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Extracting subsets maximizing capacity

and folding of random walks

Amine Asselah ∗ Bruno Schapira†

Abstract

We prove that given any finite set of Zd, with d ≥ 3, there is a subset whose capacity and
volume are both of the same order as the capacity of the initial set. As an application, we ob-
tain estimates on the probability a transient random walk covers uniformly a finite set. Finally,
we characterize some folding events, under optimal hypotheses. For instance, knowing that a
random walk folds to produce an atypically high occupation density somewhere, we show that
the folding region is most likely ball-like, asymptotically as the length of the walk goes to infinity.

Keywords and phrases. Random walk; local times; capacity; range.
MSC 2010 subject classifications. Primary 60F05, 60G50.

Sous-ensembles de capacité maximale et marches aléatoires
Nous montrons que de toute partie finie de Zd, en dimension trois et plus, on peut extraire un

sous-ensemble dont la capacité et le volume sont du même ordre de grandeur que la capacité de
la partie initiale. Cette observation nous permet d’obtenir, sous des hypothèses optimales, des
estimations de la probabilité qu’une marche aléatoire recouvre uniformément un ensemble fini.
Enfin, nous caractérisons certains évènements de repliement de la marche. Par exemple, lorsque
l’on sait qu’une marche aléatoire se replie pour produire une densité d’occupation atypiquement
grande, alors la région de repliement a typiquement la forme d’une boule, au sens où sa capacité
est du même ordre de grandeur que celle d’une boule.

Mots clés. Temps locaux; capacité; marche aléatoire.

1 Introduction

This note deals with capacity in the context of a random walk on Zd, with d ≥ 3. If Px is the law of
the random walk starting from x, Λ is a non-empty finite subset of Zd and H+

Λ is the return time
into Λ, then the capacity of Λ is

cap(Λ) :=
∑
x∈Λ

Px
(
H+

Λ =∞
)
. (1.1)

Our main observation is that in any finite subset of Zd, say made of disjoint balls with common
radius r, there exists a subset whose size and capacity are both of order the capacity of the initial
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set. To state precisely this result, let us introduce the needed notation. For x ∈ Zd, and r ≥ 1,
we define Br(x) = {z ∈ Zd : ‖z − x‖ < r}, with ‖ · ‖ the Euclidean norm, and for C ⊂ Zd, we let
Br(C) := ∪x∈CBr(x).

In the whole paper, we deal with space dimension three and higher, and all our results assume this
hypothesis.

Theorem 1.1. There exists α > 0, such that for any r ≥ 1 and any finite C ⊂ Zd, there is a subset
U ⊆ C, satisfying

(i) cap(Br(U)) ≥ α · rd−2|U | and (ii) rd−2|U | ≥ α · cap(Br(C)). (1.2)

We now present two applications of this result, Theorems 1.2 and 1.4 below. The former deals
informally with the event that a random walk covers uniformly a fraction ρ of a set, and bounds
the probability of such event by exponential minus ρ times the capacity of the set, under some
optimal assumptions on ρ and the scale at which we measure the occupation density. The latter,
Theorem 1.4, deals with the shape of the folding region for a walk conditioned on squeezing part of
its range, and shows that this region is typically ball-like in the sense that its capacity is of smallest
possible order, that is with capacity of order its volume to the power 1−2/d, as it is for balls. This
has some natural applications in the context of moderate deviations for the volume or the capacity
of the range of the walk, as shown in [AS17, AS21a, AS21c].

Let us also mention that Theorem 1.1 has found application in the context of random interlacements
[Sz20, Sz21].

To be more precise now, for Λ ⊂ Zd made of disjoint balls of radius r, consider the event obtained
by asking the random walk to spend a time ρ · rd in each ball making Λ, for some ρ > 0. We have
shown in [AS17] how to relate the probability of such covering event with the capacity of Λ. Let
{Sn}n∈N denote the discrete-time simple random walk, and P be its law when starting from the
origin. At a time n ∈ N ∪ {∞}, and site z ∈ Zd, the local time reads

`n(z) :=
n∑
k=0

1{Sk = z} and for Λ ⊂ Zd, `n(Λ) :=
∑
z∈Λ

`n(z). (1.3)

Theorem 1.2. There exist positive constants A and κ, such that for any r ≥ 1 and ρ > 0 satisfying

ρrd−2 > A, (1.4)

one has for any finite C ⊂ Zd

P
(
`∞(Br(x)) > ρrd, ∀x ∈ C

)
≤ exp

(
− κ · ρ · cap(Br(C))

)
. (1.5)

The condition (1.4) improves the condition in Proposition 1.7 of [AS17]: ρrd−2 > A|C|2/d · log(n).
Eliminating the term |C|2/d is a serious issue which requires Theorem 1.1. Going to an infinite-time
setting is straightforward, and is explained in the proof of Theorem 1.2 in Section 4.2.

Note that (1.4) is optimal since typically a walk spends a time of order r2 in a ball of radius r,
conditionally on visiting it. In the case r = 1 (when Br(x) = {x} for all x), we obtain a stronger
and more general result. First, the result holds true for any ρ > 0 and we show that we can take
the constant κ equal to one in (1.5). Furthermore, we can deal with non-uniform covering and
general transient walks. We refer to Theorem 4.1 in Section 4 for a precise statement.
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Remark 1.3. We note that Sznitman obtained results with a similar flavor as Theorem 1.2 in the
context of the Gaussian free field (GFF) and in the model of random interlacements, respectively
in [Sz15, Corollary 4.4] and [Sz17, Theorem 4.2] (see also [LSz15] for related results).

