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Abstract

Spatial and spatio-temporal single-structure point process models are widely

used in epidemiology, biology, ecology, seismology . . . . However, most natu-

ral phenomena present multiple interaction structure or exhibit dependence at

multiple scales in space and/or time, leading to define new spatial and spatio-

temporal multi-structure point process models. In this paper, we investigate

and review such multi-structure point process models mainly based on Gibbs

and Cox processes.
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1. Introduction

Fundamental concepts of the theory of point processes emerged from life

tables, renewal theory and counting problems [28]. The modern theory has

mainly been developed between 1940’s and 1970’s (see e.g. the monographs

by Palm [69], Feller [36], Bartlett [12], Matérn [59] and Cox [23, 24]) and is

linked to nonlinear techniques in stochastic process theory [13, 14]. From 1980’s

spatial and spatio-temporal point processes have then become a subject on their
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own right. Today, they cover a plethora of applications in ecology, forestry,

astronomy, epidemiology, seismology, fishery. . .

Spatial (and spatio-temporal) point process data are a collection of points

for which locations (and times) of occurrence have been observed in a specified

spatial region (and temporal period). Usually, the terms points and events are

respectively used for arbitrary locations and for observations. The main goals

in the analysis of point patterns concern the specification of intensity variations

(first-order moment), interaction between events (second-order moment) and

model identification for the underlying process. Processes are often classified

into three classes of interaction structure [30]:

• randomness: In the absence of any interaction between events, a point

pattern is said Completely Spatially (or Spatio-Temporally) Random in

the sense that the probability that an event occur at any point is equally

likely to occur anywhere within a bounded region and that its location

(and time) is independent of each any other event. This property provides

the standard baseline against which point patterns are often compared.

The simplest and most fundamental point process for modelling a complete

random distribution of points is the Poisson point process [53, 54]. It is

used as null hypothesis for statistical test of interaction [31, 50].

• clustering or aggregation: In a clustered distribution, events tend to be

closer than would be expected under complete randomness. Clustered

patterns are mainly modelled by Cox processes [25], in particular log-

Gaussian Cox processes [60, 16, 17, 34], Poisson Cluster processes [65, 18,

38] and Shot-Noise Cox processes [15, 64, 63].

• inhibition or regularity : In a regular distribution, events are more evenly

spaced than would be expected under complete randomness. This struc-

ture can be modelled by Strauss processes [82, 27], Matérn hard core

processes [59, 37] or determinantal point processes [58, 55].

Gibbs processes [77, 74, 29] offer a large class of models which allow any of the
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above interaction structure.

These single-structure point process models are too simplistic to describe

phenomena with interactions at different spatial or spatio-temporal scales. That

is for instance the case of seismic data as the different sources of earthquakes

(faults, active tectonic plate and volcanoes) produce events with different dis-

placements [78] and can be seen as the superposition of background earthquakes

(which are distributed over a large spatio-temporal scale with low density) and

clustered earthquakes (which are distributed over a small spatio-temporal scale

with high density) [71]. Such multi-structure phenomena motivate statisticians

to construct new spatial point process models, e.g. in ecology [57, 87, 73], in

epidemiology [47] and in seismology [78, 79], mainly based on Gibbs processes,

but not only [56]. There are very few spatio-temporal models: [40] and [76]

modeled the multi-scale spatio-temporal structure of forest fires occurrences by

log-Gaussian Cox processes (LGCP) and multi-scale Geyer saturation process

respectively, [48] developed a multi-scale area-interaction model for varicella

cases and [52] modelled the locations of muskoxen herds by LGCP with a con-

structed covariate measuring local interactions.

In the spatial point processes literature, three general approaches are consid-

ered for constructing multi-structure point process models: hybridization [10],

thinning and superposition [19]. Hybridization consists in combining two or

more point process models [9]. Spatial hybrids of Gibbs models are defined

in [10] and hybrids of area-interaction potentials in [73]. Extension of the hy-

bridization approach to the spatio-temporal framework has recently been consid-

ered in [48, 76]. Thinning consists in deleting points of a point process according

to some probabilistic rule which is either independent or dependent of thinning

other points [19]. This operation allows to get point processes with inhibition

at small scales and attraction at large scales [6, 56]. Superposition of several

processes is the union of the points of each process. It can be useful to model

multi-scale clustered processes [87].

In this paper, we give a thorough overview of available methods and models

for spatial and spatio-temporal multi-structure point process data. In Section 2,
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we review the required preliminaries which include definitions and properties of

point processes and single-structure models. In Section 3, we investigate the spa-

tial and spatio-temporal multi-structure point process models based on Gibbs

and Cox processes and other methods for introducting new multi-structure mod-

els. Finally, Section 4 provides concluding remarks and discusses directions for

future research.

2. Inhomogeneity and structures in point patterns

2.1. Definitions

We consider a finite spatial or spatio-temporal point process X observed

in W, where W denotes either a spatial region W ⊂ Rd or a spatio-temporal

region W × T ⊂ Rd ×R. We denote x a realization of the point process, i.e. a

collection of events {xi}i=1,...,n (or {(xi, ti)}i=1,...,n) ⊂ W. Let ξ be any point

in W. We refer to [28, 19] (resp. [33, 35, 43]) for more formal definitions of

spatial (resp. spatio-temporal) point processes. Without loss of generality, we

set d = 2 throughout this paper. The main characteristics driving the spatial

(resp. spatio-temporal) distribution of points are the intensity function, which

governs the univariate distribution of the points of X, and the pair correlation

function, which governs the bivariate distribution of the points of X, i.e. the

interaction between events. In the following we remind some definitions and

properties when X is a spatial or a spatio-temporal point process.

