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Energy-based stability analysis for grasp selection
with compliant multi-fingered hands

Ugo Vollhardt1,2, Maria Makarov2, Alex Caldas3, Mathieu Grossard1, Pedro Rodriguez-Ayerbe2

Abstract— This article presents a stability analysis of object
grasping with a compliant multi-fingered robot hand. This
stability analysis is based on an energetic approach, in which
we aim to compute the maximum amount of energy that can
be stored by a compliant hand-object system about a stable
equilibrium before being destabilized. More specifically, the case
of external disturbance wrenches is investigated. This analysis
admits several applications, two of which are illustrated in this
article on a case study. First the quality of a given grasp can
be quantified in terms of maximum allowed disturbance force
and the associated displacement around the initial equilibrium,
with applications in trajectory design for the robot arm that
holds the hand-object system. Conversely, given a task specified
in terms of known disturbance wrenches set, the proposed
approach helps determining the optimal grasp for an enhanced
stability, e.g. the contact points locations, joint compliance or
internal forces levels.

I. INTRODUCTION

Grasping and manipulating objects with complex grippers,
such as multi-fingered hands is an arduous and challenging
task in robotics and is still an active field of research [1].
The goal of a successful grasp is to maintain an object in the
hand under external perturbation without damaging it. The
evaluation of the quality of the grasp can help to find the best
grasping parameters according to some criteria (robustness,
task dependence, dexterous behavior, etc.).

A sub-category of the multi-fingered hands are the com-
pliant hands, in which compliant elements are located on the
fingertips, in the finger segments or within the joints, being in
this latter case either passive or active through joint controller
gains. These type of hands are conveniently described by
object-level stiffness models and energetic approach for their
control.

The stability of a grasp is one of the most important
aspects of the grasp quality [2] and it is defined for a grasp
at an equilibrium. An equilibrium for a grasp corresponds
to the situation when the sum of all the forces and moment
acting on the grasped object equals zero. When all forces
and moments are derived from a potential function, an
equilibrium is said stable if the first-order derivative of the
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Fig. 1: Stable equilibrium region described using the grasp
potential energy (based on [8]), concept illustration in 1D

potential energy is null and the matrix of second-order partial
derivatives (corresponding to stiffness matrix) is positive
definite [3].

In this paper, a characterization of the stability of an
equilibrium grasp is proposed for compliant multi-fingered
hands. the proposed criterion takes into account the whole
system composed of the controlled hand and the object,
which allows to evaluate the influence of multiple parameters
such as the joint servo gains or the contact points choices.

One classical way to ensure the grasp stability is by
inspecting the force-closure property [4], which can be often
encountered in the dedicated literature because this property
implies a stable equilibrium grasp [5]. Although this is a
useful property, it can be a conservative one since it is
possible to achieve stability without force-closure [6]. The
stability of a system that is not force-closure is influenced
by three factors, namely the contact points, the compliance
at the contact points and the local curvature at the contact
points.

Specifically dealing with the second point, several studies
conducted a stability analysis based on the grasp stiffness
definition and its properties analysis. Bruyninckx et al.
proposed several indexes of stability based mainly on the
eigenvalues of the stiffness matrix [2]. Howard and Kumar
[6] also produced a stability criterion based on the stiffness,
as well as a method to compute the related stiffness matrix
based on the local curvature at the contact point. Cutkosky
et al. [7] introduced another index that takes into account the
structural compliance of the hand-object system, as well as
the compliance contributed by the servoing of the joints.

The study of the stiffness for the grasp stability also
led to energetic approaches, as in Tsuji et al. [8]. In their



work, Tsuji et al. proposed a stability index expressed as the
minimal amount of energy needed to destabilize a grasp (see
Fig. 1).

This paper presents a grasp stability analysis based on
a energetic approach. This approach takes in consideration
the elastic deformation of the fingertips in the same way
as proposed by Tsuji et al. [8], but But, our approach
generalizes it in integrating the whole geometry of the hand
as well as the stiffness brought by the joints into the system.
This approach is well suited for compliant hands, with
passive or active elastic joints. This analysis is task-oriented,
and allows to select and tune a grasp specialized for a task
to guarantee it’s stability to the class and scale of external
disturbances specific to the task.