Our second application deals with finite times. For r ≥ 1, ρ > 0, n ≥ 1, and C ⊂ Zd finite, we
consider

Fn(r, ρ, C) := {∀x ∈ C, `n(Br(x)) > ρrd}. (1.6)

In many folding problems, one central issue is to characterize the size and the shape of the folding
region C, which might be random. More precisely, one may consider folding events of the form
∪CFn(r, ρ, C), where the union is over all C ⊆ [−n, n]d, with only a lower bound on their volume,
say |C| ≥ L, when Br(C) is made of disjoint balls. Then Theorem 1.2 and a naive union bound
gives

P(∪CFn(r, ρ, C)) ≤ (2n+ 1)d·L · exp(−κρ · c · rd−2L1−2/d),

using the lower bound on capacity (2.5). The bound just obtained is useful only when

ρ · rd−2 ≥ CL2/d · log(n). (1.7)

Now Theorem 1.1 allows to go beyond this condition (1.7), and gives

P(∪CFn(r, ρ, C)) ≤ exp(−κρ · c · rd−2L1−2/d),

under the weaker assumption:
ρ · rd−2 ≥ C log(n).

The latter is of crucial importance in [AS21c], and can also be used to characterize the shape of a
localization region for a random walk, which we now describe in details. First, we introduce more
notation. To obtain a neat partition of Zd we switch to cubes, rather than balls. Define for r ≥ 1,
and x ∈ Zd,

Qr(x) := [x− r/2, x+ r/2)d ∩ Zd.

Define further for ρ > 0 and n ≥ 1,

Cn(r, ρ) := {x ∈ rZd : `n(Qr(x)) > ρrd}, and Vn(r, ρ) :=
⋃

x∈Cn(r,ρ)

Qr(x). (1.8)

We can now state our third result.

Theorem 1.4. There are positive constants κ, κ, and C, such that for any n ≥ 2, r and L positive
integers and ρ > 0, satisfying

ρrd−2 ≥ C · log(n), and n ≥ CρrdL, (1.9)

one has

exp
(
− κ · ρ · rd−2 · L1−2/d

)
≤ P

(
|Cn(r, ρ)| > L

)
≤ exp

(
− κ · ρ · rd−2 · L1−2/d

)
. (1.10)

In addition there exists A > 0, such that

lim
n→∞

inf
(r,ρ,L)

P
(

cap(Vn(r, ρ)) ≤ A · |Vn(r, ρ)|1−2/d
∣∣|Cn(r, ρ)| > L

)
= 1, (1.11)

where the infimum is taken over all triples (r, ρ, L) satisfying (1.9).
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Let us stress that conditions (1.9) are optimal in the following sense. Concerning the first inequality,
just recall that in time n, the walk typically fills balls with an occupation density of order r2−d log n;
and for the second inequality, which is only needed for the lower bound in (1.10), note that one
needs at least n ≥ ρrdL, for the set {|Cn(r, ρ)| > L} to be non-empty. Let us also mention here
that we obtain a similar result as Theorem 1.4, where instead of recording the time spent in small
cubes, we count the number of visited sites, see Proposition 5.1 for details.

Remark 1.5. Note that the result is interesting in its own right even for r = 1, in which case it
concerns the so-called level-sets of the local times, that is the sets of the form

Ln(ρ) := {z ∈ Zd : `n(z) > ρ}.

Specializing Theorem 1.4 to these sets gives that for ρ ≥ C · log(n) and n ≥ Cρ · L,

exp(−κ · ρ · L1−2/d) ≤ P(|Ln(ρ)| > L) ≤ exp(−κ · ρ · L1−2/d).

Furthermore, asymptotically as n goes to infinity, conditionally on being non-empty, the shape of
Ln(ρ) is ball-like in the following sense. There is A > 0, such that for ρn, Ln satisfying ρn ≥ C ·log(n)
and n ≥ Cρn · Ln

lim
n→∞

P
(

cap(Ln(ρn)) ≤ A · |Ln(ρn)|1−2/d
∣∣|Ln(ρn)| > Ln

)
= 1.

Remark 1.6. For simplicity, we focus here on the case of the discrete time simple random walk,
but our results would likely adapt to a more general setting, such as finite range random walks.

Historical account. Let us put our results into perspective. Capacity appears as a central object
in many remarkable studies, and we would like to highlight some of them. In the thirties, Wiener
introduces his celebrated test, where the electrostatic capacity plays the key role, and is adapted
to random walk context by Itô and McKean much later [IK60]. In the forties, Kakutani [K44]
discovers that a compact set of Rd, is hit by Brownian motion with positive probability, if and
only if it has positive electrostatic capacity. Much later, Kesten [Kes90] bounds the growth rate of
diffusion limited aggregation (DLA), a celebrated model of discrete random growth on Zd where
sites in the boundary of the cluster are chosen according to the harmonic measure (of the boundary
of the cluster). For doing so Kesten introduces a martingale whose compensator is the sum of
inverses of capacities of the growing cluster. This in itself is inspiring: understanding the growth
of the capacity of the cluster plays a key role in understanding the reinforcement phenomenon
behind the ramified tree-like shape of DLA (see also [LT21] for a related model). Finally, ten years
ago, Sznitman [Sz10] introduces a model called random interlacements which is a homogeneous
Poisson point process on Zd such that the number of trajectories (the points of the process) hitting
a given compact set K is a Poisson random variable with mean u · cap(K), and whose hitting sites
distribution on K is according to the harmonic measure of K. The model of random interlacements
proves (or is conjectured) to be adapted to the study of many phenomena where a random walk
realizes atypically high densities: (i) either by reducing its range, and in a certain regime this is the
Swiss cheese problem (see [BBH01]), (ii) or by disconnecting the ball Bn(0) from the complement
of B2n(0), and many more sophisticated events, see in particular [Sz17, NSz20, Sz20, Sz21].

