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ABSTRACT:

The global approaches solve SfM problems by independently inferring relative motions, followed be a sequential estimation of
global rotations and translations. It is a fast approach but not optimal because it relies only on pairs and triplets of images and it
is not a joint optimisation. In this publication we present a methodology that increases the quality of global solutions without the
usual computational burden tied to the bundle adjustment. We propose an efficient structure approximation approach that relies
on relative motions known upfront. Using the approximated structure, we are capable of refining the initial poses at very low
computational cost. Compared to different benchmark datasets and software solutions, our approach improves the processing times
while maintaining good accuracy.

1. INTRODUCTION

Photogrammetry and computer vision Structure from Motion
(SfM) algorithms underwent a remarkable evolution during the
past two decades. Much of its evolution was driven by the ad-
vances in sensor technology, growing computer capabilities and
democratisation of the fields through different software solu-
tions [Snavely et al., 2006], [Pierrot Deseilligny, Cléry, 2011],
[Moulon et al., 2016], [Schonberger, Frahm, 2016].
Existing SfM approaches for pose estimation become compu-
tationally inefficient as the number of images increases. Two
solutions exist: sequential and global methods. Sequential meth-
ods [Schonberger, Frahm, 2016, Snavely et al., 2006] generate
one or multiple (e.g. hierarchical methods [Klopschitz et al.,
2010, Toldo et al., 2015]) seed images and sequentially con-
catenate overlapping images. Non-linear least squares bundle
adjustment is then used to systematically eliminate accumu-
lated errors [Triggs et al., 1999, Förstner, Wrobel, 2016]. On
the other hand, global methods [Govindu, 2001, Moulon et al.,
2013, Wilson, Snavely, 2014] simultaneously and independ-
ently find relationships between pairs or triplets of images. These
relationships are encoded in an epipolar graph which forms the
basis of inferring the global rotations and translations. Global
methods require the knowledge of image correspondences only
in the first phase when computing the two-view or three-view
geometries. This makes them faster and more computationally
efficient. However, identifying outliers becomes challenging
because the computation is bound to a pair or a triplet.
Global solutions to SfM problems provide only initialisation of
camera poses. Ordinarily, a final bundle adjustment (BA) in-
cluding poses and point correspondences is run to calculate the
optimal solution [Triggs et al., 1999], which is a costly pro-
cessing. The objective of this work is to go towards truly struc-
tureless bundle adjustment by refining the initial poses with
very few points. We propose a structure (i.e. 3D points) approx-
imation algorithm that relies on pairs and triplets of images. We
firstly introduce a robust method for the relative motion cal-
culation. Then, we redefine the per-relative-motion structure
through the intermediary of an ellipsoid. The goal here is to
generate a minimal set of 3D points that are sufficient to infer
the local structure. This set is later used to refine the global

solution in a bundle adjustment routine. Please note that we
do not present a global motion approach in this work. Instead,
to produce an initialization to the BA, we use the global ap-
proach of SfmInit [Wilson, Snavely, 2014] or MicMac [Pier-
rot Deseilligny, Cléry, 2011, Rupnik et al., 2017]. We evaluate
our approach on the Strecha benchmark [Strecha et al., 2008],
as well as sequential acquisitions by a mobile mapping platform
and a drone. All methods are implemented and available from:
github.com/micmacIGN . The sequential datasets and their
respective ground truth are also available upon request.