Campbell’s theorem [19] relates the expectation of a function, h assumed to

be non-negative and measurable, summed over a point process X to an integral

involving the mean measure of the point process :

E

 6=∑
ξ1,...,ξk∈X

h(ξ1, . . . , ξk)

 =

∫
. . .

∫
h(ξ1, . . . , ξk)λ(k)(ξ1, . . . , ξk)Πk

i=1dξi,

where ξi ∈ W and λ(k), k ≥ 1, are the product densities. For a simple point

process, i.e. ξi 6= ξj for i 6= j, if they exist, the product densities are re-

lated to the counting measure N in infinitesimal spatial or spatio-temporal
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regions dξ1, . . . ,dξk ⊂ W, around ξ1, · · · , ξk, with volumes |dξ1|, · · · , |dξk| :

P [N(dξ1) = 1, . . . , N(dξk) = 1] = λ(k)(ξ1, . . . , ξk)Πk
i=1dξi. Thus, the intensity

function is related to the expected number of points in infinitesimal regions

λ(ξ) = λ(1)(ξ) = lim
|dξ|→0

E[N(dξ)]

|dξ|

and the pair correlation function is defined by

g(ξi, ξj) =
λ(2)(ξi, ξj)

λ(ξi)λ(ξj)
. (1)

A point process is homogeneous when its intensity is constant, λ(ξ) = λ, ∀ξ,

inhomogeneous otherwise. In practice, the inhomogeneity is often driven by en-

vironmental covariates and we account for them by using parametric models for

the intensity function [9]. Under the assumption of stationarity, the properties

of the point process are invariant under translation and the process is homoge-

neous. The second-order stationarity states that the second-order intensity only

depends on the difference between points λ(2)(ξi, ξj) = λ(2)(ξi− ξj). Because in

practice most of processes are inhomogeneous, [8, 39] weakened it and defined

the second-order intensity-reweighted stationary assumption for which the pair

correlation function (1) is well-defined and a function of ξi − ξj . [85] provides

general concepts of factorial moment properties. The previous definition of in-

homogeneous processes is not unique, [45] defined inhomogeneous model classes

(including the class of reweighted second-order stationary processes) into the

common general framework of hidden second-order stationary processes. The

pair correlation function describes the structure of dependence/interaction be-

tween points : g(ξi, ξj) = 1, > 1 and < 1 indicates that the pattern is, respec-

tively, completely random, clustered and regular.

Assume that the distribution of the point process is defined by a probability

density f(x) with respect to the distribution of a unit rate Poisson process. The

probability density can be used to study point processes. It can be viewed as the

probability of getting the point pattern x, divided by the same probability under

Complete Randomness [9]. The mathematical form of the probability density

determines the structure of the point process, see [21, 22] about formulation of
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the density of point processes. A closely related concept is the Papangelou con-

ditional intensity function [70], which has been extended to the spatio-temporal

framework by [27]. It is defined by

λ(ξ|x) =
f(x

⋃
ξ)

f(x)
, (2)

for ξ /∈ x provided f(x) 6= 0.

2.2. Classical point process models

We refer to [31, 64, 50, 19, 9] and [27, 33, 35, 37, 43] for a presentation of

most of spatial and spatio-temporal point process models. Hereafter we only

focus on the ones mentioned/used in Section 3 to construct multi-structure point

process models, namely the Poisson, Cox and Gibbs processes.

Poisson point processes

The Poisson point process is the reference model for independence of the lo-

cations of events, i.e. for complete spatial (or spatio-temporal) randomness. It

is also the simplest and most widely used inhomogeneous point process model.

Poisson point processes with intensity function λ(ξ) are defined by two postu-

lates :

• The number of points in any region B ⊆ W, N(B), follows a Poisson

distribution with parameter
∫
B
λ(ξ)dξ,

• For all B ⊆ W, given N(B) = n, the n events in B form an indepen-

dent random sample from the distribution on B with probability density

function λ(ξ)/
∫
B
λ(ξ)dξ.

The probability density of a Poisson point process with respect to the unit rate

Poisson process is

f(x) = exp

(
|W|−

∫
W
λ(ξ)dξ

)
Πξ∈xλ(ξ).

Then, from Equation (2), the Papangelou conditional intensity is λ(ξ|x) = λ(ξ)

and λ(2)(ξi, ξj) = λ(ξi)λ(ξj), so that g(ξi, ξj) = 1.
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Cox processes

Cox processes, so-called doubly stochastic point processes [23], are consid-

ered as a generalization of inhomogeneous Poisson processes where the intensity

is a realization of a random field Λ = {Λ(ξ)}ξ∈W . These models are particularly

useful as soon as spatial variation in events density reflects both the environ-

ment and dependence between events. Moreover, their first- and second-order

moments being tractable, they are very attractive. We have

λ(ξ) = E[Λ(ξ)] and g(ξi, ξj) =
E[Λ(ξi)Λ(ξj)]

λ(ξi)λ(ξj)
= 1 +

cov (Λ(ξi),Λ(ξj))

λ(ξi)λ(ξj)
. (3)

The probability density f(x) = E
[
exp

(
|W|−

∫
W Λ(ξ)dξ

)
Πξ∈xΛ(ξ)

]
is intractable

for these processes. Consequently, the Papangelou conditional intensity is not

known. The second-order intensity function λ(2)(ξi, ξj) = E [Λ(ξi)Λ(ξj)] is only

tractable for two special cases of Cox processes, that we present below, the Shot

Noise Cox process and the log-Gaussian Cox process.