Concerning the deviations for local times, a rich literature exists on large deviations for the field of
renormalized local times, initiated by Donsker and Varadhan [DV75], or for self-intersection local
times, see [Chen09] and references therein. However, it seems that not much is known concerning
the deviations of local times of a random walk on a fixed finite set of cardinal at least two.
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The paper is organized as follows. In Section 2.2 we recall some basic facts on the capacity. Section 3
contains our main technical novelty: the proof of Theorem 1.1. In Section 4, we prove Theorem 1.2,
and introduce a related result Theorem 4.1 of a similar flavor, but dealing with the local times of
sites. Finally, in Section 5 we prove Theorem 1.4. The proof is divided into a short upper bound,
and a technical lower bound in Section 5.2 where we actually state Proposition 5.1 which deals
with the (slightly more difficult) problem of covering a certain partition of the space, rather than
with local times.

2 Preliminaries

2.1 Notations

In the rest of the paper, we use c, C as generic constants, changing from place to place, depending
only on the dimension d. Similarly, when the constants are numbered, except that they no more
change value from line to line.

We need first to define the hitting and return times of the random walk to a non-empty set Λ in
Zd as respectively

HΛ = inf{n ≥ 0 : Sn ∈ Λ}, and H+
Λ = inf{n ≥ 1 : Sn ∈ Λ},

which we shall sometimes also write as H(Λ) and H+(Λ) respectively. We recall that Green’s
function G(x) is the average number of visits to site x ∈ Zd when the random walk starts at 0, and
the well known asymptotics (see precise bounds in Theorem 4.3.1 of [LL10])

G(z) :=
∑
n≥0

P(Sn = z), and G(z) ≤ C

1 + ‖z‖d−2
. (2.1)

We write Br(x) = {y ∈ Zd : ‖x − y‖ < r} for the Euclidean ball of radius r and center x, Br
stands for Br(0), and Qr stands for the cube Qr(0). For a non-empty set Λ in Zd, we call ∂Λ its
outer boundary, i.e. ∂Λ := {y ∈ Zd\Λ : ∃x ∈ Λ, ‖x − y‖ = 1}, whereas ∂iΛ stands for the inner
boundary, that is ∂Λc, where Λc = Zd\Λ.

2.2 On capacity

We recall here some alternative definitions of the capacity, and refer to [LL10] for proofs of these
standard facts. The first alternative and equivalent definition is in terms of hitting time, rather
than escape probabilities (see Proposition 6.5.1 in [LL10]):

cap(Λ) = lim
‖z‖→∞

1

G(z)
· Pz
(
HΛ <∞

)
. (2.2)

A third classical way to define the capacity is given by the following variational formula (see for
instance Proposition 1.9 of [Sz12] for a proof).

1

cap(Λ)
= inf

{∑
x∈Λ

∑
y∈Λ

G(x− y)µ(x)µ(y) : µ probability on Λ
}
. (2.3)

The infimum is reached for the equilibrium measure eΛ, defined for x ∈ Λ by eΛ(x) = Px(H+
Λ =

∞)/ cap(Λ).
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As we already mentioned, the capacity of a ball Br(x) is of order rd−2, and more generally, there
exists a constant c > 0, such that for any Λ ⊂ Zd,

cap(Λ) ≥ c|Λ|1−2/d. (2.4)

(Note that this follows from (2.1) and taking µ uniform in (2.3).) When applied to a union of
disjoint balls, this gives

cap(Br(C)) ≥ c · rd−2|C|1−2/d. (2.5)

This bound cannot be improved. Looking now for an upper bound of the capacity of a union of
balls, subadditivity of the capacity gives that it is always bounded (up to constant) by the number
of balls times rd−2. However, one can improve this crude bound using (2.2) yielding

cap(Br(C)) ≤ C · rd−2 · cap(C). (2.6)

We shall also need the following lemma. For r ≥ 1, we denote by Xr the set of finite C ⊂ Zd, whose
points are all at Euclidean distance at least 4r from each other.

Lemma 2.1. There exists a constant c > 0, such that for any finite C ⊂ Zd, there exists a subset
C′ ⊂ C, with C′ ∈ Xr, satisfying

cap(Br(C′)) ≥ c · cap(Br(C)).

Proof. We define recursively Cn ⊂ C, for 1 ≤ n ≤ |C| as follows. First pick a point x1 in C, and
set C1 := {x1}. Then assuming Cn has been defined for some n < |C|, define Cn+1 as the union
of Cn and an arbitrarily chosen point of C \ (∪x∈CnB4r(x)), if this set is nonempty. Otherwise, set
Cn+1 := Cn. Define C′ as the set one eventually obtains. Note that by construction C′ ∈ Xr.

We express now the hitting time of Br(C′) and use that Br(C) ⊂ B5r(C′) to obtain for any z ∈ Zd,

Pz(H(Br(C′)) <∞) =Pz(H(B5r(C′)) <∞)× Pz(H(Br(C′)) <∞
∣∣ H(B5r(C′)) <∞)

≥Pz(H(Br(C)) <∞)× Pz(H(Br(C′)) <∞
∣∣ H(B5r(C′)) <∞).

Since after arriving on the boundary of a ball B5r(x), for x ∈ C′, the random walk hits Br(x) with
a positive probability, say c independent of r and C′, we obtain by the strong Markov property

Pz(H(Br(C′)) <∞
∣∣ H(B5r(C′)) <∞) ≥ c.

The proof ends as we recall (2.2), normalize Pz(H(Br(C′)) < ∞) by G(z) and let ‖z‖ tend to
infinity.

3 Proof of Theorem 1.1

The proof is an instance of the probabilistic method: we define an appropriately chosen random
subset of C, and show that it satisfies the desired constraints with nonzero probability.