2. RELATED WORK

On global motion methods Determination of global motions
is performed separately for the rotational and translation parts
[Govindu, 2001]. To calculate the rotations, the existing solu-
tions: ignore the orthogonality constraint and employ linear
methods [Martinec, Pajdla, 2007, Arie-Nachimson et al., 2012,
Moulon et al., 2013]; or optimise with robust `1 as Hartley
et al. [Hartley et al., 2011] or as Chatterjee et al. [Chatterjee,
Govindu, 2013] who base their algorithm on the Lie Group.
A review of rotation averaging algorithms was published by
Hartley et al. [Hartley et al., 2013]. The translation compon-
ent is always computed in the second place. Unlike for the
rotational component, there is no direct way to compute scale-
consistent translations from a set of available pairwise cons-
traints. Some methods exploit only pairwise constraints
[Govindu, 2001], [Martinec, Pajdla, 2007], [Arie-Nachimson et
al., 2012], [Wilson, Snavely, 2014] but are susceptible to a de-
generate solution when all cameras are aligned. Other methods
formulate the problem using trifocal dependencies [Courchay
et al., 2010, Zach et al., 2010, Jiang et al., 2013, Moulon et
al., 2013]. Moreover, approaches based on linear solvers [Arie-
Nachimson et al., 2012], [Govindu, 2001] and `∞ norm optim-
isation [Sim, Hartley, 2006, Kahl, Hartley, 2008, Moulon et al.,
2013] can be distinguished.
Methods formulating the BA estimation problem in terms of
epipolar constraints [Steffen et al., 2010], [Rodriguez et al.,
2011], [Indelman et al., 2012], [Cefalu et al., 2016] are not dis-
cussed herewith.



On outliers in relative motions Relative motions are the main
ingredient in global pose estimation methods. This optimiza-
tion scheme is particularly sensitive to outliers due to a lim-
ited number of motion observations. Since the motions are
derived from automated algorithms for sparse correspondence
search (e.g. SIFT [Lowe, 2004]), they inherently contain out-
liers, especially across ambiguous scenes with repetitive pat-
terns, low texture, moving objects, etc. Existing approaches
cope with the outliers by either eliminating them prior to optim-
ising for global rotations and translations (i.e. filtering), or by
adopting robust optimisation techniques. Examples of the latter
are robust `1 optimization used for rotation averaging [Hartley
et al., 2011, Chatterjee, Govindu, 2013] and translations solv-
ing [Dalalyan, Keriven, 2009, Olsson et al., 2010, Zhu et al.,
2017]. Some recent works have also addressed the evident
complementarity of sequential and global methods. In Zhou et
al. [Zhu et al., 2017, Zhu et al., 2018] many local incremental
SfMs help to discard mismatches and invalid motions.
Among the solutions based on filters, the pioneering works
[Govindu, 2006], [Sim, Hartley, 2006], [Martinec, Pajdla, 2007]
focus on pairwise constraints and remove the outliers by: RAN-
SAC epipolar sampling [Govindu, 2006]; using iterative re-
moval techniques [Sim, Hartley, 2006]; or identifying false ma-
tches via partial reconstructions [Martinec, Pajdla, 2007]. Later
works exploit the redundancy in the epipolar graph by looking
at triplets of images. Courchay et al. [Courchay et al., 2010]
introduce a trifocal graph parametrization and estimate robust
global poses using linear programming with imposed loop con-
straints and RANSAC. Similarly to this work, Zach et al. [Zach
et al., 2010] uses loopy belief propagation to identify erroneous
geometries in loops. Jiang et al. [Jiang et al., 2013] establishes a
trifocal coplanarity constraint that minimizes a geometric error.
Work in Moulon et al. [Moulon et al., 2013] fuses the Bayesian
inference of Zach et al. [Zach et al., 2010] and weighted graph
filtering of Enqvist et al. [Enqvist et al., 2011] to remove out-
liers. Sweeney et al. [Sweeney et al., 2015] updates the funda-
mental matrices by optimizing a cost function defined over the
trifocal point transfer. Finally, Wilson et al. [Wilson, Snavely,
2014] finds a purely pairwise method adapted to very large im-
age collection where pairwise translations are projected to 1D
subspace and a global ordering fitting the pairwise constraints
is sought.