Shot noise Cox processes [61] (SNCP) are a wide class of Cox processes

associated to

Λ(ξ) =
∑

(c,γ)∈Φ

γk(c, ξ),

where Φ is a Poisson point process on W × [0,∞) with intensity measure ζ and

k(c, ·) is a density function on W, ∀c ∈ W. The intensity and pair correlation

function are

λ(ξ) =

∫
γk(c, ξ)dζ(c, γ) and g(ξi, ξj) = 1 +

∫
γ2k(c, ξi)k(c, ξj)dζ(c, γ)

λ(ξi)λ(ξj)
.

SNCP include Poisson cluster processes, i.e. a Poisson process in which each

point is replaced by a cluster of points, the original point is considered as the

cluster center [26]. When the points in the cluster are independently and identi-

cally distributed about the cluster centre, the process is referred to as a Neyman-

Scott process [65]. Two mathematically tractable models of Neyman-Scott pro-

cesses are the Thomas process [83], where k is a zero-mean normal density, and

the Matérn cluster process, where k is a uniform density on a ball centered at

the origin.
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Log-Gaussian Cox processes (LGCP) have been introduced in [60], consid-

ering that the intensity is a log-Gaussian process : Λ(ξ) = exp (Y (ξ)), where Y

is a real-valued Gaussian random field, with mean function µ(ξ) and covariance

function C(ξi, ξj). In that case, from Equation (3) we have

λ(ξ) = exp (µ(ξ) + C(ξ, ξ)/2) , ∀ξ ∈ W and g(ξi, ξj) = exp (C(ξi, ξj)) , ∀ξi, ξj ∈ W.

The expression of the pair correlation function shows that the interaction is con-

trolled by the second-order moment of Y . If C(ξi, ξj) ≥ 0, we get g(ξi, ξj) > 1

and clustering. As they are based on a latent random field describing the inten-

sity, LGCPs have a hierarchical structure making them particularly flexible [50].

Note that the interaction is controlled through the second-order moment of the

Gaussian random field, so that LGCPs do not describe the mechanistic process

generating the points what is the case of most of Gibbs processes (see below)

for which the dependence between points is controlled through local interaction

between pairs of points.

Gibbs point processes

A finite Gibbs point process on W admits a density

f(x) = exp (−Ψ(x)) (4)

w.r.t. the Poisson process of unit intensity on W. The potential function Ψ is

often specified as the sum of pair potentials :

Ψ(ξ1, . . . , ξn) = α0 +
∑
i

α1(ξi) +
∑
i<j

α2(ξi, ξj) + · · ·+ αn(ξ1, . . . , ξn), (5)

with α0 a normalizing constant for the density and the pair potentials α1, α2, . . .

which determine the contribution to the potential from each δ-uple of points.

Note that, if the αδ, δ ≥ 2 are identically zero, the process is Poisson with

intensity λ(ξ) = exp(−α1(ξ)). Hence, α1 can be viewed as controlling a spatial

(or spatio-temporal) trend, while the αδ, δ ≥ 2 control the interactions between

events. The normalizing constant is generally intractable, so it is often impos-

sible to compute the intensity and pair correlation function of Gibbs processes.

However, the Papangelou conditional intensity can be computed [22].
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When the interaction between points is restricted to pairs, i.e. for

f(x) = αΠiβ(ξi)Πi<jγ(ξi, ξj),

with α > 0, β an intensity function and γ a symmetric interaction function, the

process is called pairwise interaction process [30, 84]. A well-known example of

such processes is the Strauss process [82] for which

f(x) = αβn(x)γs(x),

where β, γ > 0, n(x) is the number of points in x and s(x) the number of

neighbour pairs of x at distances less than a given distance R. When γ = 0, we

get the Hard Core process. Note that in the Strauss process, γ should be smaller

than 1 otherwise the density is no integrable. [41] modified the Strauss process

and proposed the Geyer saturation process in which the overall contribution

from each point is trimmed to never exceed a maximum value. We thus have

f(x) = αβn(x)Πξ∈xγ
min(s,t(ξ,r,x)),

where α, β, γ, r, s are parameters and t(ξ, r,x) is the number of other events

lying with a distance r of the point ξ.

3. Multi-structure point process models

Spatial and spatio-temporal single-structure point process models presented

in the previous section are generally used when only one type of interaction

governs the structure of the point pattern. When there are indications that the

spatial or spatio-temporal structure combines several structures or varies with

ranges of distances, we need to consider multi-structure point process models.