Section II exposes the grasp quality measure using the
energetic approach. The analysis of the grasp stability is
proposed in Section III. Section IV is dedicated to an
illustrative case study, and conclusions are given in Section
V.

II. ENERGETIC APPROACH
This section provides a brief overview of the framework

proposed by Tsuji et Al. [8], and details our contribution
which allows to evaluate the stability region around the equi-
librium when the system is under an external disturbance.

A. Minimum destabilizing energy

The index of grasp stability developed by Tsuji et al.
[8] is based on the principle that, as the object is grasped
using elastic fingertips, it is possible to construct a potential
field around the stable equilibrium point. This potential field
can be divided in two parts, the region around the stable
equilibrium point where no fingertip slips, denoted as the
”equilibrium region” and the region around this equilibrium
region where at least one fingertip slips (see Fig. 1).

The equilibrium region has a point where the potential
energy is minimal, the energy at this point is denoted Emin.
In addition, each boundary of the region (which should be
seen as multidimensional whereas the Fig. 1 only conveys
the concept in one dimension) also has a minimum, denoted
respectively E1min

, ..., Enmin
, n being the number of bound-

aries.
Thus, the index of grasp stability proposed [8], denoted

as ∆Emin, is the minimum difference between Emin and
E1min

, ..., Enmin
, as follows:

∆Emin = min
i=1,...,n

{E
imin − Emin} (1)

B. Direction dependent minimum destabilizing energy and
wrench

Although the previously described approach provides an
interesting index, it is a general-purpose index that gives the
minimal amount of energy required to destabilize the grasp
regardless of the direction of the perturbation that supplies
this energy. Moreover, only the fingertips and not the hand
were considered to compute the stiffness.

Based on the previous approach, instead of considering
the minimal energy of the boundaries of the equilibrium

region and thus exploring all the directions of this space, we
consider only a specific set of directions which is linked to a
specific set of external wrenches. This proposition allows to
evaluate the robustness of the grasp to external disturbances
in specific directions, e.g. according to the manipulation task.
Moreover this point is found using the whole kinematic of the
hand and not just the fingertips as described in the following
subsections.

C. Computation of the minimum destabilizing energy and
wrench

In a 3D grasp case (respectively 2D grasp case), a contact
ci between a fingertip i and an object can be described as
a mapping between the forces fci applied by the finger on
the contact point in the contact frame Ci, and the resulting
wrench W o

dp→obj ∈ R6 (resp. W o
dp→obj ∈ R3) to which the

object is submitted in its own coordinate frame obj (denoted
by the superscript •o).

The concatenation of all the contact forces fc =[
fTc1f

T
c2 ...f

T
cn

]T
, n being the number of contact points be-

tween the object and the fingers, and the resulting wrench
applied on the object W o

dp→obj are related by:

W o
dp→obj = Gfc (2)

where G ∈ R6×n is the grasp map built from the adjoint
matrices relating the contact frames to the object frame and
depends on the contact type. In this article, the Point Contact
with Friction (PCwF) model is used [4].

The contact forces fc can be split in two components.
The forces that induce a motion of the object are denoted as
reaction forces fr and the forces that do not induce a motion
of the object are denoted as internal forces fi. The forces fi
belong to the null space of G.

fc = fr + fi, fi ∈ Null(G) (3)

Let us now consider an external wrench applied on the
object in the world frame w (denoted by the superscript
•w), Ww

ext→obj = αdWext
, dWext

∈ R6 being its direction
and α ∈ R its intensity, αmax the maximum intensity of
Ww
ext→obj for which no slippage of contact point occurs.
For any α ∈ [0, αmax], if the system is at an equilibrium,

it means the wrench applied on the object by the fingers in
w, Ww

dp→obj is related to Ww
ext→obj by:

Ww
ext→obj = −Ww

dp→obj (4)

Let us denote Edwextmax
, the energy stored in the grasp

when the system is at the equilibrium point corresponding
to the external wrench Ww

ext→obj = αmaxdWext
, then:

∆Emin = Edwextmax
− Emin (5)

In the rest of this article, we consider that the potential energy
of the grasp is null when the grasp is not under a disturbance
wrench. Thus Emin is null, as it is only an offset determined
by the initial configuration of the grasp.