CONTRIBUTION AND OVERVIEW

To increase the robustness of the relative motions, our method
combines several hypotheses, and tests each with a suitable
direct algorithm (Section 3.1). To infer the triplets we take a
similar perspective as [Jiang et al., 2013] and [Sweeney et al.,
2015]. We present a linear algorithm that rapidly calculates the
triplet motions (Quick triplet algorithm). The robust triplet al-
gorithm (Section 3.2) tests two hypotheses to see whether the
camera in question has a short, normal, or a long focal length.
As the long focal lengths approach the orthogonal projection,
we replace the perspective camera model with the one proposed
by Tomasi et al. [Tomasi, Kanade, 1992]. Otherwise, the pose
of the ”third” image of the triplet is found with the spatial re-
section [Grunert, 1841]. We intentionally avoided the trifocal
tensor parametrization knowing its unstable behavior on flat
surfaces [Julià, Monasse, 2017].
Our structure reduction approach (Section 4) approximates the
original points with an ellipsoid, and generates a small set of
virtual points within its volume. This reduction allows for a
lighter BA, without having to resort to PCG-based optimiza-

tions [Agarwal et al., 2010, Jeong et al., 2011, Kushal, Agar-
wal, 2012]. Therefore, we keep the access to the reduced cam-
era system’s covariance matrix. This is advantageous for many
metrological applications that necessitate a degree of confid-
ence associated with their measurements.

3. BUILDING THE RELATIVE MOTIONS

The computation of relative motion consistent within triplets of
images is divided into three stages. Firstly, given a set of image
correspondences, we create the epipolar hypergraph H(V, E),
where each vertex Vi ∈ V represents an image, and the edge
Eij connects a pair of images (Vi, Vj) (Section 3.1). The con-
nection implies that relative motion {Rji, trji} is known. We
refer to H(V, E) as a hypergraph because we have access to a
list of connected vertices Vk for a given Eij . The connected ver-
tices are then explored to construct triplets complying with the
respective edges (Section 3.2). We assume that cameras are cal-
ibrated, i.e. at least their focal lengths and the principal points
are known. The local coordinate frame within an edge Eij or a
triplet (Vi,Vj ,Vk) is always associated with the first camera (i.e.
Vi). In the text we often refer to the ”third” image of a triplet
by which we mean the image associated with Vk.

3.1 Pairwise relative motions

Several direct algorithms are tested to compute robust relative
motions between pairs of images. We begin with the hypo-
thesis that the corresponding points contain a many outliers, and
slowly relax the constraint by allowing more points in the com-
putation. The full set of correspondences entering the method
amounts to 500 and was chosen randomly. In total we test 6
calculation variants, see Table 1. The difference between vari-
ant T1 and T2 is in the way the points a drawn out the set
of 500 points. While T2 is purely random, in T1 we bias the
selection by forcing that the points are well distributed across
the image plane. This way we avoid sampling points that are
clustered in one zone. Variants T1-T4 are solved with 8-point
algorithm [Hartley, Zisserman, 2003] throughout several RAN-
SAC samples. After each draw the current solution is refined
with a `2 solver. In T5 we employ the full set of points, and
perform `1 and `2 estimations. The T6 variant tests the planar-
ity of the scene by computing a homography and decompos-
ing it to a relative motion [Faugeras, Lustman, 1988]. Finally,
the variant with the smallest re-projection error is refined in a
coplanarity-based bundle adjustment.

3.2 Triplet motions

The triplet motions are determined ideally between ”relevant”
triplets of images. In order to select a subset of suitable triplets,

Variant NPts NRANSAC `1 / `2 Model
T1 8* 200 `2 MEss

T2 8 50 `2 MEss

T3 12 100 `2 MEss

T4 250 20 `2 MEss

T5 500 0 `1 & `2 MEss

T6 150 20 `2 H

Table 1. Six variants to calculate the pairwise relative motions.
MEss is the 8-point essential matrix algorithm, H is the homo-
graphy decomposed to a relative motion [Faugeras, Lustman,
1988]. (*) indicates that the points were drawn with a bias forcing
a homogenous distribution within the image.



we first determine the triplet motions between all possible can-
didates (see Quick triplet algorithm and Algorithm 1), and use
them to define a per-triplet quality index (see Triplet selection).
The final triplet motions, calculated on a pre-selected set, result
from the Robust triplet algorithm.