We present in this section some of these models derived from the classes of

Gibbs and Cox processes. By nature, few spatial point processes can exhibit

directly several structures and/or scales of interaction and we recall some use-

ful construction techniques to incorporate the multi-structure: hybridization,

thinning, superposition or clustering.
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3.1. Models based on Gibbs processes

Gibbs point processes are mainly used to model repulsion structure in point

patterns, even if some examples exist for modelling low clustering [19]. Their

definition through the potential function Ψ fit well in the statistical mechanics

framework where the spatial modelling of particles needs often to consider their

interaction. It is common in various domains (mechanics, biology. . . ) to observe

repulsion at short range and aggregation at medium-long range of entities, lead-

ing to define multi-structure point processes models.

For pairwise interaction processes, some parametric potential functions can

be defined to take into account multiple scales of interaction, see e.g. [77, 67,

72, 20, 44]. We consider in the sequel the homogeneous case, i.e. when α1 is

constant and the pair potential function α2(ξi, ξj) = α2(‖ξi − ξj‖) in (5).

The Lennard-Jones pair potential function, well-known in statistical me-

chanics, is given by

α2(r) = ε1

(σ
r

)m1

− ε2
(σ
r

)m2

, ∀r > 0

where m1 > m2, ε1, σ > 0 and in the multi-structure case ε2 > 0. Another one

is the step potential function given by

α2(r) = cl if Rl−1 < r ≤ Rl ∀l = 1, · · · ,m

where R0 = 0, Rm =∞, c1 =∞, cm = 0 and cl ∈ R for l = 2, · · · ,m− 1. The

resulting model is an extension of the Strauss process to the multi-scale frame-

work [72]. The square-well potential is obtained with l = 2. More recently,

[42] introduced a pair potential function varying smoothly over distance with

scale interactions defined through a differential system of equations. Other pair

potential functions can be found in the literature for modeling multi-structure

phenomena, e.g. in [67, 19].

Some of these pair potential functions define multi-scale generalizations of

single scale Gibbs processes. Indeed, the step potential functions of homoge-
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neous pairwise interaction processes in [30] and [72] represent multi-scale exten-

sions of the Strauss process where the density is given by

f(x) = αβn(x)
m∏
l=1

γ
sl(x)
l ,

where sl(x) =
∑
i<j 1(Rl−1 < ‖ξi − ξj‖≤ Rl).

In the same way, the multi-scale generalization of the area-interaction model

has been introduced in [3, 4, 5] with a two-scale structure and in [73] for multi-

scale marked area-interaction processes. Its density function in a homogeneous

multi-scale case is given by

f(x) = αβn(x)
m∏
l=1

exp(−κlU(x, rl))

where U(x, rl) is the d-dimensional volume of the set W ∩
⋃
ξ∈x b(ξ, rl), with

b(ξ, rl) the ball centered at ξi of radius rl > 0. The sign of κl defines the lth

structure : inhibition if negative, clustering otherwise. [66] used area-interaction

point processes for bivariate point patterns for modelling both attractive and

inhibitive intra- and inter-specific interactions of two plant species.

[10] defined a new class of multi-scale Gibbs point processes named hybrid

models and including the two previous generalization examples. This unified

framework allows to define properly generalizations of single-scale Gibbs point

processes by preserving Ruelle and local stability [84]. This hybridization tech-

nique consists in defining the density function of a multi-scale point process

model as the product of several densities of Gibbs point processes, so that

f(x) = cf1(x)...fm(x)

where c is a normalization constant and fl is a Gibbs density function for

l = 1, · · · ,m. The choice of the normalization constant allows to well define

a probability density in the case where the product f1...fm is integrable. The

integrability condition is of course essential and induced by others conditions
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on the fl (Ruelle statbility, local stability or hereditary, see [10]) which play

an important role in simulation algorithms and are established in general to

demonstrate the model validity of the hybrid process.

[10] introduced the spatial multi-scale Geyer saturation point process that

was applied in epidemiology by [47] and in seismology by [78] and [79]. [76] ex-

tend the definition and the estimation procedure in the general case of an inho-

mogeneous spatio-temporal multi-scale Geyer saturation process which density

is given by

f(x) = c
∏
ξ∈x

λ(ξ)

m∏
l=1

γ
min{sl,n(C

ql
rl

(ξ);x)}
l (6)

where λ ≥ 0 is a measurable and bounded function, γl, rl, ql and sl > 0 are the

model parameters and n(Cqr (ξ);x) =
∑
ξi∈x\ξ 1{||xi − x||≤ rl, |ti − t|≤ ql} is

the number of other points in x which are in a cylinder centred on ξ ∈ x with

spatial and temporal radii rl and ql. For fixed l ∈ {1, . . . ,m}, when 0 < γl < 1

we would expect to see inhibition between events at spatio-temporal scales. On

the other hand, when γl > 1 we expect clustering between events. We observe

that Equation (6) reduces to an inhomogeneous Poisson process when sl = 0

∀l ∈ {1, . . . ,m}. [75] used a multitype generalization of Gibbs point processes

with point-to-point interactions at different spatial scales in order to model a

complex rainforest data of 83 species.

The definition of hybrid Gibbs models does not impose to consider the same

m Gibbs models which is emphasized in [9]. In this way, [11] applied a hybrid

model with three model structures at different ranges of distance to the spatial

pattern of halophytic species distribution in an arid coastal environment. They

considered a hardcore process at very short distances, a Geyer process at short

to medium distances and a Strauss process for the structure at large distances.