D. Calculation of Potential Energy

For a given contact point i between the object and a
fingertip, let us denote dni

, dsi ∈ R3, the deformation of
the fingertip and fni

, fsi ∈ R3 the contact forces, in normal
direction of the contact surface and tangential direction
respectively. Assuming that the relationship between the
deformation and contact forces is expressed by a linear spring
model, the forces are defined as follows:

fni = −kndni , fsi = −ksdsi (6)

with kn and ks ∈ R being respectively the stiffness in the
normal and shear direction of the contact surface. Moreover
let the displacement of the i-th contact point be ∆Xci =[
∆Xcix

,∆Xciy
,∆Xciz

]T
. According to [8], the variation

of potential energy is given by:

∆E =
1

2

n∑
i=1

{
kn∆X2

ciz
+ ks

(
∆X2

cix
+ ∆X2

ciy

)}
(7)

Let kci = diag (ks, ks, kn), so (7) becomes :

∆E =
1

2

n∑
i=1

∆XT
cikci∆Xci (8)

Then, if Kc denotes the matrix containing on its diagonal the
matrices kci and Xc the concatenation of the coordinates of
the contact points Xci in the object frame obj, (7) becomes:

∆E =
1

2
∆XT

c Kc∆Xc (9)

E. Grasp Stiffness

The stiffness of a grasp can be defined as the relationship
between a external wrench applied on the grasped object and
its resulting motion [7]. If the configuration of the object in
the world coordinate frame w is denoted Xw

o ∈ R6, the
stiffness seen by the object in w is:

Kw
o =

∂Ww
ext→obj

∂Xw
o

= −
∂Ww

dp→obj

∂Xw
o

(10)

This stiffness can also be similarly expressed in the obj
frame

Ko
o = −

∂W o
dp→obj

∂Xo
o

, (11)

δW o
dp→obj and δXo

o being respectively a small variation of
the wrench applied by the fingers on the object and a small
displacement of the object, in the obj frame. By the chain
rule and using (2), we have:

Ko
o = −G ∂fc

∂Xo
o︸ ︷︷ ︸

Kb

− ∂G

∂Xo
o

fc︸ ︷︷ ︸
Kj

(12)

Kb is the contribution of the structure and servoing of
the joint to the stiffness of the hand, whereas Kj is the
contribution induced by the variations of the grasp while
the object is moving. In this article the contact points are
considered to be fixed so that Kj is null in this approximation

and Ko
o = Kb . The relationship between a variation of the

wrench δW o
dp→obj and a small motion δXo

o of the object is:

δW o
dp→obj = −Ko

oδX
o
o (13)

Using the grasp map G, it is possible to express the
stiffness in the frames of the contact points. The latter can be
convenient as the friction cone constraints are often checked
in these frame in the rest of this paper. Let us denote Kc

the stiffness matrix in the contact frame, that relates a small
motion of the contact point δXc to a variation of contact
forces fc:

δfc = KcδXc (14)

Using the grasp map, it is possible to express the small
motion of the contact points δXc out of a small motion of
the object δXo

o :
δXc = GT δXo

o (15)

Using (2), (14) and (15), the expression of W o
dp→obj is:

δW o
dp→obj = −GKcG

T︸ ︷︷ ︸
Ko

o

δXo
o (16)

As described in [9], the stiffness Kc can be defined by:

Kc =
(
Cs + Jh(q)CqJh(q)T

)−1
, (17)

where Cs ∈ R3n×3n (resp. R2n×2n for 2D case) is the
compliance contributed by the passives elements of the
fingers (flexible fingertips, cables, etc.), Cq ∈ Rmn×mn is
the compliance contributed by the servoing of the joints and
Jh ∈ R3n×mn (resp. R2n×mn for 2D case) is the hand
Jacobian depending on the fingers’ configuration q, with m
the number of joints per finger.

Let us introduce the transformation Tww→obj that trans-
poses a wrench from the frame w to the frame obj (equivalent
to the adjoint transformation defined by Murray [4]), and the
transformation Tpw→obj that transposes a point’s coordinates
from the frame w to the frame obj, both being dependent on
the configuration Xw

o of the object in the world frame:

W o
dp→obj = Tww→obj(X

w
o )Ww

dp→obj (18)

δXo
o = Tpw→obj(X

w
o )δXw

o (19)

Based on these definitions, we are now ready to expose
the grasp stability analysis method.