We start with the proof in the case r = 1, which we think is instructive and more transparent.

Case r = 1. We need to show that in any finite set Λ ⊆ Zd, there exists a subset U , whose
capacity and cardinality are both of the order of the capacity of Λ. The proof is an instance of the
probabilistic method. Indeed, we build a random set U which satisfies the desired constraints with
positive probability.
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First, choose a family of i.i.d. trajectories (γx, x ∈ Zd) with the same law as the walk S = {Sn}n≥0

starting from the origin, and denote their joint law by P. The hitting time of Λ by a (random)
path γ : N→ Zd is denoted by HΛ(γ), the return time to Λ by H+

Λ (γ), and set γx = γx + x. Now,
the random set U is

U := {x ∈ Λ : H+
Λ (γx) =∞}.

Note that the volume of U is a sum of independent Bernoulli random variables, and thus

E
[
|U|
]

=
∑
x∈Λ

P
(
H+

Λ (γx) =∞
)

= cap(Λ), and var(|U|) ≤ cap(Λ).

Thus |U| is concentrated around its mean and by Chebyshev’s inequality

P
(
|U| < 1

2
E
[
|U|
])
≤ 4

cap(Λ)
, and P

(
|U| > 2E

[
|U|
])
≤ 1

cap(Λ)
. (3.1)

We can assume cap(Λ) > 16, (as for sets with bounded capacity one can always choose α small
enough) so that (3.1) reads

P
(
2 cap(Λ) ≥ |U| ≥ 1

2
cap(Λ)

)
≥ 2

3
. (3.2)

Now, we show that cap(U) is typically of order its volume. Assume |U| > 0, and choose for µ the
uniform measure on U . By (2.3), we have

cap(U)

|U|
≥
( 1

|U|
∑
x,y∈U

G(x− y)
)−1

. (3.3)

Let us compute the expression on the right hand side of (3.3).∑
x,y∈U

G(x− y) =
∑
x∈Λ

∑
y∈Λ

1{H+
Λ (γx) =∞, H+

Λ (γy) =∞} ·G(x− y)

= G(0) · |U|+
∑
x∈Λ

∑
y∈Λ\{x}

1{H+
Λ (γx) =∞, H+

Λ (γy) =∞} ·G(x− y).

Note that if x 6= y, then γx and γy are independent. Therefore,

E

 ∑
x,y∈U

G(x− y)

 ≤ G(0) · E
[
|U|
]

+
∑
x,y∈Λ

P
(
H+

Λ (γx) =∞
)
G(x− y)P

(
H+

Λ (γy) =∞
)
.

By a last passage decomposition (see Proposition 4.6.4 in [LL10]), for x ∈ Λ,

1 = P
(
HΛ(γx) <∞

)
=
∑
y∈Λ

G(x− y)P
(
H+

Λ (γy) =∞
)
.

Thus,

E

 ∑
x,y∈U

G(x− y)

 ≤ (G(0)+1
)
·cap(Λ), and P

∑
x,y∈U

G(x− y) ≤ 4(G(0) + 1) · cap(Λ)

 ≥ 3

4
.

Together with (3.2), we obtain

P

2 cap(Λ) ≥ |U| ≥ 1

2
cap(Λ),

∑
x,y∈U

G(x− y) ≤ 4
(
G(0) + 1

)
· cap(Λ)

 ≥ 5

12
. (3.4)
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By (3.3) and (3.4), we deduce that for some α > 0,

P
(

2 cap(Λ) ≥ |U| ≥ 1

2
cap(Λ), cap(U) ≥ α · cap(Λ)

)
≥ 5

12
. (3.5)

Since the right-hand side is positive, we conclude that (1.2) holds for a random set U , when r = 1.

We now prove the general case by refining the previous argument.

General case r ≥ 1. The proof follows the same steps after we choose an appropriate random subset
of the set of centers C. First, by Lemma 2.1 one can assume that C ∈ Xr (i.e. that points of C are
all at distance at least 4r from each other). For any r > 0, we set Λr = Br(C), and Vr = Zd\B2r(C).
We need now the hitting time of Λr after exiting B2r(C). For a trajectory γ, define

Hr
Λr(γ) = inf{k > HVr(γ) : γ(k) ∈ Λr}.

Then choose a family of i.i.d. trajectories {γx}x∈Zd with the same law as S, denote the joint law
by P, and set γx = γx + x. Our random set reads now

U := {x ∈ C : Hr
Λr(γx) =∞}.

Thus, each center x ∈ C is kept in U if a random walk launched from x escapes Λr after exiting
B2r(C). The reason to force first to exit B2r(C) stems from the following simple Lemma, whose
proof is recalled at the end of this section for the reader’s convenience.

Lemma 3.1. There exists a constant θ > 1, such that for any r ≥ 1, C ∈ Xr, and x ∈ C,

θP
(
Hr

Λr(γx) =∞
)
≥ 1

rd−2

∑
y∈∂iBr(x)

P
(
H+

Λr
(y + S) =∞

)
≥ 1

θ
P
(
Hr

Λr(γx) =∞
)
. (3.6)

Now, note that |Br(U)|/|Br| is a sum of |C| independent Bernoulli random variables, and therefore

var(|Br(U)|) ≤ |Br| · E
[
|Br(U)|

]
.

Furthermore, thanks to Lemma 3.1, there are positive constants c1 and c2, such that

c1r
2 · cap(Br(C)) ≤ E

[
|Br(U)|

]
= |Br| ·

∑
x∈C

P
(
Hr

Λr(γx) =∞
)
≤ c2r

2 · cap(Br(C)).

It follows that for a positive constant c3,

P
(

1

2
E
[
|Br(U)|

]
≤ |Br(U)| ≤ 2E

[
|Br(U)|

])
≥ 1− c3

rd−2

cap(Br(C))
.