3.2. Models based on Cox processes

Cox processes are mainly defined from additive or log-linear random intensity

functions. Their hierarchical structure allows to quantify the various sources of

variation governing the spatial or spatio-temporal distribution of the pattern
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of interest. They are widely used for modelling environmental and ecological

patterns.

Cluster Cox processes and superposition

Some Cox processes are obtained by clustering of offspring points around

parent points and correspond to specific cases of cluster processes. This two-

step construction allows to consider easily different structures for the patterns

of parents and offspring.

[62] introduced the class of Generalized Shot Noise Cox processes (GSNCP),

extending the definition of SNCP, and allowing relevant multi-structure point

processes for modelling regularity and clustering in many applications. This

class has two advantages. Firstly, the parent process is not restricted to be

Poisson, as in Neyman-Scott processes, and can be a repulsive Gibbs point

process in order to add inhibition between the clusters. Secondly, in each cluster,

the intensity and the bandwidth of the dispersion kernel can be random. By

consequence, a GSNCP is a Cox process driven by a random field of the form

Λ(ξ) =
∑

(c,γ,h)∈Φ

γkh(c, ξ),

where Φ is a point process on W× [0,∞)× [0,∞) and h is a bandwidth for the

kernel density kh(c, ·). So, given Φ, a GSNCP is distributed as the superposi-

tion ∪lXl of independent Poisson processes with intensity functions γlkhl
(cl, ·)

where {γl}l, {hl}l are random and Φcent = {cl}l is the parent process. In

population dynamics, with G0 a Poisson process for the initial population and

Gn+1 a GSNCP where the cluster centers are given by Gn, the superposition of

GSNCPs G0, G1, . . . is a spatial Hawkes process [46]. The GSNCP class con-

tains the special cluster Cox process defined in [88], where the parents process

is a Strauss process. This model coupling inhibition at medium/long range and

aggregation in cluster is applied to tree locations in a rain-forest, in order to

consider the competition and reproduction mechanisms. [1] and [2] generalized

the Neymann-Scott process by considering a log-Gaussian Cox process model

for the parents, instead of a homogeneous Poisson process, leading to two scales
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of clustering, inter- and intra-clusters. This hierarchical model is applied to

storm cell modelling in North Dakota.

Wiegand and co-authors’ papers [87, 86] consider several construction of

Cox processes incorporating clustering at multiple scales. The nested double-

cluster process is an extension of the Thomas process in an multi-generation

evolution of the population where the offspring become parents and generate

offspring. They consider also the superposition of cluster processes, like the

Thomas process.

Cox processes with constructed covariate

Another way to incorporate both small and large spatial scale structure in

Cox processes is to define a constructed covariate measuring the local structure

of a point pattern associated to an additional spatial effect at medium-long

range. This methodology developed in [51] and applied to koala data is used

again in [52, 49] for other spatial ecological data. They consider a log-Gaussian

Cox process in a Bayesian framework in order to apply the INLA approach for

speeding up the estimation of parameters in comparison to MCMC approaches

that are very time-consuming. [40] used also this approach in the context of

wildfire modelling in Mediterranean France. In the case of a spatial LGCP

model, the method consists in estimating the random field Λ on grid cells si as

follow

Λ(si) = exp

(
β0 + f(zc(si)) +

p∑
k=1

fk(zk(si)) + Y (si)

)
where β0 is the intercept, f(zc(·)) is a function of the constructed covariate zc,

fk, k = 1, · · · , p are functions of the observed covariates zk and Y is a Gaussian

random field taking into account the spatial autocorrelation not explained by

the covariates. This intensity is estimated for each cell si of a grid partitioning

the observation window.

In [51], the constructed covariate at each center point c of the grid cell s

is the distance from c to the nearest point in the pattern outside the grid cell,

i.e zc(s) = minξ∈x\s(‖c − ξ‖). This constructed covariate describes small scale
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inter-individual behavior whereas the random field Y captures the spatial auto-

correlation at a large spatial scale. The space-time and space-mark extensions

of the constructed covariate definition are respectively introduced in [52] and

[49]. In [40] the constructed covariate corresponds to a temporal intensity index

given by the ratio between the number of wildfires observed spatially close to

an other in a specified period and the total number of closed wildfires observed

outside this given period. This covariate measures the temporal wildfire inhi-

bition at close spatial distances induced by the local burn of vegetation after

a wildfire occurrence. [80] fitted a LGCP to rainforest tree species by adding

to the combination of covariates in the log-intensity a spatial random field and

error field. The first random field captures the spatial autocorrelation in point

counts among neighboring grid cells and the second one the clustering within

grid cells, as a nugget effect in geostatistics. The intensity in s ∈ W is thus

given by

Λ(s) = exp

(
β0 +

p∑
k=1

βkzk(s) +
1√
τ

{√
ρ× Y (s) +

√
1− ρ× ε(s)

})

where βk are linear effects of observed covariates zk, Y is a spatial random

field with autocorrelation between grid cells and ε the error field driving the

aggregation structure within grid cells.