III. ANALYSIS OF GRASP STABILITY

For a system in three dimensions, with n contact points
on the object, and m constraints by contact point, a given
set of contact points Xo

c and joint stiffness kpij contributed
by the servoing of the joints, the internal forces fi, as well
as configuration of the fingers qi, Edwomax

is computed by
solving the optimization problem presented in Algorithm 1.
The maximal magnitude of the perturbation wrench in the
given direction dWext

under which the system stays in the
equilibrium region is also provided. The subscript •fb is
used to express quantities in the finger bases frame. The
matrix Tpw→fb is the transformation used to express the
coordinates of a point respectively from the world frame



to the finger bases frames. The finger bases frames are the
frames attached to the base of each finger, and each contact
point is transposed to the frame attached to it’s own finger.
The variables Xo

c , Xw
c(k)

and Xfb
c(k)

are the concatenation
of the coordinates of the contact points respectively in the
object frame, world frame and finger bases frames. The
function ikm is the inverse kinematic model. µ denotes the
friction coefficient depending on the properties of the contact
surfaces between the object and the fingertips.

At each step δα on the optimization, the state of the system
is computed from the previous state using the function
New State(δWw

ext→obj), then the equilibrium of the new
state is verified using the frictions cone constraints of the
grasp object.

Once αmax is obtained, it is possible to get the correspond-
ing Ww

ext→obj and Xo and therefore the potential energy
Edwomax

.

Algorithm 1
Set Xo

c , kpij ,qi,fi

αmax(Ci, kpij ) = max
α

α

s.t. fciz ≥ 0, i ∈ [1, ..., n],√
f2cix + f2ciy ≤ µfciz ,i ∈ [1, ..., n],

0 ≤ α,
Ww
ext→obj = αdWext

,

fci = New State(δα)

1: function NEW STATE(δWw
ext→obj)

2: // Transposition of δWext→obj from w to obj and
calculation of the equivalent motion in obj

3: δW o
ext→obj(k)

← Twobj→w(Xo(k−1)
).δWw

ext→obj

4: δXo
o(k)
←
[
GKc(k−1)

GT
]−1

δW o
ext→obj(k)

5: // Calculation of the new Xo(k)
and Ww

ext→obj(k)
in

w
6: Xo(k)

← Xo(k−1)
+ Tpobj→w(Xo(k)

)T δXo
o(k)

7: Ww
ext→obj(k)

←Ww
ext→obj(k)

+ δWw
ext→obj(k)

8: // Calculation of the new hand’s configuration
9: Xw

c(k)
← Tpobj→w(Xo(k)

)Xo
c

10: Xfb
c(k)
← Tpw→fbX

w
c(k)

11: qi(k) ← ikm(Xfb
c(k)

)

12: // New Stiffness matrix
13: Kc(k)

=
(
Cs + Jh(qi(k))Cq(kpij )Jh(qi(k))

T
)−1

14: // Calculation of the reaction forces and the stored
energy induced by the motion

15: fr(k)
← fr(k−1)

−Kc(k−1)
GT δXo

o(k)

16: E(k) ← E(k−1) +XoT

o(k)
GKc(k−1)

GT δXo
o(k)

17: return (fr(k)
+ fi)

18: end function

Hence a given αmax corresponds to an energy Edwomax
,

a wrench Ww
ext→obj as well as a configuration Xo, that

are respectively the maximum amount of energy, for a
given direction of disturbance, the maximum intensity of
the disturbance acceptable by the system before the cone
constraints are violated and the new position where the grasp
is at equilibrium under the said disturbance. These three
quantities are linked among themselves and are dependent on
the contacts points, the grasp stiffness and the internal forces.
As such it is possible to optimize Edwomax

or Ww
ext→obj

using these three variables.
As the consequences in terms of disturbance wrenches can

be more direct to interpret than the energy, the rest of the
article will focused on this quantity.

IV. CASE STUDY

This section illustrates our approach based on an example
of a planar pick and place task with a hand. This example
will show how the tuning of the stiffness and the contact
point position in the system can improve its robustness to
external disturbance.

A. Considered System

The following ideal planar 2D example relates to a grasp
with two fingers and two contact points and Coulomb friction
constraints (Fig. 2), fc =

[
fc1x fc1y fc2x fc2y

]T ∈ R4

and Ww
ext→obj =

[
Wx Wy Wθ

]T ∈ R3. Let us denote
m = 1kg the mass of the grasped object.

