: A service must not keep or handle infor-

mation about its state, and the computation status. If

a service maintains a state in the long-term, it will lose

its property of loose coupling, its availability for other

(concurrent) queries, as well as its potential to scala-



8 Frédéric Lemoine et al.

bility. To be designed in a stateless way, a service may

delegate state management to other entities. Its opera-

tions need to be designed to make stateless treatments,

i.e. the treatment of operation should not rely on infor-

mation received during a previous invocation.

Autonomy means that a service ensures its func-

tionality without the need for another service or human

intervention.

Loose Coupling means that the bindings or links be-

tween service components are unattached or even rigid

to eliminate all types of functional coupling between

them. Thus, loose coupling ensures a flexible composi-

tion of service components.

In addition, for software engineering needs, the prop-

erty of mutualisation is strongly recommended in this

approach. Mutualisation means that the service compo-

nent is multi-tenant. Several clients can call the service

component in a concurrent way. This enforces the loose

coupling property.

Step 6: Interoperability

Interoperability is needed to simplify software devel-

opment of services meeting new needs. IoT SCC service

components are interoperable thanks to the generic and

standardised nature of their interfaces (usage, control

and management).

Step 7: Description

As web services, an SCC needs to be correctly de-

scribed to build a service catalogue of IoT SCC com-

ponents. To design application or service, architects

choose multi-tenant SCC components in a provider’s

catalogue, based on their features. The catalogue is a

showcase for reusable components. If the composition

is entirely SCC-composed, then it can be put in a cat-

alogue too.

Step 8: Composition

Service composition consists of generating a global

service by composing or chaining a set of elementary

service components. This composition would thus be

customisable and flexible by adding, replacing, and re-

moving service elements according to users’ needs. We

are able to control the QoS compliance of each service

component and the whole composition.

Our SCC component was designed to meet the fea-

tures detailed in the previous steps. SCC components

are able to abstract objects for sensing/actuating the

physical world. Things are introduced in the as-a-service

ecosystem. Our architecture abstracts the functionali-

ties of things as services as well as provide the needed

interoperability and flexibility, through a loose coupling

of components and composition of services. Sensors and

actuators are offered as a service in this ecosystem and

can interact with other services. They will serve as a ba-

sis for human interaction with the Internet of Things.

At the final step, any IoT device can be introduced

in the as-a-service ecosystem of the Cloud. Taking a

service-centric view, we abstract a thing, which has the

ability to sense and actuate the physical world, as soft-

ware services. These services can be called IoT SSC.

The quality of service that we defined in our previ-

ous work remains valid for human-machine interactions.

We therefore maintain the same definition (availability,

reliability, time and capacity). In cloud computing, ser-

vice platforms and the Internet of Things, component is

the cornerstone. Each application (service composition)

responds to a customer’s request (responsiveness, avail-

ability ...) based on resources and what can be provided

by its environment.

We have shown how to create an application us-

ing self-controlled service components (Aubonnet et al.

2015). At that time, our application was devoid of in-

terface. We now show that our approach based on SCC

components (Fig. 1) can be extended to the design of

interactive interfaces.

In the next section, we show how to design IoT

human-machine interaction based on SCC micro-services

(Section 3.2.3) and we show, thanks to our SCC com-

ponent, that we control the quality of service rendered

for this interaction (interface and functional core) (Sec-

tion 3.2.4). We control the QoS of each micro-service

and the whole composition.

We integrate, thanks to SCC, a self-control mecha-

nism in each micro-service and another for the compo-

sition in order to easily diagnose malfunctions and to

check if QoS from end to end is maintained.

3.2.3 Human-Machine Interaction Design Using SCC

Micro-Services

A human-machine interface consists of:

– an acquisition device: buttons, mouse, gloves, wheels,

pen (writing recognition), joysticks, keyboard, touch

screen, remote control, microphone (voice commands),

motion sensors, etc.

– a rendering device: screens, status lights, force feed-

back, loudspeaker, etc.

A tangible interface in which the user interacts with

the digital information by means of the physical en-

vironment can be composed, for example, of a tactile

surface (acquisition) coupled to a screen (rendering).

An acquisition device is composed of several sensors.

The rendering interface must be independent of the rest

of the application in the sense that it is interchangeable

with others. Indeed, we will not have the same interface

if we use a mobile phone whose display surface is limited



IoT composition based on self-controlled services 9

Fig. 2 Managing a click using a service composition

or if we use a desktop computer with a much larger

surface even if the amount of information to display is

the same. The SCC micro-service responsible for the

rendering will therefore differ according to the device

used by the user.

We propose to design a complete application, in-

cluding human-machine interaction, by composing SCC

micro-services. We therefore recommend three types of

SCC micro-services dedicated to the design of a human-

machine interaction:

– Acquisition device event management

– State change

– Interface rendering

The acquisition device event management micro-service

deals with the interaction with the user. It takes into

account the events related to the different sensors used.

Example: Click on an element placed on a tactile sur-

face, a new character was entered on the keyboard, the

mouse button was pressed, a sound was picked up by

the microphone, etc. State change micro-service is used

to change the status of an item in the rendering device.

Example: The item selected in a list or the percent-

age reached in a progress bar in the case of a graphic

display, whether a pilot lamp is switched on or not,

the sound to be emitted by the loudspeaker, etc. The

interface rendering micro-service is responsible for ren-

dering, i.e. of the design of the component in the case

of a graphical interface, of the lighting of the indicator

lamp, of the sound emission by the loudspeaker, of the

production of a force feedback, etc. Each of these three

micro-services will be an SCC.

As a basic example, Fig. 2 shows a classic graphical

interface composed of 4 elements. Two ”Increment” and

”Decrement” buttons increment/decrement the percent-

age of a progress bar and its value displayed in text

format. The acquisition is made with a mouse. At each

element, we can associate a composition of SCC micro-

services responsible for the drawing, the change of its

state and the event management.