Thinned point processes

Thinning is a an operation allowing to delete points in a point process in

order to obtain a new one with different characteristics. Each point of a point

process has a probability 1−π of deletion, where the retention probability π can

be constant or not, independent of the location point or depending on one to

several points. For Cox processes, this technique is generally applied to create

random local regularity. For example, [6] applied a Matérn hard core depen-

dent thinning to a Shot Noise Cox process to obtain short range repulsion with

medium range clustering. For a given point pattern and a specified distance h,

Matérn hard core thinning acts by first attaching random positive marks (ar-

rival times) to each point. Subsequently a point is removed if it has a neighbour
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within distance h and with a smaller mark (i.e. the neighbour arrived earlier).

In that way, for a given location ξ, the retention probability π(ξ) is the ratio

between the intensities of the thinned process and the original process at ξ. [56]

extended the definition of interrupted point processes in [81] and [19] and con-

sidered a spatial point process X obtained by an independent thinning driven

by a random process Z on a regular point process Y . An example is given with

Y a Matérn hard core process and Z the transformation by a characteristic

function of a Boolean disc model [19].

4. Discussion and conclusion

This paper presents a review of methods for constructing multi-structure

point processes for modelling aggregation and/or inhibition at different spatial

or spatio-temporal scales. We focus our attention on the main two classes of

point processes, namely the Gibbs and Cox processes. Some multi-structure

techniques are specific to a family of point processes, as the hybridization ap-

proach for Gibbs processes or the double-cluster process for Cox processes; oth-

ers are more global, as the superposition or the thinning method, even if they are

respectively more adapted to Gibbs or Cox processes. We could also consider

determinantal point processes to model regularity as in [56] who considered it

instead of the Matérn hard core process. Spatio-temporal point processes can

also be defined by conditioning on the past, often used in epidemiology or seis-

mology. For instance, the definition of the conditional intensity in [32] allows

an aggregation of cases in the spatio-temporal spread of the foot and mouth

disease and also a random occurrence of cases in the entire observation domain.

We selected the most relevant references for us in the state-of-the-art of these

types of Gibbs and Cox models to describe these approaches for introducing reg-

ularity in cluster processes and aggregation in repulsive processes. Because these

models are suitable in an environmental and ecological framework, due to the

complexity of mechanisms governing attraction and repulsion of entities (par-

ticles, cells, plants. . . ), we can expect a wide use of these models in many studies.
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[13] Bartlett, M.S. (1955). An Introduction to Stochastic Processes. Cam-

bridge University Press.

[14] Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes. Lec-

ture Notes in Statistics. Springer.

[15] Brix, A. and Chadœuf, J. (2000). Spatio-temporal modeling of weeds

and shot-noise G Cox processes. Biom. J. 44 83–99.

[16] Brix, A. and Møller, J. (2001). Space-time multitype log Gaussian Cox

processes with a view to modelling weed data. Scand. J. Stat. 28 471–488.

[17] Brix, A., Diggle, P.J. (2001). Spatiotemporal prediction for log-

Gaussian Cox processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 63(4)

823–841.

[18] Brix, A. and Kendall, W.S. (2002). Simulation of cluster point processes

without edge effects. Adv. Appl. Prob. 34 267–280.

[19] Chiu, S.N., Stoyan, D., Kendall, W.S. and Mecke, J. (2013).

Stochastic Geometry and its Applications, 3rd ed. Wiley, Chichester.

[20] Clyde, M. and Strauss, D. (1991). Logistic regression for spatial pair-

potential models. Spat. Stat. Imaging 20, 14–30.

18



[21] Coeurjolly, J-F., Møller, J. and Waagepetersen, R.P. (2017). A

tutorial on Palm distributions for spatial point processes. Int. Stat. Review.

85(3), 404–420.

[22] Coeurjolly, J-F. and Lavancier, F. (2019). Understanding Spa-

tial Point Patterns Through Intensity and Conditional Intensities. In:

Coupier D. (eds) Stochastic Geometry. Lecture Notes in Mathematics 2237

Springer. pp 45–85.

[23] Cox, D.R. (1955). Some statistical methods connected with series of events

(with discussion). J. Roy. Statist. Soc. Ser. B, 17 129–164.

[24] Cox, D.R. (1962). Renewal Theory. Methuen, London.

[25] Cox, D. R. (1972). The statistical analysis of dependencies in point pro-

cesses. In Stochastic Point Processes (ed Lewis, P. A. W.), Wiley, New

York, 55–66.

[26] Cox, D.R. and Isham, V. (1980). Point Processes. Chapman & Hall,

London.

[27] Cronie, O. and van Lieshout, M. (2015). A J-function for inhomoge-

neous spatio-temporal point processes. Scand. J. Stat. 42(2) 562–579.

[28] Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory

of Point Processes. Vol. I. New York: Springer-Verlag.

[29] Dereudre, D. (2019). Introduction to the theory of Gibbs point processes.

In Stochastic Geometry. In: Coupier D. (eds) Stochastic Geometry. Lecture

Notes in Mathematics 2237 Springer. pp. 181–229.

[30] Diggle, P.J. (1983). Statistical Analysis of Spatial Point Patterns, Aca-

demic Press, London.

[31] Diggle, P.J. (2003). Statistical Analysis of Spatial Point Patterns, 2nd

ed. Hodder Arnold, London.

19



[32] Diggle, P.J. (2006). Spatio-temporal point processes, partial likelihood,

foot-and-mouth. Stat. Meth. Med. Res. 15 325–336.

[33] Diggle, P.J. and Gabriel, E. (2010). Spatio-temporal point processes.