We can assume that cap(Br(C)) ≥ 4c3r
d−2 (as otherwise we conclude by taking α < 1/(4c3)), in

which case it follows that

P
(

1

2
E
[
|Br(U)|

]
≤ |Br(U)| ≤ 2E

[
|Br(U)|

])
≥ 3

4
.

Thus, with probability larger than or equal to 3/4, the random set U satisfies (ii) of (1.2). Let us
check now (i). By (2.3), we obtain a lower bound on cap(Br(U)) as we choose a measure on Br(U).
Taking the uniform measure on the inner boundary of Br(U) gives

1

(|∂iBr| · |U|)2

∑
x,x′∈U

∑
y∈∂iBr(x)

∑
y′∈∂iBr(x′)

G(y − y′) ≥ 1

cap(Br(U))
. (3.7)
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We need to show that the left hand side of (3.7) is smaller than a constant times 1/(rd−2|U|). First,
we treat the case x′ = x. Note that by Green’s function asymptotic (2.1), there is C > 0, such that

∀y ∈ ∂iBr(x),
∑

y′∈∂iBr(x)

G(y − y′) ≤ C · r.

Thus, as we further sum over y ∈ ∂iBr(x), and x ∈ U , we obtain∑
x∈U

∑
y∈∂iBr(x)

∑
y′∈∂iBr(x)

G(y − y′) ≤ C · r · rd−1 · |U|. (3.8)

Now, to deal with the terms with x′ 6= x, we take expectation first, and we bound G(y − y′) by
c4 ·G(x− x′) uniformly in y ∈ ∂iBr(x) and y′ ∈ ∂iBr(x′). Therefore,

E

 ∑
x 6=x′∈U

∑
y∈∂iBr(x)

∑
y′∈∂iBr(x′)

G(y − y′)

 ≤ c4|∂iBr|2 · E
[ ∑
x 6=x′∈U

G(x− x′)
]

≤c4|∂iBr|2
∑

x 6=x′∈C
P
(
Hr

Λr(γx) =∞
)
G(x− x′)P

(
Hr

Λr(γx′) =∞
)

≤c5(rd−1)2E
[
|U|
]

sup
x∈C

∑
x′ 6=x

G(x− x′)P
(
Hr

Λr(γx′) =∞
)
.

By using (3.6) of Lemma 3.1, and a last passage decomposition we have for a constant c6 > 0, and
any x ∈ C,

1 = P
(
HΛr(γx) <∞

)
≥
∑
x′∈C
x′ 6=x

∑
y∈∂iBr(x′)

G(x− y)P(H+
Λr

(γy) =∞
)

≥ c6r
d−2

∑
x′∈C
x′ 6=x

G(x− x′)P
(
Hr

Λr(γx′) =∞
)
.

This implies that for a constant c7 > 0,

E

 ∑
x 6=x′∈U

∑
y∈∂iBr(x)

∑
y′∈∂iBr(x′)

G(y − y′)

 ≤ c7r
d · E

[
|U|
]
.

Chebyshev’s inequality now allows us to conclude as in the proof of the case r = 1. �

We end this section with a proof of Lemma 3.1.

Proof of Lemma 3.1. The first inequality is exactly Lemma 5.2 of [AS17], to which we refer for a
proof. Concerning the second inequality, note that Proposition 1.5.10 of [Law91] shows in particular
that for a positive constant c, for any y ∈ ∂iBr(x),

Py
(
H∂B2r(x) < H+

Br(x)

)
≥ c

r
.

Now using that points of C are at distance at least 4r from each other, and applying the strong
Markov property, we get

Py
(
H+
Br(C) =∞

)
=

∑
z∈∂B2r(x)

Py
(
SH∂B2r(x)

= z, H∂B2r(x) < H+
Br(x)

)
· Pz
(
HBr(C) =∞

)
.
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Then Lemma 6.3.7 and Proposition 6.4.4. in [LL10] give for some constant c′ > 0,

Py
(
H+
Br(C) =∞

)
≥ c′

rd−1
Py
(
H∂B2r(x) < H+

Br(x)

)
·

∑
z∈∂B2r(x)

Pz
(
HBr(C) =∞

)
≥ cc′

rd

∑
z∈∂B2r(x)

Pz
(
HBr(C) =∞

)
.

On the other hand, Harnack’s inequality (see Theorem 6.3.9 in [LL10]) gives

P
(
Hr

Λr(γx) =∞
)
≤ C

rd−1

∑
z∈∂B2r(x)

Pz
(
HBr(C) =∞

)
,

and altogether this concludes the proof of the lemma.

4 Proof of Theorem 1.2

We start with a variant of Theorem 1.2 which deals with the event of visiting a certain number of
times each site of a set, and connect the probability of such an event with the capacity of the set.
Let q := P(H+

{0} <∞), and for a finite set Λ ⊂ Zd, and z ∈ Λ, let qz = qz,Λ := Pz(H+
Λ <∞).

Theorem 4.1. Assume d ≥ 3, and let Λ be a finite subset of Zd. Then, for any set of nonnegative
integers {nz}z∈Λ,

P(`∞(z) ≥ nz ∀z ∈ Λ) ≤
∏
z∈Λ q

nz
z

minz∈Λ qz
. (4.1)

In particular for all t ≥ 1,

P(`∞(z) ≥ t ∀z ∈ Λ) ≤ 1

q
exp

(
− t · cap(Λ)

)
. (4.2)

Both Theorems 1.2 and 4.1 use improvements of the proof of Proposition 1.7 of [AS17]. We present
a simple self-contained proof of Theorem 4.1, and note that it works in fact for any random walk
in a translation invariant setting.