The composition consists of five SCC micro-services:

– The first one manages the acquisition: Click on the

mouse button or on the touch surface corresponding

to the button’s display area.

– The 2nd updates the status of the label, that is, the

text displayed: 33 %.

– The 3rd redraws the text of the label according to

its state.

– The 4th updates the percentage of the progress bar

to 33 %.

– The 5th redraws the progress bar.

3.2.4 Interaction QoS Control

Each micro-service being an SCC, we control its ren-

dered service (QoS). Likewise, the complete composi-

tion is SCC (Input / Output Monitors and QoSControl)

(Fig. 5), we also control the quality of service rendered

by it.

In particular, we measure the processing time after

clicking on the button and therefore the interface’s re-

activity from the user point of view. Note that this is

different from the QoE that is the perceptual quality of

service from the users’ perspective (Chen et al. 2015).

His assessment is difficult because user experience is

subjective, hard to quantify and measure. Here we are

talking about the time between the user action (click)

and his feedback. We haven’t touched on QoE. For

human-machine interaction to become a self-controlled

service composition, our QoS-based approach is justi-

fied and sufficient.

We know how to directly detect which service is fail-

ing, since the one that does not fulfil its contract (pro-

cessing time higher than the threshold value for exam-

ple), will send an OutContract. The complete compo-

sition is thus itself controlled. As mentioned above, the

rendering SCC micro-service is interchangeable and de-

pends on the device used by the user. Only the interface

depends on the user, remaining services are the same

for everyone. The composition services are not neces-

sarily located entirely on the device of the user but can

be located elsewhere (Gateway, cloud ...).

Similarly, the proposed SCC micro-service may be

local. The service taking part in the composition may,

in fact, be the one that is closest geographically to the

user. It establishes a session (composition) from a set

of SCC micro-services, some of which are close to it,

thus improving communication time or providing a ser-



10 Frédéric Lemoine et al.

vice specific to its geographical location (timetables of

trains, planes, weather, etc.).

In conclusion, we are able to control the QoS ren-

dered by the interaction with an IoT Application in

the same way as those of his functional core. We are

therefore able to provide QoS compliance for the entire

composite IoT application.

Note that the procedure to be applied after detec-

tion of OutContract is still an open issue, however, sev-

eral directions to explore are exposed in Section 5.1.

4 Case Study

We will show the interest of our approach and its fea-

sibility on a case study. We outline the problematic re-

lated to the domain of the chosen case of study in the

Section 4.1. We then present the equipment (Section

4.2) and the design platform (Section 4.3) used for the

implementation illustrating our approach (Section 4.4).

4.1 Problematic

On October 19, 2016, European Mars lander Schiapar-

elli crashed due to data saturation (ExoMars 2017).

About three minutes after it hit the Martian atmo-

sphere, the lander began spinning unexpectedly fast.

This resulted in a brief saturation of the inertial mea-

surement component exceeding its operational param-

eters. The saturation resulted in a large attitude esti-

mation error by the guidance, navigation and control

system software. The incorrect attitude estimate, when

combined with the later radar measurements, resulted

in the computer calculating that it was below ground

level when it was still several miles above the planet.

During the Apollo 11 mission, on July 20, 1969, Ed-

win Aldrin (pilot) and Neil Armstrong (Commanding

Officer) began the descent to the lunar ground. During

the final approach phase, the serenity of the crew was

disturbed by repeated alarms (Alarm 1201) (Apollo 11

1998). The Apollo Guidance Computer was saturated

and could no longer perform all the tasks assigned to it.

The overload of the computer was due to the sending of

processing requests by the appointment radar at a fre-

quency too high. The procedure incorrectly indicated to

keep the rendezvous radar on. The overload was caused

by the large flow of data from both the landing radar

and the rendezvous radar that remained on.

We will show that our approach makes it possible

notably to detect this type of problem but also to pre-

cisely locate which service is the cause. The satura-

tion of a computer due to an increase in requests can

indeed be detected by the QoSControl. The response

Fig. 3 Experimental apparatus: Raspberry Pi and SenseHat
on the back of the touch screen

time would exceed the expected threshold and trigger

an OutContract. In the case of crewed aircraft, the user

would then thus know that the data displayed on the

screen would not be reliable and could act accordingly.

In the field of aeronautics and space, navigation sys-

tems are critical. The data displayed on the screen must

correspond to the measurements made by sensors in real

time. The processing time between the measurements

and their representation on the screen must be as short

as possible and, in any case, not exceed a certain tol-

erance threshold beyond which the data presented no

longer represents reality and would put the pilot and

his crew at risk.

We will therefore produce a model that will serve

as proof of concept representing an aeronautical navi-

gation system equipped with numerous sensors (gyro-

scopes, accelerometers, magnetometers, etc.). The idea

is to display a representation of the data coming from

these sensors and to show that we control the complete

chain of display and interaction.

4.2 The Equipment Used for the Implementation

We have chosen to implement our approach on two

types of heterogeneous materials, including sensors as

any critical system, allowing to report the reality of a

situation (altitude, orientation ...). We have chosen for

this, two experimentation platforms:

1. A Nexus 9 tablet running on Google Android whose

features are: (i) Nvidia Tegra K1 Denver 2.3 GHz

processor and Nvidia Kepler Graphics Card, (ii) 2

GB memory, (iii) 8.9-inch multi-touch screen, 2048

x 1536 pixel resolution, (iv) 16 or 32 GB of flash

memory, and (v) sensors: accelerometer, global po-

sitioning system, near field communication, gyro-

scope, electronic compass, hall effect sensor, prox-

imity sensor.