Handbook of Spatial Statistics. Chapman and Hall/CRC Handbooks of

Modern Statistical Methods, 449–461.

[34] Diggle, P.J., Moraga, P., Rowlingson, B. and Taylor, B.M.

(2013). Spatial and spatio-temporal log-Gaussian Cox processes: extending

the geostatistical paradigm. Statist. Sci. 28(4) 542–563.

[35] Diggle, P.J. (2013). Statistical Analysis of Spatial and Spatio-Temporal

Point Patterns, 3rd ed. Chapman and Hall/CRC, New York.

[36] Feller, W. (1950). An Introduction to Probability Theory and Its Appli-

cations. Wiley, New-York.

[37] Gabriel, E., Rowlingson, B., and Diggle, P.J. (2013). stpp: An R

package for plotting, simulating and analyzing spatio-temporal point pat-

terns. J. Stat. Softw. 53(2) 1–29.

[38] Gabriel, E. (2014). Estimating second-order characteristics of inhomoge-

neous spatio-temporal point processes. Meth. and Comp. App. Prob. 16(2)

411–431.

[39] Gabriel, E. and Diggle, P.J. (2009). Second-order analysis of inhomo-

geneous spatio-temporal point process data. Stat. Neerl. 18 505–544.

[40] Gabriel, E., Opitz, T. and Bonneu, F. (2017). Detecting and modeling

multi-scale space-time structures: the case of wildfire occurrences. J. Fran.

Stat. Soc. 158(3) 86–105.

[41] Geyer, C.J. (1999). Likelihood Inference for Spatial Point Processes:

Likelihood and Computation. In W. Kendall, O. Barndroff-Nielsen, & M.

N. van Lieshout (Eds.), Stochastic Geometry: Likelihood and Computation

141–172. London, UK: Chapman and Hall/CRC.

20



[42] Goldstein, J., Haran, M., Simeonov, I., Fricks, J. and

Chiaromonte, F. (2015). An attraction-repulsion point process model

for respiratory syncytial virus infections. Biom. 71(2) 376–385.

[43] Gonzalez, J.A., Rodriguez-Cortes, F.J., Cronie, O. and Mateu,

J. (2016). Spatio-temporal point process statistics: A review. Spat. Stat.

18 505–544.

[44] Habel H., Sarkka A., Rudemo M., Blomqvist C.H., Olsson E. and

Nordin M. (2019). Colloidal particle aggregation in three dimensions. J.

Micro. 275(3) 149–158.

[45] Hahn, U. and Vedel Jensen, E. B. (2015). Hidden second-order sta-

tionary spatial point processes. Scand. J. Stat. 43(2) 455–475.

[46] Hawkes, A.G. (1971). Spectra of some self-exciting and mutually exciting

point processes. Biometrika 58 83–90.

[47] Iftimi, A., Montes, P., Mateu, J. and Ayyad, C. (2017). Measuring

spatial inhomogeneity at different spatial scales using Hybrids of Gibbs

point process models. Stoch. Env. Res. Ris. Ass. 31(6) 1455–1469.

[48] Iftimi, A., van Lieshout, M.C. and Montes, F. (2018). A multi-scale

area-interaction model for spatio-temporal point patterns. Spat. Stat. 26

38–55.

[49] Illian, J., Martino, S., Sorbye, S., Gallego-Fernandez, J.B., Zun-

zunegui, M., Esquivias, M.P. and Travis, J.M. (2013). Fitting com-

plex ecological point process models with integrated nested Laplace ap-

proximation. Meth. Eco. Evo. 4 305–315.

[50] Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statis-

tical Analysis and Modelling of Spatial Point Patterns, John Wiley & Sons,

Chichester.

21



[51] Illian, J., Sorbye, S. and Rue, H. (2012a). A toolbox for fitting complex

spatial point process models using integrated nested Laplace approximation

(INLA) Ann. Appl. Stat. 6(4) 1499–1530.

[52] Illian, J., Sorbye, S., Rue, H. and Hendrichsen, D. (2012b). Using

INLA to fit a complex point process model with temporally varying effects

- a case study. J. Env. Stat. 3 1–25.

[53] Kingman, J. F. C. (1993). Poisson Processes. Oxford Studies in Proba-

bility 3. Oxford University Press, Oxford.

[54] Kingman, J. F. C. (2006). Poisson processes revisited. Probab. Math.

Statist. 26 77–95.

[55] Lavancier, F., Møller, J. and Rubak, E. (2015). Determinantal point

process models and statistical inference. J. Roy. Stat. Soc. B 77 853–877.

[56] Lavancier, F. and Møller, J. (2016). Modelling aggregation on the large

scale and regularity on the small scale in spatial point pattern datasets.

Scan. J. Stat. 43 587–609.

[57] Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology

73 1943–1967.

[58] Macchi, O. (1975). The coincidence approach to stochastic point pro-

cesses. Adv. Appl. Probab. 7 83–122.

[59] Matérn, B. (1960). Spatial Variation. Lectures Notes in Statistics.

Springer-Verlag.

[60] Møller, J., Syversveen, A.R. and Waagepetersen, R.P. (1998). Log

Gaussian Cox processes. Scand. J. Stat. 25 451–482.

[61] Møller, J. (2003). Shot noise Cox processes. Adv. Appl. Prob. 35(3)

614–640.