4.1 Proof of Theorem 4.1

The proof proceeds by induction on N :=
∑

z∈Λ nz. Our induction hypothesis is that for any
y ∈ Zd, any Λ ⊂ Zd finite, and any family of nonnegative integers {nz}z∈Λ, we have

Py
(
`∞(z) ≥ nz, ∀z ∈ Λ

)
≤
∏
z∈Λ q

nz
z

minz∈Λ qz
.

Let us stress that it is important in the proof to allow some integers nz to be equal to 0. If N = 0
or N = 1, there is nothing to prove, since the right-hand side of (4.1) is larger than or equal to 1 in
this case. Assume now that the result is true for any family {nz}z∈Λ, with

∑
z∈Λ nz ≤ N , for some

N ≥ 1, and consider another family (which we still denote by {nz}z∈Λ) satisfying
∑
nz = N + 1.

10



If 0 ∈ Λ, and n0 ≥ 1, we write (recalling that in the definition of local times, the time 0 is taken
into account), with Λ∗ := Λ \ {0},

P0(`∞(z) ≥ nz ∀z ∈ Λ) =
∑

y∈Λ:ny≥1

P0(H+
Λ <∞, SH+

Λ
= y) · Py(`∞(z) ≥ nz ∀z ∈ Λ∗, `∞(0) ≥ n0 − 1)

≤
∑

y∈Λ:ny≥1

P0(H+
Λ <∞, SH+

Λ
= y) ·

(
∏
z∈Λ∗ q

nz
z ) · qn0−1

0

minz∈Λ qz

≤ P0(H+
Λ <∞)

(
∏
z∈Λ∗ q

nz
z )qn0−1

0

minz∈Λ qz
=

∏
z∈Λ q

nz
z

minz∈Λ qz
,

(4.3)

using the induction hypothesis at the second line. Now, when 0 /∈ Λ, or when 0 ∈ Λ and n0 = 0,
one can simply bound the probability on the left hand side above by the probability to hit a point
y ∈ Λ with ny ≥ 1, and then by translation-invariance and the Markov property, we are back to
the previous situation. This concludes the proof of the first assertion (4.1).

The second assertion (4.2) follows immediately from (4.1), using that for any z ∈ Λ,

qz = 1− Pz(H+
Λ =∞) ≤ exp(−Pz(H+

Λ =∞)).

This concludes the proof. �

4.2 Proof of Theorem 1.2

First, using Lemma 2.1, one can assume that all points of C are at distance at least 4r from each
other, as stated in [AS17]. The proof of Proposition 1.7 of [AS17] then shows that for some positive
constants κ, and K, for all r ≥ 1, ρ > 0, and C ∈ Xr,

P
(
∀x ∈ C, `∞(Br(x)) > ρrd

)
≤ K · 2|C| exp

(
− κ · ρ · cap(Br(C))

)
.

Indeed, observe that the proof of (5.7) in [AS17] works as well if we take n = ∞, and consider a
number of excursions larger than {nz}z∈C (instead of equal to it), as in (4.3) of the previous proof.

Also, notice that all terms of the form
(|C|
k

)
appearing in the former proof can be bounded by 2|C|

rather than |C|!. Note furthermore that the constant K above may be removed at the cost of taking
the constant A large enough in the hypothesis ρ · rd−2 > A of Theorem 1.2, when we use (2.5).
Then, Theorem 1.1 gives the existence of a subset U ⊆ C, with cap(Br(U)) of the same order as
both rd−2 · |U | and cap(Br(C)), which entails (for some possibly different constant κ),

P
(
∀x ∈ C, `∞(Br(x)) > ρrd

)
≤ 2|U | exp

(
− κ · ρrd−2 · |U |

)
.

Now the hypothesis (1.4) allows to remove the term 2|U | on the right-hand side of the above
inequality (at the cost of taking a smaller constant κ if necessary), and this concludes the proof of
the theorem, using again that rd−2|U | is of the same order as cap(Br(C)). �

5 Application to folding, and proof of Theorem 1.4

The proof of Theorem 1.4 is divided in two parts. In the first part (see Subsection 5.1 below), we
show that for some positive constants κ̃ and A0, for any A > A0, any n ≥ 1, and any (r, ρ, L)
satisfying (1.9),

P
(
|Cn(r, ρ)| > L, cap(Vn(r, ρ)) > A|Vn(r, ρ)|1−2/d

)
≤ exp(−κ̃A · ρ · rd−2L1−2/d). (5.1)
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In the second part (see Subsection 5.2 below) we prove the lower bound in (1.10). Recall that
a proof of the upper bound was already given in the introduction, see after (1.7), since with the
notation thereof {|Cn(r, ρ)| > L} ⊂ ∪|C|>LFn(r, ρ, C). Note that altogether this gives (1.11) as well,
and thus proves Theorem 1.4.

5.1 The upper bound: proof of (5.1)

We introduce the notation Qr(U) for ∪x∈UQr(x), and we use Theorem 1.1, with the condition (1.9)
and then (1.5) as follows.

P
(
|Cn(r, ρ)| > L, cap(Vn(r, ρ)) ≥ A · |Vn(r, ρ)|1−

2
d
)
≤
∑
k>L

P
(
|Cn(r, ρ)| = k, cap(Vn(r, ρ)) ≥ A · rd−2k1−2/d

)
≤

∑
L<k≤n

P
(
∃ U ⊂ [−n, n]d : k ≥ |U| > αAk1−2/d, cap(Qr(U)) ≥ αrd−2|U|, `n(Qr(x)) > ρrd ∀x ∈ U

)
≤

∑
L<k≤n

∑
αAk1−2/d<i≤k

P
(
∃ U ⊂ [−n, n]d : |U| = i, cap(Qr(U)) ≥ αrd−2i, `n(Qr(x)) > ρrd ∀x ∈ U

)
≤

∑
L<k≤n

∑
αAk1−2/d<i≤k

(2n+ 1)d·i · exp
(
− καρrd−2 · i

)
≤
∑
k>L

exp
(
− κ̃ · ρrd−2k1−2/d

)
≤ exp

(
− κ̃

2
· ρrd−2L1−2/d

)
,

for some constant κ̃ > 0. The combinatorial factor (2n + 1)d·i was swallowed after using the
condition that ρrd−2 > C log(n), and choosing C large enough.