2. and a set (Fig. 3) consisting of:

– Raspberry Pi card, proposed by the British Rasp-

berry Pi Foundation, is a one-board nano-computer,



IoT composition based on self-controlled services 11

Fig. 4 Orientation axis of the experimental apparatus

about the size of an ARM processor-based credit

card (Raspberry Pi 2019). The Raspberry Pi 3

is the third generation of Raspberry Pi. It fea-

tures: (i) a 1.2 GHz 64/32-bit quad-core ARM

Cortex-A53 and VideoCore IV 3D graphics pro-

cessor, (ii) 1 GB of RAM, (iii) a general pur-

pose 40-pin input/output interface (GPIO), (iv)

a camera serial interface, and (v) a display serial

interface (DSI).

– Sense HAT expansion card. It’s an additional

card for Raspberry Pi, specially designed for the

space mission Astro Pi (Astro Pi 2019). It was

used on board the International Space Station in

December 2015 and is now available to the gen-

eral public. The Sense HAT has an 8x8 pixels

RGB LED matrix, a five-button joystick and in-

cludes numerous sensors: gyroscope, accelerome-

ter, magnetometer, thermometer, barometer, and

hygrometer. It incorporates an inertial unit and

is therefore able to estimate its orientation in

space (Roll, Pitch and Yaw angles) (Fig. 4).

– Android Things operating system is an embed-

ded operating system based on Android designed

by Google. It was announced at the Google I/O

in 2015. This system is intended to be used on

devices linked to the Internet of Things. It is

therefore designed to use as little memory as

possible and to be energy-efficient. It supports

Bluetooth low energy and Wi-Fi.

– 7-inch touch-screen monitor, compatible with the

Raspberry Pi card, allows users to create all-in-

one projects such as tablets, entertainment sys-

tems, embedded projects and devices for the In-

ternet of things using interaction with the touch

screen. The 800 x 480 pixels screen is connected

via a card that handles the conversion of power

and signal. Only two connections are required:

GPIO Port power and a flat cable that connects

to the DSI port. The monitor has a multi-touch

screen for 10 fingers (Fig. 3).

Both platforms include an Inertial Measurement

Unit (IMU). In the case of the Raspberry Pi card, it

is part of the Sense HAT expansion card. Note that

Android Things operating system has been specially

designed for the Internet of Things. Even if both op-

erating systems (Android and Android Things) share

common APIs which makes it easier to share the code

from one to the other, Android Things is still under de-

velopment and the code needs to be often adapted to a

version change.

Using a combination of accelerometers, gyroscopes

and sometimes magnetometers, an Inertial Measure-

ment Unit is an instrument used in navigation to esti-

mate the orientation of a moving object (roll, pitch and

yaw angles), its linear velocity and its position. IMU are

usually used to manoeuvre aircraft, unmanned aerial

vehicles, spacecraft including satellites and landers. An

inertial measurement unit is a navigation equipment

comprising at least six sensors of metrological accu-

racy. It operates by detecting linear acceleration us-

ing one or more accelerometers and an angular rotation

rate using one or more gyroscopes. Some also include

a magnetometer that is commonly used as a reference.

Typical configurations include an accelerometer, a gy-

roscope and a magnetometer per axis for each of the

three axis of the mobile: pitch, roll and yaw. The in-

ertial computing unit performs real time integration of

the measurements from these nine sensors.

4.3 Design Platform

For the specification, verification and validation of the

architecture of our IoT applications built from SCC

components, we use VerCors Component Editor from

the VerCors platform of INRIA (Cansado and Made-

laine 2008) (Fig. 5). After validation and verification

phases, the tool is able to generate code template of

classes and interfaces with the aim to be executed within

an execution environment such as GCM/ProActive (Baude

et al. 2014) or other.

4.4 Implementation of Our Approach

We will therefore make a model, an illustration on a

concrete case, representing a simplified aeronautical nav-

igation system. It includes an attitude indicator, a com-

pass and a satellite map on which to zoom.

Each interface component is defined as a self-controlled

services composition. The attitude indicator is thus com-

posed of 3 SCCs (Fig. 6):

– Filtering of measurements This SCC is responsible

for receiving the measurements sent by the inertial



12 Frédéric Lemoine et al.

Fig. 5 Human-machine interaction composition based on SCC components designed with VerCors Component Editor.

Fig. 6 Realisation of the attitude indicator interface by a
composition of SCC components

unit and for filtering them by eliminating measure-

ments that do not have a sufficient level of accuracy.

– Compute the new state of the component: Prepare

the graphical representation of the component using

data from the first SCC.

– Component Rendering: Draws the attitude indica-

tor using the previous SCC data.

Each SSC is self-controlled. We control each service

individually and know if it meets its contract. Similarly,

we control the complete composition of these 3 SCCs.

Fig. 7 Implementation of the attitude indicator using SCCs.

We are thus able to certify that the display seen by the

pilot corresponds to the reality measured by the sen-

sors. The time between measurements and their repre-

sentation on the screen is indeed limited and controlled.

Figure 7 shows the implementation of the interface

on the screen.

We measure the processing time (QoS) of each SCC

as well as that of the composition. These values are

displayed at the bottom of the interface. The measured

values are dynamic and fluctuate with the time and

movements of the device. A sample is given by the ta-



IoT composition based on self-controlled services 13

ble 1. We are able to detect a fault (QoS greater than a

predetermined threshold value) of an SCC or the com-

position by the reception of an OutContract. Note that

thresholds are here chosen artificially to raise or not

outContract events to illustrate their detections. In pro-

duction, the service provider chooses them according to

its own criteria (commercial interest, reliability, cost, re-

source consumption, etc.) and put the component and

its description in its catalogue. The threshold value for

the whole composition (IMU composition) is set at 2.4

ms. In this sample, all QoS are InContract. As could be

expected, the last value (IMU composition) is greater

than or equal to the sum of the first three. Figure 8

shows the evolution of the measured QoS for the atti-

tude indicator (IMU composition) for each request and

for each SCC of the composition. Outcontract is trig-

gered if QoS is greater than the threshold value. The

filtering SCC is inContract. The processing time is al-

ways lower than the threshold value (0.05 ms). The Al-

gorithm SCC (Computation of the new state) is always

inContract too. The processing time is lower than the

specified threshold value (0.8 ms). On the other hand,

the whole composition is often outContract (bottom

graph). A malfunction in the chain could be the cause.