On straight lines intersection For the sake of clarity, we lay
out the line intersection algorithm that is the building block of
the Quick triplet algorithm. Let us define two straight lines as
(cf. Figure 1 (a)): P = P0+p(P1−P0),Q = Q0+q(Q1−Q0).
The intersecting 3D point belongs to the line that minimizes the
distance between the lines P andQ, hence, it will be found on a
line perpendicular to them. We define it as (P−Q), and impose
the following: (P−Q)·(P1−P0) = 0, (P−Q)·(Q1−Q0) = 0.
Using the above, parameters p and q are inferred. The final 3D
point is equal to 1

2
(PIntp + PIntq ), where PIntp = P0+(P1−

P0) · p, PIntq = Q0 + (Q1 −Q0) · q.

Quick triplet algorithm The rotation of the ”third” image in
the triplet (Vi,Vj ,Vk) is calculated twice: directly as R′3 = R31,
and indirectly as R′′3 = R21R32. The definite rotation being
R3 = 1

2
(R′3 + R′′3 ). The orthogonality of R3 is enforced

by mapping it to its nearest orthogonal rotation with Singular
Value Decomposition.
The computation of the perspective center proceeds in two steps
as presented in Figure 1 and Algorithm 1. Our objective is to
force the perspective center to lie close to both the translation
direction tr31 calculated in the preceding step, and the direc-
tions associated with the position of 3D points. To achieve this,
our first step is to determine the 3D position of two correspond-
ing points using image measurements in (Vi, Vj) (cf. Figure 1
(b)). Then, the new perspective center of Vk results from inter-
secting the translation direction tr31 and the direction tr3PInt ,
defined by the image measurement in Vk and attached at the po-
sition of the 3D point. For N corresponding points, one obtains
N estimates of the perspective center (or N estimates of p and
q, see Figure 1 (a)). The terminal value is then C3 = tr31 · p̂,
where p = {pi}, p̂ is the median of p and i ∈ [1, N ]. By
definition, the proposed algorithm calculates consistent triplets
exclusively from image correspondences of manifold 3 (i.e.,
points visible in 3 images). Statistically speaking, higher man-
ifold points are less susceptible to outliers, therefore they are
expected to produce more stable results. It is also required that
a minimum of 8 3-manifold points exists. In practice, many
more points are available and we decimate them by a factor of
50 when the number exceeds 500. Note that in this formulation,
the computation of the perspective center is not degenerate if all
three perspective centers are located on a straight line.

Algorithm 1 The Quick triplet algorithm

1: Input: a triplet motion {[R21|t21] , [R31|t31] , [R32|t32]}
VP1,VP2,VP3 vector of points’ correspondences
N = VP1.size() = VP2.size() = VP3.size()

2: C1 = [0, 0, 0], R1 = 1
3: C2 = t21, R2 = R21

4: for i = 1 to N do
5: U1 = VP1 [i]
6: U2 = R2 ·VP2 [i]
7: U3 = R31 ·VP3 [i]
8: PInt = Intersect(C1 +U1,C2 +U2)
9: {p, q} = Intersect pq(t31,PInt +U3)

10: Vp.push(p)
11: end for

12: C3 = t31 ·median(Vp)
13: R3 = NearestRot (0.5 · (R31 +R21 ·R32))

Figure 1. Computation of the perspective center of the ”third” im-
age (C3) in the Quick triplet algorithm. C1 and C2 are perspect-
ive centers of images 1 and 2, respectively. Relative orientations
between images 1 and 2 as well as 1 and 3 are known and related
by a 7-parameter transformation. (a) A toy example illustrating
the intersection of two straight lines defined by vectors

−−−→
P0P1 and

−−−→
Q0Q1 (cf. On straight lines intersection); (b) intersection of two
lines defined by their image observations and respective perspect-
ive centers, C1 and C2; (c) the sought C3 lies at the intersection
of the vectors tr31 and tr3PInt .