5.2 Lower bound

In this subsection, we establish a result which slightly differs from the lower bound in (1.10), and
deals with covering rather than occupation. For this purpose we introduce for n ≥ 1, the range of
the walk Rn := {S0, . . . , Sn}, and for any r ≥ 1 and ρ ∈ [0, 1],

C̃n(r, ρ) := {z ∈ rZd : |Rn ∩Qr(z)| > ρrd}.

Our result is as follows.

Proposition 5.1. There exist positive constants c and C, such that for any n ≥ 1, r > 0, ρ ∈
(0, 1/2), and L ≥ 1, satisfying

ρrd−2 ≥ 1, and n ≥ CρrdL,

one has
P
(
|C̃n(r, ρ)| ≥ L

)
≥ c exp(−c ρrd−2L1− 2

d ).

Note that this result implies the lower bound in (1.10), since C̃n(r, ρ) ⊂ Cn(r, ρ). Note also that for
the same reason, the upper bounds in (1.10), and in (1.11) hold as well for the set C̃n(r, ρ).

Remark 5.2. The hypothesis ρ < 1/2 in Proposition 5.1 could be replaced by ρ < 1− η, for any
fixed constant η > 0, and the constants c and C would then depend on η. However, when ρ gets
close to 1, we fall in another regime, and for instance when ρ = 1 an extra log r factor is needed in
the exponential (and in the time needed to achieve the covering).
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Proof. The scenario we choose to produce the desired event is to localize the walk long enough in a
cube so that its occupation density is ρ. It is convenient to transform localization into a statement
about excursions. To define properly an excursion, between ∂Q2R and ∂Q4R, we first define some
stopping times. Let σ1 = inf{k ≥ 0 : Sk ∈ ∂Q2R}. Then, by induction, and as long as σi < ∞,
define for i ≥ 1,

τi = inf{k ≥ σi : Sk ∈ ∂Q4R}, and σi+1 = inf{k ≥ τi : Sk ∈ ∂Q2R}.

On the other hand if σi =∞, then the stopping times with larger indices are infinite as well. Now,
the i-th excursion is the random walk trajectory with times within [σi, τi] when σi < ∞. The
number of excursions before the walk escapes Q8R is denoted NR which reads

NR = sup{i : σi < inf{k : Sk ∈ ∂Q8R}}.

We would like the cube QR to contain L cubes of side-length r each one filled with the random
walk trace to a density above ρ. Also, we expect to localize the walk in Q8R for a time T with

R = bL1/drc, and T = bC1ρR
dc (with C1 later chosen large enough).

Consider the event
A1 := {NR ≥ N}, with N = bC2ρR

d−2c. (5.2)

Now, for any C2 (which tunes the desired number of excursions), one makes the event A1 typical
by choosing C1 large enough and imposing the walk to localize in Q8R for a time T (which will
lead to the desired conclusion by assuming also the time n to be larger than T ). Then, a simple
but key observation is that given x = (x1, . . . , xN ) ∈ ∂QN2R, and y = (y1, . . . , yN ) ∈ ∂QN4R, and
conditioning the random walk on {Sσi = xi and Sτi = yi for i = 1, . . . , N}, we have that the
excursions {Sk, k ∈

⋃
i≤N [σi, τi]} are independent from {Sk, k ∈

⋃
i≤N [τi, σi+1]}.

Let Px be the (product) law of N independent excursions starting from {xi, i ≤ N}, up to ∂Q4R.
We denote by Y the set of ending points of the N excursions under Px. We let M be the cardinality
of the set rZd ∩QR−r, and number its elements in some arbitrary order, say v1, . . . , vM .

We define Z to be the number of boxes of side-length r, whose fraction of visited sites, before the
NR-th excursion, exceeds ρ. In other words, if RτNR is the set of visited sites before the NR-th
excursion,

Z =
M∑
i=1

1I{|RτNR∩Qr(vi)|>ρ·r
d}.

We now define, in the space of N excursions starting from x = (x1, . . . , xN ) ∈ ∂QN2R,

A2 :=

{
Altogether the N excursions visit at least ρrd sites

of at least half of the boxes {Qr(vi)}i≤M

}
.

With σ = inf{n ≥ 1 : Sn ∈ ∂Q2R ∪ ∂Q8R}, and y = (y1, . . . , yN ) ∈ ∂QN4R, we have

P(A1 ∩{Z ≥
M

2
}, ∀i = 1, . . . , N, Sσi = xi, Sτi = yi) ≥

N−1∏
i=1

Pyi
(
Sσ = xi+1

)
·Px(A2, Y = y). (5.3)

Noting that y 7→ Py(Sσ = x
)

is harmonic, and using Harnack’s inequality (see [LL10, Theorem
6.3.9]), we get for some constant cH > 0, for any x ∈ ∂Q2R,

inf
y
Py
(
Sσ = x

)
≥ cHPy∗

(
Sσ = x

)
, with y∗ := (4R, 0, . . . , 0). (5.4)

13



Assume for a moment that,

∀x ∈ (∂Q2R)N , Px(A2) ≥ 1/2. (5.5)

Then, using that there is a positive lower bound (uniform in R) for the probability that a walk
starting from y∗ hits ∂Q2R before ∂Q8R, together with (5.3) and (5.4), we have c1 > 0, such that

P(A1 ∩ {Z ≥
M

2
}) =

∑
x

∑
y

P(A1 ∩ {Z ≥
M

2
}, (Sσ1 , . . . , SσN ) = x, Y = y)

≥
∑
x

cN−1
H

N−1∏
i=1

Py∗
(
Sσ = xi+1

)∑
y

Px(A2, Y = y)

≥ cN−1
H inf

x
Px(A2)

∑
x

N−1∏
i=1

Py∗
(
Sσ = xi+1

)
≥
cN−1
H

2

N−1∏
i=1

Py∗
(
Sσ ∈ ∂Q2R

)
≥ e−c1N . (5.6)

Finally, define

A3 := {The walk makes at least N excursions from ∂Q2R to ∂Q4R before time T}.