This can be explained by the fact that the rendering

SCC is often outContract. This might mean that this

component is defective. He no longer has the ability to

process requests, perhaps due to a lack of resources or

the under-sizing of the component. We are able to de-

tect the malfunction of the composition and the faulty

component (Rendering SCC).

Table 1 Measured QoS and Threshold Value for the Atti-
tude Indicator (Sample).

SCC component QoS Threshold InContract

Measurement, filtering
(IMU filtering)

0.03 ms 0.05 ms yes

Computation of the
new state (Algorithm)

0.69 ms 0.8 ms yes

Component Rendering
(Display)

1.01 ms 1.1 ms yes

Complete composition
(IMU composition)

1.82 ms 2.4 ms yes

The compass composition follows the same logic (Fig.

12) and is structured in the same way. A third graphi-

cal element of the interface displays a satellite map on

which we can zoom in/out with the help of two buttons

(Fig. 12). Its composition is conceived using four SCCs:

– Click Management: It increments or decrements the

zoom level.

Fig. 8 Measured QoS and OutContract triggering for the
attitude indicator.

– Mapping: It retrieves geographic maps based on the

current position and zoom level.

– Compute the new state of the component: Prepare

the graphical representation of the component using

data from the previous SCC.

– Component Rendering: Draws the satellite map us-

ing the previous SCC data.

Each SCC is self-controlled as well as the composi-

tion based on these four components.

Figure 13 shows the complete interface running on

the hardware. The QoS of the SCCs are displayed dy-

namically and individually at the bottom of the screen

as well as each of the three compositions.

Figure 9 shows the monitoring of the compass com-

position (second graphical element). Figure 10 shows

the monitoring of the map composition (third graphical

element). The threshold values were chosen to voluntar-

ily provoke outContracts in order to highlight them.

For information, figure 11 shows the resource con-

sumption of the three graphical elements (CPU and

memory).



14 Frédéric Lemoine et al.

Fig. 9 Measured QoS and OutContract triggering for the
compass composition.

Fig. 10 Measured QoS and OutContract triggering for the
map composition.

Fig. 11 Resource consumption of the three graphical ele-
ments.

The table 2 summarises the average QoS values.

Table 2 Average QoS for Each Composition

Composition QoS

Inertial Measurement Unit (IMU) 2,04 ms
Compass 0,24 ms
Maps 2,2 ms

Discussion about the approximate resource

overhead (computation and memory): We now

analyse the extra code needed by our approach. Extra

code is necessary for the sub-components located in the

SCC membrane: InMonitor, OutMonitor and QoSCon-

trol. We need to implement five classes in java language:

SCC, Monitor, MonitorIn, MonitorOut, and QoSCon-

trol for each micro-service. MonitorIn and MonitorOut

are subclasses of their parent class Monitor. SCC is the

main class that encapsulates the micro-service with a

membrane (Section 3.1). We used profiling tools to mea-

sure memory and CPU consumption of our approach at

runtime.

Table 3 Bytecode java size and memory consumption
needed by our SCC approach

Class instance Bytecode java size Memory usage
(Bytes) (Bytes)

Monitor 2460 20
MonitorIn 1832 40
MonitorOut 1832 40
QoSControl 3988 400
SCC 2501 32

Table 3 shows the bytecode java size and live mem-

ory usage for each class. The total extra java bytecode

size needed by the control mechanism of our SCC is

12613 Bytes. The live measured data memory usage is

532 Bytes in real condition.

Figure 14 shows the CPU consumption due to our

SCC approach. The top shows the CPU time (in µs and

percentage) allocated to each class instance and their

average CPU time. The bottom shows the repartition

of CPU usage according to the hierarchy of classes. Ex-

ample: 71.8% of the 73.9% of CPU usage for the SCC

class are given to the MonitorIn class which gives 56.3%

to the Service class and 12.9% to the Monitor class.

In conclusion, the memory and CPU consumption

of our control mechanism is very low for common us-

age. However, it must be compared to the size of the

functional part. The control mechanism should have no

or a little influence on the monitored service, so it must

represent a low percentage of resource usage compared

to it. Indeed, if the micro-service is too small, the pro-

cessing done by the control mechanism can be in the

same order of magnitude.

5 Discussion

Procedure to be applied after detection of OutContract

is discussed in 5.1. Security problems are discussed in

5.2. The advantages of our distributed architecture are

presented in 5.3. Limitations of our approach are given

in 5.4 Finally, we show that our approach can easily be

extended to other domains, some of them are given in

5.5.

5.1 Autonomic Management for QoS Compliance

Autonomic adaptation after the detection of an out-

Contract event is out of the scope of this paper, but we

wish to give some answers.



IoT composition based on self-controlled services 15

Fig. 12 Three elements based complete interface.

Our solution is based on the modelling of nodes and

links. Each node and link set forms a service. Each ser-

vice is self-controlled. We have mechanisms to respond

to a malfunction. Our component has proved its worth

in the Cloud (The OpenCloudware project 2015; Ta-

tiana Aubonnet and Noëmie Simoni 2013; Aubonnet

et al. 2015) and we reuse the mechanisms that come

from it. As Services can be geographically distributed,

the cause of a faulty composition may be their internal

nodes or links. In case of a composition, QoSControl

and Monitors may also be geographically distributed.

Note that communications between Monitors and QoSCon-

trol use another route than the business services. This

way a network communication problem in the first has

no incidence on the second. In case of malfunction, we

rebuild the set of nodes and links.

We are able to respond to three scenarios in a dy-

namic way:

– The service queue is full and the functional part is

working properly. The session is dynamically changed

and is then redirected to another component that

still has the ability to do the processing.