22



[62] Møller, J. and Torrisi, G.L. (2005). Generalised shot noise Cox pro-

cesses. Adv. Appl. Prob., 37 48–74.

[63] Møller, J. and Diaz-Avalos, C. (2010). Structured spatio-temporal

shot-noise Cox point process models, with a view to modelling forest fires.

Scand. J. of Stat. 37(1) 2–25.

[64] Møller, J. and Waagepetersen, R.P. (2004). Statistical Inference and

Simulation for Spatial Point Processes, Chapman and Hall/CRC, Boca

Raton.

[65] Neyman, J. and Scott, E.L. (1958). Statistical approach to problems of

cosmology. J. Roy. Statist. Soc. Ser. B 20 1–29.

[66] Nightingale, G.F., Illian J.B., King, R. and Nightingale, P.

(2019). Area interaction point processes for bivariate point patterns in a

Bayesian context. J. of Envir. Stat., 9(2)

[67] Ogata, Y. and Tanemura, M. (1981). Estimation of interaction poten-

tials of spatial point patterns through the maximum likelihood procedure.

Ann. Inst. Stat. Math 33(1) 315–338.

[68] Opitz, T., Bonneu, F. and Gabriel, E. (2020). Point-process based

Bayesian modeling of space-time structures of forest fire occurrences in

Mediterranean France. Spat. Stat., 100429.

[69] Palm, C. (1943). Intensitätsschwankungen in Fernsprechverkehr. Ericsson,

Technics 44.

[70] Papangelou, F. (1974). The conditional intensity of general point pro-

cesses and an application to line processes. Prob. Theo. Rel. Fiel. 28(3)

207–226.

[71] Pei, T., Gao, J., Ma, T. and Zhou, C. (2012). Multi-scale decomposi-

tion of point process data. GeoInformatica, 16(4) 625–652.

23



[72] Penttinen, A. (1984). Modelling Interaction in Spatial Point Patterns:

Parameter Estimation by the Maximum Likelihood Method. Number 7 in

Jyvaskyla Studies in Computer Science, Economics, and Statistics, Univer-

sity of Jyvaskyla.

[73] Picard, N., Bar-Hen, A., Mortier, F. and Chadoeuf, J. (2009). The

multi-scale marked area-interaction point process: a model for the spatial

pattern of trees. Scand. J. Stat. 36 23–41.

[74] Preston, C.J. (1976). Random Fields. Lecture Notes in Mathematics 534.

Springer-Verlag, Berlin.

[75] Rajala, T., Murrell, D.J. and Olhede, S.C. (2018) Detecting mul-

tivariate interactions in spatial point patterns with Gibbs mmodels and

variate selection. Appl. Statist. 67(5), 1237–1273.

[76] Raeisi, M., Bonneu, F. and Gabriel, E. (2019). A spatio-temporal

multi-scale model for Geyer saturation point process: application to for-

est fire occurrences. Unpublished results. http://arxiv.org/abs/1911.

06999.

[77] Ruelle, D. (1969). Statistical Mechanics: Rigorous Results, W.A. Ben-

jamin, Reading, Massachusetts.

[78] Siino, M., Adelfio, G., Mateu, J. and D’Alessandro, A. (2017).

Spatial pattern analysis using hybrid models: an application to the Hellenic

seismicity. Stoch. Env. Res. Ris. Ass. 31(7) 1633–1648.

[79] Siino, M., D’Alessandro, A., Adelfio, G., Scudero, S. and Chiodi,

M. (2018). Multiscale processes to describe the eastern sicily seismic se-

quences. Ann. Geo. 61(2)

[80] Sorbye, S.H., Illian, J.B., Simpson, D.P., Burslem, D. and Rue,

H. (2019). Careful prior specification avoids incautious inference for log-

Gaussian Cox point processes. J. R. Stat. Soc. Ser. C. Appl. Stat. 68(3)

543–564.

24

http://arxiv.org/abs/1911.06999
http://arxiv.org/abs/1911.06999


[81] Stoyan, D. (1979). Interrupted point processes. Biometrical. J. 21 607–

610.

[82] Strauss, D.J. (1975). A model for clustering. Biometrika 62 467–475.

[83] Thomas, M. (1949). A generalization of Poisson’s binomial limit for use

in ecology. Biometrika 36 18–25.

[84] van Lieshout, M-C. (2000). Markov Point Processes and Their Applica-

tions. Imperial College Press, London.

[85] van Lieshout, M-C. (2019). Theory of Spatial Statistics. New York:

Chapman and Hall/CRC.

[86] Wiegand, T., Huth, A. and Martinez, I. (2009). Recruitment in tropi-

cal tree species: Revealing complex spatial patterns. Ame. Nat. 174 E106–

E140.

[87] Wiegand, T., Gunatillekem, N. and Okudam, T. (2007). Analyzing

the spatial structure of a Sri Lankan tree species with multiple scales of

clustering. Eco. 88 3088–3102.

[88] Yau, C.Y. and Loh, J.M. (2012). A genralization of the Neyman-Scott

process. Stat. Sinica. 22 1717–1736.

25


	Introduction
	Inhomogeneity and structures in point patterns
	Definitions
	Classical point process models

	Multi-structure point process models
	Models based on Gibbs processes
	Models based on Cox processes

	Discussion and conclusion