C2

C1
Objx2

y2

y1

l

l

l

2r

x1

g

Fig. 2: Studied system

with the radius of the object fixed to 2r = 0.2m, the length
of the segments of the finger fixed to l = 0.1m and the
friction coefficient fixed to µ = 1.

Moreover, let us assume that the relationship between
the deformation of the fingertips and the reaction force is
expressed by a linear spring model, and that the servoing of
the joints of the hand is a proportional servoing. The matrix
Cs and Cq can therefore be defined as:

Cq =

[
Cq1 O
O Cq2

]
(20)

Cs =

[
Cs1 O
O Cs2

]
(21)



with Cqi =

 1
kpi1

0 0

0 1
kpi2

0

0 0 1
kpi3

 , Csi =

[
Csix 0

0 Csiy

]
for

i ∈ {1, 2}, kpi1, kpi2, kpi3 being the proportional gains of
respectively the first, second and last joint of the i-th finger
starting from the base, and Csix and Csiy being the tangential
and normal compliance of the i-th finger’s fingertip.

B. Pick & Place example task

For this example, we define a trajectory along which the
system hand-object is supposed to move. This trajectory
is defined by four way-points to be exactly reach at zero
velocity and three point-to-point paths in between.

C2 C1
Objx

2

x
1

y
2

y
1

C2 C1
x
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x
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y
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y
1

C2 C1
x
2

x
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y
2

y
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A B

C

O

x

y

w

45°

45°

Fig. 3: Pick & place trajectory

During the trajectory, the object is subject to several
directions of acceleration expressed in frame w:
• From O to A, an acceleration in the direction[
−
√

2/2 −
√

2/2 0
]T

then
[√

2/2
√

2/2 0
]T

• From A to B, an acceleration in the direction[
−1 0 0

]T
then

[
1 0 0

]T
• From B to C, an acceleration in the direction[
−
√

2/2
√

2/2 0
]T

then
[√

2/2 −
√

2/2 0
]T

From the second Newton’s Law, it can be deduced the
external disturbance directions listed in (22):

dwext ∈


−
√
2
2

−
√
2
2

0

 ,


√
2

2√
2

2
0

 ,

−1
0
0

 ,

1
0
0

 ,

−
√
2

2√
2
2
0

 ,


√
2
2

−
√
2

2
0


 (22)

C. Analysis for a fixed grasp

In a case where all the parameters of the grasp are fixed,
it is possible using the method explained in the algorithm 1
to get the maximal acceleration intensity that the system can
withstand for each section of the trajectory.

Let us set the internal force to fi = 5×
[
0 1 0 1

]T
N,

the same proportional coefficients for all joints kpij =
5 N/rad (i ∈ {1, 2}, j ∈ {1, 2, 3}) and the initial joint
configuration for each finger q1 =

[
−π/6 π/6 π/6

]T
and

q2 =
[
π/6 −π/6 −π/6

]T
.

The table I gathers the results for the quantities ∆Emin
and Ww

ext→obj for each direction of perturbation undergone
by the object along the trajectory. The table II is the equiv-
alent acceleration for each section of the trajectory. First, it
can be seen that the system is symmetrical with respect to
the world y-axis. Second, although the size of the maximal
accelerations is the same, their values is dependent on the

direction. Thus, selecting the same acceleration profile for all
the sections of the trajectory would not be the best option.

TABLE I: Results for the various dwext

Disturbance directions ∆Emin(mJ) Ww
ext→obj[

−
√
2

2
−
√
2

2
0
]T

0.706
[
−0.248 −0.248 0

]T[√
2

2

√
2

2
0
]T

0.429
[
0.339 0.339 0

]T[
−1 0 0

]T
0.761

[
−0.280 0 0

]T[
1 0 0

]T
0.761

[
0.280 0 0

]T[
−
√
2

2

√
2

2
0
]T

0.429
[
−0339 0.339 0

]T[√
2

2
−
√
2

2
0
]T

0.706
[
0.248 −0.248 0

]T

TABLE II: Maximal acceleration norms for each section of
the trajectory

Trajectory Segment max(||v̇(t)||)(m/s2)

[OA] : beginning 0.480
[OA] : end 0.350
[AB] : beginning 0.280
[AB] : end 0.280
[BC] : beginning 0.350
[BC] : end 0.480

D. Grasp selection

Conversely to the previous analysis, given a fixed set of
disturbance wrenches to resist, the Algorithm 1 can be used
to select a suitable grasp.