– The functional part is faulty. Being in a ubiquitous

environment, we change the service by an equivalent

component (Fig. 15).

– The composition is outContract (The end-to-end

time is below expectations) but the subcomponents

are working properly. A link between two subcom-

ponents is thus faulty. We redirect the processing by

using another appropriate communication link.

Note that the component change takes a while. It

can also be done with a component of higher character-

istics (better QoS i.e. processing time) so as to recover

lost time.

About decision-making, generally, the adaptation

procedure can be structured as a Monitor-Analyse-Planning-

Execute (MAPE) loop for autonomic computing (Com-



16 Frédéric Lemoine et al.

Fig. 13 Complete implementation of the interface.

Fig. 14 CPU allocation.

Fig. 15 Replacement of an outContract microservice with a
ubiquitous component

puting and others 2006). Monitor-Analyse are done by

our component. Planning-Execute cannot be done at

the component level because a component cannot re-

place itself. It must be done at the composition level.

A QoS based MAPE loop can be put at the top of

any composition. We have the capability to monitor a

composition from end to end and thus the usability per-

ceived by the user. We put a QoS based MAPE loop

at any location we consider appropriate and we want

to manage. They are locations where we want and can

make decisions. Root cause analysis is then simplified.

5.2 Security

About security, IoT environment is vulnerable and presents

significant risks. The security level can be defined by

choosing appropriate security micro-services. If data are

sensitive, we can secure the composition from end-to-

end, from sensors to display for example, by integrat-

ing securing micro-services in it. Security is provided

”as-a-service” like any SCC component. We create a

secured composition with the security level we want.

Securing SCC components are authentication, autho-

risation, certificates, encryption, time stamping, and

digital signatures. Authentication provides the assur-

ance for the claimed identity of an SCC. Authorisation

adds the functionality of permission granting, based on

authenticated SCC. Encryption ensures the reversible

transformation of data by a cryptographic algorithm to

produce cipher text, i.e. hiding the data provided by an



IoT composition based on self-controlled services 17

SCC. Time stamping is a security micro-service that at-

tests the existence of electronic data at a specific time.

It is essential to support long-term signature validation.

5.3 Distributed Service-Based Architecture

The number of connected devices grows from billions

to hundreds of billions, a maximum of automatisms

must be integrated in the IoT architectures so as to

control and manage them. Today, a lot of IoT ecosys-

tems rely on centralized, brokered communication mod-

els. All devices are identified, authenticated and con-

nected through cloud servers that provide huge pro-

cessing and storage capacities. Connection between de-

vices will have to go exclusively through the internet,

even if these devices are close to one another. These

IoT ecosystems will not be able to manage a growing

number of IoT devices. Cloud servers are a bottleneck

that may disrupt the entire network.

Our distributed service approach solves the prob-

lem mentioned above, by spreading computational and

storage requirements among billions of devices that will

form the IoT networks of the future. Computing and

storage are already widespread in many devices: from

home to cars. Devices now carry as much computing

power and connectivity as did the first smartphones.

Connectivity and intelligence will be embedded in prac-

tically every object around us. With our approach, some

services can stay close to the object instead of far in the

cloud.

Futhermore, when a composition is defective from

end to end, it is difficult to know which composite ser-
vice is responsible. A fixed control centre, sufficiently

powerful and capable of controlling the state of the en-

tire system and manoeuvring its behaviour, is gener-

ally unreasonable. With our approach, a maximum of

automatisms is placed on the objects themselves, thus

unloading the cloud from this work. Service behavior is

controlled by the object itself rather than by the cloud.

So we gain efficiency and reaction time.

5.4 Limitations

Our approach has no equivalent as it is the only one to

integrate a self-control mechanism as close as possible

to the functional part. Furthermore, comparison with

other methods is difficult because our approach is the

opposite of usual works. Each component or composi-

tion is provided with an offered QoS that we propose to

maintain at runtime. We have no adaptation. We main-

tain the QoS with dynamic reactions (out of scope), for

example, by replacing a defective component with an-

other. The other approaches are based on an expected

QoS to which the system must adapt or propose an

adaptation.

About limitations, we have not done any tests yet

for more complex compositions (very meshed network,

concurrence and parallelism handling, etc.). It will be

the subject of our future work.

5.5 Other Case Studies

Our approach can easily be extended to other IoT en-

vironments where processing time is crucial or when

human decision-making is necessary, especially in crit-

ical and urgent situations in which quality of service

must be controlled. Some IoT-related critical systems

are listed below:

– Automotive: Sensors in vehicles provide even more

data on things like environmental conditions, tyre

pressure, engine performance and environmental con-

ditions. These integrated, safe, and robust embed-

ded systems will in a near future lead to self-driving

cars.

– Energy and Utilities: Increasing number of projects

covering smart grid programmes, smart cities, and

smart metering looking at ways to improve network

efficiency and usability. Ensuring critical service re-

quests (monitoring and control, power production,

and water pressure monitoring) from trusted sources.

– Aerospace (safety-critical applications): Sensors on

aircraft create huge amounts of data for each flight,

passenger management systems control huge amounts

of complex personal data and air traffic control sys-

tems constantly monitor and manage plane flights,

sharing data on a global scale.

– Healthcare: Connected medical devices and appli-

cations are already creating an Internet of Medical

Things which is contributing to better health mon-

itoring and preventive care. Due to the importance

of observing the medical state of patients who are

suffering from acute diseases, especially cardiovas-

cular diseases, a continuous remote patient monitor-

ing is essential. With the help of wearable wireless

sensors, an SCC based system can provide a contin-

ual access to medical parameters of a patient. IoT

Gateways are located in every room in the house in

a way to follow the patient. They are equipped with

computational capacity. They monitor the current

state of the patient and provide a means to pre-

dict future medical condition via machine learning

methods and artificial intelligence algorithms. They

are able to contact the rescue teams according to the



18 Frédéric Lemoine et al.

Fig. 16 SCC based medical warning system

type of emergency detected and to notify the nearest

hospital of the arrival of a patient. Due to the con-

stant incoming data in a continuous medical moni-

toring, the system may encounter problems such as

latency in system response, data transmission and

computations related to data analytics. QoS has to

be controlled from end to end. As previously shown,

our SCC has been designed for that aim. The pro-

cessing time of the services chain from end to end is

thus controlled (Fig. 16).