Triplet selection Out of a number of initialized triplets, we
want to select the K best ones. The notion of a best triplet is
translated to a quality index Q and calculated for each triplet in
H. The Q favours wide baselines between images (i.e. base-to-
height ratios or bh) as presented here:

R =
bh

bh+ TL
, (1)

Q = min(RViVk , RVjVk ), (2)

where TL is a rough bh limit; RViVk is computed between
the first and the second image in a triplet, and RVjVk between
the second and the third, correspondingly. To rapidly calcu-
late the indices we exploit the triplet motions obtained with
Quick triplet algorithm. We performed all the experiments with
K = 1 as with the growingK we didn’t get much improvement
in accuracy but worsened the running times. The TL wes set to
0.15.

Robust triplet algorithm At this stage every edge Eij in H
contains a list of at most K ”third” images that were selected
in the preceding step. We begin by re-estimating the poses of
the ”third” images for each Eij in H. This estimation is em-
bedded in a RANSAC framework, and uses two direct estim-
ation models: the spatial resection algorithm [Grunert, 1841],
and the Tomasi et al.approach to orientating images with long
focal lengths [Tomasi, Kanade, 1992]. We always test both al-
gorithms and choose the better result by comparing their re-
projection errors. We set the number of RANSAC draws to
100, and take a random subset of 500 and 30 corresponding
points for spatial resection and long focal length algorithms, re-
spectively. Finally, a per-triplet bundle adjustment is run on the
randomly reduced points.

4. STRUCTURE APPROXIMATION

Figure 2 illustrates a toy example of the structure approxima-
tion algorithm. Given a set of initial 3D points resulting from
per-pair or per-triplet intersection (see On straight lines inter-
section), we calculate an ellipsoid inscribed in the points. The
ellipsoid is represented by its eigenvectors, eigenvalues as well
as its center of gravity. These parameters serve to generate a



Figure 2. A toy example of structure approximation in 2D and
3D, where (a) shows the initial 2D structure, (b) shows the fitted
ellipse, (c) the fictitious 2D structure, and (d) is the equivalent in
3D.

set of new, fictitious 3D points and their corresponding image
measurements. In the same vein, Mayer [Mayer, 2014] sugges-
ted a point reduction approach to speed-up the merging process
in hierarchical SfM.

The ellipsoids are established for both triplets and pairs of im-
ages. To begin with, the center of gravity µP and the covariance
matrix KP are determined:

µP =
1∑N

i=1 PdsPi

·
N∑
i=1

Pi · PdsPi , (3)

KP =
1∑N

i=1 PdsPi

·
N∑
i=1

Pds2Pi
· PiPTi − µP · µTP, (4)

where P = {Pi} are the point correspondences, Pds is the
weight function that penalizes large reprojection errors (er) and
small base-to-height ratios (bh), Pds = 1/

[
1 + er

α·bh
2
]
. In our

experiments α was fixed to 10. Then, the eigenvalues and ei-
genvectors of theK matrix are retrieved with the Jacobi method
[Press et al., 1992].
We choose to approximate the structure with 5 symmetrically
distributed points (see Figure 2 (d)) because it is the minimal
number of points sufficient for direct pose estimation algorithms
such as the 5-point algorithm (essential matrix), spatial resec-
tion as well as for a similarity transform that brings two stereo
reconstructions to a common coordinate frame (e.g. in hier-
archical SfM). Given the eigenvalues e and eigenvectors Ei,
we generate a new point Hi from:

Hi = µ+ e1E1 · hi1 + e2E2 · hi2 + e3E3 · hi3 (5)

where µ is the ellipsoid’s center of gravity; E1, E2, E3 are first,
second and third unit eigenvectors and e1, e2, e3 are their cor-
responding eigenvalues; [hi1 , hi2 , hi3 ] is the position of a ficti-
tious point in the coordinate frame of the eigenvectors. In our
5-point configuration from Figure 2 (d), the following positions
were used: h1 = [−1, 1, 1], h2 = [1,−1, 1], h3 = [1, 1,−1],
h4 = [0, 0, 0], h5 = [−1,−1,−1]. After the first generation
of the new structure, we verify that its eigenvectors and eigen-
values were preserved. If they deviate from their initial values,
we recalculate the new structure using an appropriate correc-
tion factor. Inspired by Mayer [Mayer, 2014], we additionally
extended our experiments to generating 5 randomly distributed
points. The reported results are always a mean value over 100
or 1000 repeated random calculations. In the bundle adjust-
ment, the reduced points are weighted according to the num-
ber of points that contributed to calculating the ellipsoid using:
Pds = 1 − NbMax

Nb+NbMax
, where Nb are the initial points, and

NbMax was set to 100.

Dataset Nimages Ntri
F-P11 11 52
HJ-P8 8 18
HJ-P25 25 228
C-P10 10 44
C-P19 19 68
C-P30 30 214
CAR 647 4167
UAV 73 440

Table 2. Number of images (Nimages) and triplets (Ntri) in re-
spective datasets.

Image correspondences Ratio
Dataset Init. Ep+tri Etri Ep Init

p+tri

F-P11 31929 1796 1432 364 18
HJ-P8 17084 736 540 196 23
HJ-P25 96155 8158 6638 1520 12
C-P10 25704 1628 1296 332 16
C-P19 40008 2396 1850 546 16
C-P30 148695 7726 6212 1514 19
CAR 2175980 157878 128688 - 13
UAV 170824 16388 13046 3342 10

Table 3. Number of extracted features in respective datasets. Init
are the features extracted with SIFT [Lowe, 2004], Ep, Ep+tri
and Etri are respectively the fictitious image points derived from
structure approximated on pairs, pairs and triplets, as well as
triplets only.

5. RESULTS

We run experiments on three groups of datasets: the Strecha
benchmark [Strecha et al., 2008], a sequential dataset (CAR)
acquired by a mobile mapping system, and a drone dataset (UAV).
The number of images, number of corresponding points and
number of triplet pairs per dataset is shown in Tables 2 and 3.
In Tables 4, 6 and Figure 3 the results are evaluated with re-
spect to ground truth data, and with respect to other software
solutions. To bring the results to the same coordinate frame,
we perform a 7-parameter transformation on the cameras’ per-
spective centers. The Average positional error refers to respect-
ive perspective centers’ differences once the transformation has
been applied.
Strecha images are provided with their ground truth poses. The
CAR dataset contains 647 images that amount to an approxim-
ately 2km trajectory without loops (see Figure 4). The cam-
era ground truth poses were calculated using highly accurate
ground control points measured in the field with classical sur-
veying techniques (point positional accuracy in the range of
few mm). To avoid having to measure many ground control
points across the entire trajectory length, the vehicle moved in
circles around a block of buildings, and during processing the
image correspondences were extracted only between immediate
cameras. The SfmInit [Wilson, Snavely, 2014] solution did not
suceed in orientating the CAR image set, therefore, we needed
to resort to an alternative global SfM available in MicMac [Pier-
rot Deseilligny, Cléry, 2011]. A possible explanation is that the
CAR dataset is a linear acquisition, with potentially many cam-
eras located on the same 3D line. Such acquisitions form a de-
generate case for algorithms based only on pairwise constraints.
For the same reason the BA refinement on structure approxim-
ated with pairs of images (Ep) did not converge.
The UAV dataset contains 73 images over an area of 150x160m
as illustrated in Figure 5. Analogously to the CAR dataset, the
ground truth poses were calculated using ground control points



measured in the field. Here as well, SfmInit did not manage to
provide an initialisation to the final BA, hence, we resorted to
MicMac [Pierrot Deseilligny, Cléry, 2011].
The followed general pipeline includes:

1. Extraction of correspondences with SIFT [Lowe, 2004];

2. Building of relative motions (Section 3);

3. Approximating the structure (Section 4), variants based
on:

(a) pairs, Ep;

(b) triplets, Etri;

(c) pairs and triplets, Ep+tri;

(d) pairs and triplets with random point distribution, Erndp+tri;

4. Computation of global motions with SfmInit [Wilson, Sna-
vely, 2014] or MicMac (MMInit) [Pierrot Deseilligny, Cléry,
2011];

5. Bundle adjustment on camera poses and image corres-
pondences [Pierrot Deseilligny, Cléry, 2011], with the same
number of iterations;

6. Comparison with the ground truth data (Table 4-5, Fig-
ure 3).

Running times Tables 5, 6 and Figure 3 report on the run-
ning times. All our experiments were carried out on a ma-
chine with Intel Core i7-8550U, 1.8GHz x 8 processor. The
Ours approaches concern time spent on the final BA. To de-
duce the integral processing time, one should add it to the time
spent on calculating the initial solution. For a just evaluation,
in Table 5, we look at the ratio SfmIBA

Ours
, which compares the

BA processing times with SIFT to our approximated structure
approach. We are faster in all instances by a few factors.

Structure approximation variants Approximating the struc-
ture with triplets only (Etri), or triplets and pairs (Ep+tri) of
images turns out to be the best solution throughout all pro-
cessed acquisitions. We can assume that for well connected
images, which is the case for the three acquisitions tested, us-
ing triplets only is accurate enough and fast. For sparser con-
nections, adding pairs may be indispensable. We have also ob-
served a mediocre performance when the structure was approx-
imated only with the pairs (Ep). In general, the refinement step
succeeds in improving accuracy with respect to initial poses,
and the variants with structure approximated by triplets of im-
ages perform at least as good as the sequential SfMs solution.

Deterministic or random fictitious points The results of the
three experiments using random points do not stand out from
the 5-point configuration. On the Strecha benchmark as well as
the UAV dataset, the random distribution is only slightly worse
than the best solutions. On the other hand, in the CAR data-
set, the random selection sometimes outperforms the other three
variants. We perceive that what discriminates the acquisitions
is the scene geometry. In the CAR dataset, the scene is charac-
terised by very large depth variations, which allows it to fully
model the local structure even of randomly sampled.

Limitations The structure approximation approach is not
meant for image sets with unstructured connectivity graphs (e.g.
Internet photo collections). The overwhelming redundancy of
images does not reduce the information content across the scene,
hence, does not accelerate the processing.

6. CONCLUSION

There are two leading contributions in this publication. First,
we introduce a combinatorial approach to estimating relative
motions which enhances the robustness to identified degenerate
cases. Second, for a given relative motion, we propose a way
of abstracting its 3D structure, such that the motion’s estima-
tion properties are preserved. The abstracted structure injected
into a bundle adjustment effectively refines the initial solution
at very low computational cost. The concept is validated with
respect to ground truth data as well as other software solutions.
Future work will concentrate on the purely structureless bundle
adjustment, with exclusively view-dependent constraints and a
thorough propagation of the minimal structure via relative and
absolute motion covariance matrices.
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Accuracy err [mm]
SfmI Colmap MM SfmI Ours Ours Ours Ours

Dataset After BA Erndp+tri Ep Etri Ep+tri
F-P11 163.8 1.4 1.8 1.3 1.3 33.6 1.0 1.0
HJ-P8 70.5 2.8 5.2 2.7 2.8 2.0 2.6 2.5
HJ-P25 95.3 3.9 5.8 4.3 3.8 4.8 3.5 3.4
C-P10 105.5 5.2 3.3 5.5 5.7 44.4 5.9 5.5
C-P19 1630.8 31.3 16.3 20.0 55.0 350.1 21.3 56.2
C-P30 1346.3 14.7 11.2 13.3 16.7 263.5 12.7 12.6