Let us assume the same pick-and-place task described
in Fig. 3, and let us fix the maximal acceleration to 0.7
meter per second. Such acceleration implies that the system
should be able to resist at least a disturbance intensity
|Ww

ext→obj |min = 0.7N for every directions listed in (22).
The system has several degrees of freedom to set the

correct parameters (contact points, joint stiffness, internal
forces), so it is possible to get the regions of parameters
for which the following constraint is verified:

|Ww
ext→obj | ≥ |Ww

ext→obj |min (23)

For example, if we take a look at the evolution of
|Ww

ext→obj | depending on the position of the Xc1 contact
point of the right fingertip on the object and an homogeneous
proportional coefficient kpi on all the joints, we can get
the couples (kpij , Xc1) such as the constraint (23) is valid.
The Figure 4 represents the sets Sdk of admissible couple
(kpij , Xc1) for each direction dk listed in (22). The set
S∗ = Sd1 ∩ Sd2 · · · ∩ Sd6 is the set of admissible couple
(kpij , Xc1) for the whole task.

The contact point Xc1 is parameterized by a radial angle
αXc1

∈ [−1, 1] between the horizontal line going through
the center of the object and the straight line going through
the contact point and the center of the object (Fig. 3), and
kpij ∈ [0.02, 2].



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S*
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The figures 5 and 6 show two different grasps. On both
figures, the black and gray arrows stand for the maximals
forces that can be withstood by the hand in their respective
directions, the black ones being the forces considered for the
task. The dotted circle stands for the minimal of intensity
set to 0.7 Newtons, and the Pmove area stand for the region
where the object center of mass can move without slippage
of the finger, i.e the equilibrium region.

The first grasp (kpij = 0.3, αXc1
= 0) is present in the

valid set, and it can be seen by the fact that all the intensities
of the forces listed in (22) are outside the minimal boundary
(i.e. the black ones). As such this grasp is able to resist at
least a force equal to 0.7 Newtons in intensity.
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Fig. 5: Case where (kpij = 0.3, αXc1
= 0) ∈ S∗ (Arrows

denote the maximal tolerated wrench for each direction)

The second grasp (kpij = 0.3, αXc1
= −π8 ) is not in the

set S∗ and in can be seen in the figure 6. Although four
out of six directions are out of the circle, this grasp does
not ensure the stability for every directions. Thus it is not
suitable for this task, but in some directions this grasp is
better than the first one, thus it will be more suitable for a
task that use these kind of directions instead.

Although it’s not a criteria in this study case, we can see
that the equilibrium region of the second grasp is far smaller
than the first grasp. As such the second grasp could also be
more suitable for a task that is constrained in displacement.

V. CONCLUSIONS

This paper introduced a stability analysis taking explicitly
into account the whole geometry of the hand as well as the
compliance due to the mechanical design and the control
gains in the fingertips and the joints. This analysis is based on
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Fig. 6: Case where (kpij = 0.3, αXc1
= −π8 ) /∈ S∗ (Arrows

denote the maximal tolerated wrench for each direction)

the greatest disturbance wrench that the grasp can withstand
for a given direction as well as the energy and displacement
induced by this wrench. This approach was exemplified on
a simple 2D case where only the maximal wrench criterion
was used to select a grasp robust to external disturbances
(other criteria could include the energy or the displacement).

The stability analysis has been illustrated with the ideal
planar pick-and-place task in two ways, the first one to esti-
mate for a given grasp, the maximum accelerations that the
hand and object can withstand, and a second one to evaluate
the set of grasp parameters that guarantee the stability along
the whole trajectory given a minimal acceleration to which
the grasp is supposed to resist.

Although this stability analysis is not global, it still gives
relevant informations for the selection of a grasp suitable
for a definite task, or can also help to tune the task’s
trajectory to restrain the related disturbances in a scale
bearable by the system. Future work will be dedicated to
the extension of the proposed method to the 3D case as well
as the enveloping grasps. Adaptive command will also be
considered to optimize the control gains with respect to the
trajectory.
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