For any of these applications, failures might lead

to serious injury (including on a large scale). As the

number of objects, including sensors and actuators, in-

creases, IoT becomes more and more complex and should

be controlled, especially in these critical domains.

However, our approach implies to compose and struc-

ture an application with SCC components. The appli-

cation development process needs to be reviewed. SCC

have to before be designed and provided, with an of-

fered QoS, in a digital catalogue. In a future work we

plan to design a software workshop to easily compare,

choose and compose our SCC micro-services.

6 Conclusion

We have proposed a self-controlled service component

for IoT and showed, thanks to it, that we control the

QoS of a whole IoT application. We control the QoS

of each micro-service and the whole composition. We

have described our proposals through human-machine

interaction which is at the heart of IoT applications.

We have thus shown how a human-machine interac-

tion can be decomposed into IoT SCC. We have also

shown how the self-monitoring mechanisms integrated

into the SCCs can monitor the quality of service ren-

dered for this interaction. After detection of a malfunc-

tion, in terms of decision-making process, we would also

be able to perform autonomic management at any cru-

cial points of the application architecture. This new

concept will thus provide the control of the quality of

service for the whole of an IoT composite application.

List of Abbreviations

– API: Application programming interface (Section 2)

– CPU: central processing unit (Section 3.2)

– DSI: Display serial interface (Section 4.2)

– FC: Functional core (Section 2)

– GCM: Grid component model (Section 3.2)

– GPIO: General purpose input/output interface (Sec-

tion 4.2)

– HMI: Human-machine interface (Section 1)

– IMU: Inertial Measurement Unit (Section 4.2)

– IoT: Internet of Things (Section 1)

– IxD: Interaction Design (Section 2)

– JSF: Java server faces (Section 2)

– MAPE: Monitor-Analyse-Planning-Execute (Section

5.1)

– QoE: Quality of experience (Section 2)

– QoS: Quality of service (Section 1)

– SCC: Self Controlled service Component (Section

3.1)

– UX: User Experience (Section 2)

– WPF: Windows presentation foundation (Section 2)

Acknowledgements This work is supported by the Euro-
pean Telecommunications Standards Institute (ETSI) project
entitled: User-centric approach in the digital ecosystem (Spe-
cialist Task Force: STF BM/543).

References

Affairs ASfP (2013) System Usability Scale (SUS). URL

https://www.usability.gov/how-to-and-tools/

methods/system-usability-scale.html

Amazon Web Services (2019) Amazon web services.

URL https://aws.amazon.com

Apollo 11 (1998) Apollo 11 Lunar Surface Journal:

Program Alarms. URL https://www.hq.nasa.gov/

alsj/a11/a11.1201-pa.html

Arch (1992) A metamodel for the runtime architec-

ture of an interactive system: The uims tool de-

velopers workshop. SIGCHI Bull 24(1):32–37, DOI

10.1145/142394.142401, URL http://doi.acm.org/

10.1145/142394.142401

Astro Pi (2019) Astro pi. URL https://astro-pi.

org/

Aubonnet T, Simoni N (2014) Self-control cloud ser-

vices. In: 2014 IEEE 13th International Symposium

on Network Computing and Applications, NCA 2014,

Cambridge, MA, USA, 21-23 August, 2014, pp 282–

286, DOI 10.1109/NCA.2014.48

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://aws.amazon.com
https://www.hq.nasa.gov/alsj/a11/a11.1201-pa.html
https://www.hq.nasa.gov/alsj/a11/a11.1201-pa.html
http://doi.acm.org/10.1145/142394.142401
http://doi.acm.org/10.1145/142394.142401
https://astro-pi.org/
https://astro-pi.org/


IoT composition based on self-controlled services 19

Aubonnet T, Henrio L, Kessal S, Kulankhina O,

Lemoine F, Madelaine E, Ruz C, Simoni N (2015)

Management of service composition based on self-

controlled components. Journal of Internet Ser-

vices and Applications 6(15):17, DOI 10.1186/

s13174-015-0031-7, URL https://hal.inria.fr/

hal-01180627

Autili M, Inverardi P, Tivoli M (2014) CHOREOS:

Large scale choreographies for the future internet.

In: 2014 Software Evolution Week - IEEE Confer-

ence on Software Maintenance, Reengineering, and

Reverse Engineering (CSMR-WCRE), pp 391–394,

DOI 10.1109/CSMR-WCRE.2014.6747202

AWS IoT (2019) AWS IoT. URL https://aws.

amazon.com/iot/

Balta-Ozkan N, Davidson R, Bicket M, Whitmarsh

L (2013) Social barriers to the adoption of smart

homes. Energy Policy 63:363–374, DOI 10.1016/j.

enpol.2013.08.043

Baude F, Henrio L, Ruz C (2014) Programming dis-

tributed and adaptable autonomous components,

the gcm/proactive framework. Software: Practice

and Experience p n/a, DOI 10.1002/spe.2270, URL

http://dx.doi.org/10.1002/spe.2270

Booch G (2007) Object-Oriented Analysis and De-

sign with Applications (3rd Edition). Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA,

USA

Bruneton E, Coupaye T, Leclercq M, Quéma V, Stefani

JB (2006) The FRACTAL component model and its

support in Java. Software: Practice and Experience

36(11-12):1257–1284, DOI 10.1002/spe.767

Calvin (2018) Calvin. URL https://www.ericsson.

com/research-blog/open-source-calvin/

Cansado A, Madelaine E (2008) Specification and Ver-

ification for Grid Component-Based Applications:

From Models to Tools. In: Boer FSd, Bonsangue

MM, Madelaine E (eds) Formal Methods for Com-

ponents and Objects, no. 5751 in Lecture Notes

in Computer Science, Springer Berlin Heidelberg,

pp 180–203, URL http://link.springer.com/

chapter/10.1007/978-3-642-04167-9_10, dOI:

10.1007/978-3-642-04167-9 10

Cavallaro L, Nitto ED, Furia CA, Pradella M (2010)

A Tile-Based Approach for Self-Assembling Service

Compositions. In: 2010 15th IEEE International Con-

ference on Engineering of Complex Computer Sys-

tems, pp 43–52, DOI 10.1109/ICECCS.2010.6

Chen M, Leung V, Hjelsvold R, Huang X (2012) Smart

and interactive ubiquitous multimedia services. Com-

puter Communications 35(15):1769 – 1771, DOI http:

//dx.doi.org/10.1016/j.comcom.2012.07.012, smart

and Interactive Ubiquitous Multimedia Services

Chen Y, Wu K, Zhang Q (2015) From QoS to QoE: A

Tutorial on Video Quality Assessment. IEEE Com-

munications Surveys & Tutorials 17(2):1126–1165,

DOI 10.1109/COMST.2014.2363139

Choi K, Baek S, Ma C, Park S, Ko S (2014) Im-

proved pupil center localization method for eye-gaze

tracking-based human-device interaction. In: 2014

IEEE International Conference on Consumer Elec-

tronics (ICCE), pp 514–515, DOI 10.1109/ICCE.

2014.6776111

Computing A, others (2006) An architectural blueprint

for autonomic computing. IBM White Paper

Czerniak JN, Brandl C, Mertens A (2017) Design-

ing human-machine interaction concepts for ma-

chine tool controls regarding ergonomic require-

ments. IFAC-PapersOnLine 50(1):1378–1383, DOI

10.1016/j.ifacol.2017.08.236

Dix A (2017) Human-computer interaction, founda-

tions and new paradigms. Journal of Visual Lan-

guages & Computing 42:122–134, DOI 10.1016/j.jvlc.

2016.04.001

Duval T (2010) Modélisation et implémentation

de l’architecture pac à l’aide des patrons proxy

et abstract factory. URL https://hal.inria.fr/

inria-00534111/document

ETSI (2008a) ETSI TS 102 827: Grid; grid compo-

nent model; part 1: Gcm interoperability deployment.

Tech. rep., European Telecommunications Standards

Institute (ETSI), standard

ETSI (2008b) ETSI TS 102 828: Grid; grid component

model; part 2: Gcm application description. Tech.

rep., European Telecommunications Standards Insti-

tute (ETSI), standard

ETSI (2009) ETSI TS 102 829: Grid; grid component

model; part 3: Gcm fractal architecture description

language (adl). Tech. rep., European Telecommuni-

cations Standards Institute (ETSI), standard

ETSI (2010) ETSI TS 102 830: Grid; grid compo-

nent model; part 4: Gcm fractal java api. Tech. rep.,

European Telecommunications Standards Institute

(ETSI), standard

ExoMars (2017) ExoMars 2016 - Schiaparelli Anomaly

Inquiry. URL http://exploration.esa.int/mars/

59176-exomars-2016-schiaparelli-anomaly-inquiry/

Gilman E, Davidyuk O, Su X, Riekki J (2013) To-

wards interactive smart spaces. Journal of Ambient

Intelligence and Smart Environments (1):5–22, DOI

10.3233/AIS-120189

Hsiao SW, Lee CH, Yang MH, Chen RQ (2017) User

interface based on natural interaction design for se-

niors. Computers in Human Behavior 75:147–159,

DOI 10.1016/j.chb.2017.05.011

https://hal.inria.fr/hal-01180627
https://hal.inria.fr/hal-01180627
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/
http://dx.doi.org/10.1002/spe.2270
https://www.ericsson.com/research-blog/open-source-calvin/
https://www.ericsson.com/research-blog/open-source-calvin/
http://link.springer.com/chapter/10.1007/978-3-642-04167-9_10
http://link.springer.com/chapter/10.1007/978-3-642-04167-9_10
https://hal.inria.fr/inria-00534111/document
https://hal.inria.fr/inria-00534111/document
http://exploration.esa.int/mars/59176-exomars-2016-schiaparelli-anomaly-inquiry/
http://exploration.esa.int/mars/59176-exomars-2016-schiaparelli-anomaly-inquiry/


20 Frédéric Lemoine et al.

IBM Bluemix (2019) IBM Bluemix. URL https://

www.ibm.com/cloud-computing/bluemix

IBM Watson IoT Platform (2015) IBM Watson

IoT Platform. URL https://internetofthings.

ibmcloud.com

IxDA (2018) About & History - Interaction De-

sign Association - IxDA. URL http://ixda.org/

ixda-global/about-history/

Jain J, Lund A, Wixon D (2011) The Future of Natural

User Interfaces. In: CHI ’11 Extended Abstracts on

Human Factors in Computing Systems, ACM, New

York, NY, USA, CHI EA ’11, pp 211–214, DOI 10.