Table 4. Strecha benchmark. Average position error (err) w.r.t ground truth for different sequential [Pierrot Deseilligny, Cléry, 2011],
[Schonberger, Frahm, 2016] SfMs, as well as our approach (Ours). SfmI is the initial solution found with [Wilson, Snavely, 2014]
that we relied upon in our BA. The Erndp+tri corresponds the solution with structure approximated by pairs an triplets with randomly
distributed points; a mean value over 1000 repeated calculations is reported; Ep, Etri, Ep+tri are the solutions where the structure is
approximated with 5 points (see Figure 2(d)), and structure is approximated with pairs, triplets and the fusion of both, respectively.

Running time τ [s]
SfmI Colmap MM SfmI Ours Ours Ours Ours

Dataset BA Erndp+tri Ep Etri Ep+tri
F-P11 3.0 4.3∗ 11.2∗ 1.9 0.7 0.5 0.6 0.7
HJ-P8 2.9 2.5∗ 6.8∗ 1 0.4 0.3 0.4 0.4
HJ-P25 3.1 18.2∗ 40.2∗ 8.9 2.5 1.5 1.6 2.1
C-P10 3.0 4.0∗ 9.4∗ 1.7 0.9 0.5 0.6 0.8
C-P19 3.2 8.2∗ 14.5∗ 8.3 1.7 0.7 0.8 1.5
C-P30 3.3 24.3∗ 195.0∗ 9.7 4.5 1.4 2.4 3.8

Table 5. Strecha benchmark. Running times τ in conjuction with the results presented in Table 4. Note that the times for Ours concern
only the BA step. Times markes with (∗) correspond to the total incremental SfM.

Accuracy Running time
err [mm] τ [s]

Colmap 17.5 25.0
MM 27.2 39.1
MMInit 41.0 50.0
MMInit BA 30.0 61.0
Ours Erndp+tri 21.0 9.8
Ours Ep 27.4 3.8
Ours Etri 18.2 5.3
Ours Ep+tri 17.0 7.2

Table 6. UAV dataset. Average position error (err) and running
times (τ ). MMInit and MM are the global and sequential SfMs
in MicMac. MMInit BA corresponds to the BA refinement on
the initial solution. Note that the times for Ours concern only the
BA step. In Erndp+tri a mean value over 1000 repeated calculations
is reported.
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Figure 3. CAR dataset. Average position error (err) along the trajectory w.r.t. ground truth for several structure approximation variants:
Erndp+tri in black dashed line, Ep+tri in continuous magenta line, Etri in dotted blue line. MM (green dashed line) and MMInit (green
dash-dotted line) are the sequential and global SfMs in MicMac [Pierrot Deseilligny, Cléry, 2011], and in red continuous like it is
Colmap’s SfM [Schonberger, Frahm, 2016]. MicMac and Colmap results were computed with with SIFT [Lowe, 2004]. In variant
Erndp+tri a mean value over 100 repeated calculations is reported. The high frequency drift is due to the cyclic nature of the acquistion
geometry.

Figure 4. Left: excerpt from the CAR dataset. Right: (a) and (c) is the ground truth in top and side view; (b) and (d) is the equivalent
Ep+tri result. Note the multiple facade effect in (b) and (d) due to error accumulation, and leads to a low frequency drift, as plotted in
Figure 3.

Figure 5. Left: excerpt from the UAV dataset. Right: (a) and (c) is the ground truth in oblique and side view; (b) and (d) is the equivalent
SfmInit result. Note the erroneous initialisation of SfmInit in (b) and (d) where exclusively pairwise constraints are used.
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