1145/1979742.1979527, URL http://doi.acm.org/

10.1145/1979742.1979527

JavaServer Faces Technology (2019) Javaserver

faces technology. URL http://www.

oracle.com/technetwork/java/javaee/

javaserverfaces-139869.html

Kashyap H, Singh V, Chauhan V, Siddhi P (2015) A

methodology to overcome challenges and risks as-

sociated with ambient intelligent systems. In: 2015

International Conference on Advances in Computer

Engineering and Applications, pp 245–248, DOI

10.1109/ICACEA.2015.7164704

Khriyenko O, Terziyan V, Kaikova O (2012) User-

assisted Semantic Interoperability in Internet of

Things: Visuallyfacilitated Ontology Alignment

through Visually-enriched Ontology and Thing De-

scriptions. In: In: Proceedings of the Sixth Inter-

national Conference on Mobile Ubiquitous Comput-

ing, Systems, Services and Technologies (UBICOMM

2012, pp 23–38

Kim GJ (2015) Human-computer interaction: funda-

mentals and practice. CRC Press, Boca Raton

Microsoft Azure (2019) Microsoft azure. URL https:

//azure.microsoft.com/fr-fr/

Microsoft Azure IoT Hub (2019) Microsoft Azure

IoT Hub. URL https://azure.microsoft.com/en/

services/iot-hub/

Persson P, Angelsmark O (2015) Calvin - Merging

Cloud and IoT. Procedia Computer Science 52:210–

217, DOI 10.1016/j.procs.2015.05.059

Pintus A, Carboni D, Serra A, Manchinu A (2015)

Humanizing the Internet of Things - Toward a

Human-centered Internet-and-web of Things:. In:

Proceedings of the 11th International Conference

on Web Information Systems and Technologies,

SCITEPRESS - Science and and Technology Publi-

cations, Lisbon, Portugal, pp 498–503, DOI 10.5220/

0005475704980503

Portlet Specification (2015) Jsr 286: Portlet speci-

fication 2.0. URL https://www.jcp.org/en/jsr/

detail?id=286

Poslad S (2009) Ubiquitous Computing: Smart Devices,

Environments and Interactions. John Wiley & Sons,

Ltd

Raspberry Pi (2019) Raspberry Pi. URL https://fr.

wikipedia.org/wiki/Raspberry_Pi, page Version

ID: 138040395

Scerri S, Garg L, Garg R, Scerri C, Xuereb P,

Tomaselli G (2015) Understanding Human-Device

Interaction patterns within the context of mobile

nutrition. In: 2015 2nd International Conference

on Recent Advances in Engineering & Computa-

tional Sciences (RAECS), IEEE, Chandigarh, pp 1–

7, DOI 10.1109/RAECS.2015.7453410, URL http:

//ieeexplore.ieee.org/document/7453410/

Schuhmann S, Herrmann K, Rothermel K, Bosh-

maf Y (2013) Adaptive Composition of Distributed

Pervasive Applications in Heterogeneous Environ-

ments. ACM Transactions on Autonomous and

Adaptive Systems 8(2):1–21, DOI 10.1145/2491465.

2491469, URL http://dl.acm.org/citation.cfm?

doid=2491465.2491469

Service Component Architecture (2011) Service Com-

ponent Architecture (SCA) |OASIS Open CSA. URL

http://www.oasis-opencsa.org/sca

Stankovic JA (2014) Research Directions for the In-

ternet of Things. IEEE Internet of Things Journal

1(1):3–9, DOI 10.1109/JIOT.2014.2312291

Sykes D, Magee J, Kramer J (2011) Flashmob: dis-

tributed adaptive self-assembly. In: Proceedings of

the 6th International Symposium on Software En-

gineering for Adaptive and Self-Managing Systems,

ACM, pp 100–109

Tatiana Aubonnet and Noëmie Simoni (2013) Service

creation and self-management mechanisms for mobile

cloud computing. In: Wired/Wireless Internet Com-

munication - 11th International Conference, WWIC

2013, St. Petersburg, Russia. Proceedings, pp 43–55,

DOI 10.1007/978-3-642-38401-1\ 4

The OpenCloudware project (2015) The opencloudware

project. URL http://www.opencloudware.org/

Weyns D, Haesevoets R, Helleboogh A (2010a) The

MACODO organization model for context-driven dy-

namic agent organizations. ACM Transactions on

Autonomous and Adaptive Systems (TAAS) 5(4):16

Weyns D, Haesevoets R, Helleboogh A, Holvoet T,

Joosen W (2010b) The MACODO middleware for

context-driven dynamic agent organizations. ACM

Transactions on Autonomous and Adaptive Systems

(TAAS) 5(1):3

Windows Presentation Foundation (2019) Windows

presentation foundation. URL https://docs.

microsoft.com/en-us/dotnet/framework/wpf/

https://www.ibm.com/cloud-computing/bluemix
https://www.ibm.com/cloud-computing/bluemix
https://internetofthings.ibmcloud.com
https://internetofthings.ibmcloud.com
http://ixda.org/ixda-global/about-history/
http://ixda.org/ixda-global/about-history/
http://doi.acm.org/10.1145/1979742.1979527
http://doi.acm.org/10.1145/1979742.1979527
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://azure.microsoft.com/fr-fr/
https://azure.microsoft.com/fr-fr/
https://azure.microsoft.com/en/services/iot-hub/
https://azure.microsoft.com/en/services/iot-hub/
https://www.jcp.org/en/jsr/detail?id=286
https://www.jcp.org/en/jsr/detail?id=286
https://fr.wikipedia.org/wiki/Raspberry_Pi
https://fr.wikipedia.org/wiki/Raspberry_Pi
http://ieeexplore.ieee.org/document/7453410/
http://ieeexplore.ieee.org/document/7453410/
http://dl.acm.org/citation.cfm?doid=2491465.2491469
http://dl.acm.org/citation.cfm?doid=2491465.2491469
http://www.oasis-opencsa.org/sca
http://www.opencloudware.org/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/


IoT composition based on self-controlled services 21

Zhong N, Ma JH, Huang RH, Liu JM, Yao YY, Zhang

YX, Chen JH (2013) Research challenges and per-

spectives on Wisdom Web of Things (W2t). The

Journal of Supercomputing 64(3):862–882, DOI 10.

1007/s11227-010-0518-8, URL https://doi.org/

10.1007/s11227-010-0518-8

https://doi.org/10.1007/s11227-010-0518-8
https://doi.org/10.1007/s11227-010-0518-8

	Introduction
	Related Works
	Proposals
	Case Study
	Discussion
	Conclusion