Using that on the event A1 ∩ Ac3, the walk spends a time at least T in Q8R, we deduce that for
some constant c > 0,

P(A1 ∩ Ac3) ≤ exp(−c T
R2

). (5.7)

Then the proposition readily follows from (5.6) and (5.7), once we choose C1c > 2C2c1 and use

P
(
A1 ∩ {Z ≥

M

2
} ∩ A3

)
≥ P

(
A1 ∩ {Z ≥

M

2
}
)
− P

(
A1 ∩ Ac3

)
.

It remains now to prove (5.5). We fix some x ∈ ∂QN2R, and in the remaining part of the proof,
we work under Px. We denote by RN the range produced by the N excursions. We note that it
suffices to show that for C2 in (5.2) large enough, one has for any i ≤M ,

Px

(
|RN ∩Qr(vi)| > ρrd

)
≥ 3

4
. (5.8)

Indeed, (5.8) shows that E[Z] ≥ 3
4M , and using also that Z is bounded by M , it implies that

P(Z ≤M/2) ≤ 1/2, as desired.

Thus, we are led to prove (5.8) for i ≤ M . For a chosen i ≤ M , we introduce new notation. Let
Nr be the number of excursions which hit ∂Q2r(vi), and G be the σ−field generated by Nr and
the hitting points of ∂Q2r(vi) by these excursions. Finally we let V ⊆ Qr(vi) be the set of vertices
visited by these excursions. Since any vertex in Qr(vi) has a probability of order r2−d to be visited
by a walk starting from ∂Q2r(vi), uniformly in its starting point, we have for some constant c0 > 0,
almost surely

Ex

[
|V| | G

]
≥
(

1− (1− c0

rd−2
)Nr
)
· |Qr| ≥

(
1− exp

(
− c0

Nr
rd−2

))
· |Qr|, (5.9)

using that 1 − u ≤ e−u, for all u ≥ 0. Since any excursion has a probability of order at least
(r/R)d−2 to hit ∂Q2r(vi), we observe that for any fixed K ≥ 1, it is possible to choose C2 = C2(K)
in (5.2) large enough so that

Px

(
Nr ≥ Kρrd−2

)
≥
√

7/8. (5.10)

We fix K later, and we treat distinctly high and low densities.
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High density. If ρ is such that 1− exp(−c0Kρ) ≥
√

7/8, then (5.9) and (5.10) imply that

Ex

[
|V|
]
≥ (7/8) · |Qr|.

Using that V ⊆ Qr, and as a consequence that |V| is bounded by |Qr|, we obtain (5.8), writing

Px(|V| < ρ|Qr|) ≤ Px(|V| < |Qr|/2) ≤ 1/4 (recall that ρ < 1/2).

Low density. If ρ is such that 1− exp(−c0Kρ) <
√

7/8, then it means that ρK is bounded by
some universal constant (only depending on c0), and thus that for another univeral constant c′ > 0,
one has 1− exp(−c0Kρ) ≥ c′ρK. Then by (5.9), on the event {Nr ≥ Kρrd−2},

Ex

[
|V| | G

]
≥ c′ρK · |Qr|. (5.11)

Our strategy now is to use a second (conditional) moment method, and show that the conditional
variance of V is small. We denote with V1 the set of pairs of vertices (y, z) ∈ V ×V, for which there
exists an excursion going through both y and z, and let V2 be the complement of V1 in V × V and
note that |V|2 = |V1|+ |V2|. Since for any y ∈ Qr(vi) the mean number of vertices in Qr(vi) which
are visited by a walk starting from y is of order r2, one has for some constant c > 0,

Ex

[
|V1| | G

]
≤ cr2 · Ex

[
|V| | G

]
.

Since we have assumed that ρrd−2 ≥ 1 it follows using (5.11) that on the event {Nr ≥ Kρrd−2} we
have

Ex

[
|V1| | G

]
≤ c

c′K
· Ex

[
|V| | G

]2
. (5.12)

We fix now K such that K > 64c/c′ (and fix accordingly C2 and then C1 as explained above).
Then it remains to bound the conditional mean of |V2| knowing G. First we fix a constant K ′ > 0,
such that

Px(A4) ≥ 7/8, for A4 :=
{
Kρrd−2 ≤ Nr ≤ K ′ρrd−2

}
.

We denote by E1, . . . , ENr , the Nr excursions hitting Qr(vi) under Px. Fix some y, z ∈ Qr(vi), and
let

Iy := {k ≤ Nr : y ∈ Ek}.

By definition, for any k ≤ Nr,

Px(z ∈ Ek | G, k /∈ Iy) ≤
Px(z ∈ Ek | G)

Px(y /∈ Ek | G)
≤ Px(z ∈ Ek | G)

1− cr2−d ≤ Px(z ∈ Ek | G) +O(r2(2−d)),

for some constant c > 0. As a consequence, on the event A4, and for r large enough,

Px

z ∈ ⋃
k/∈Iy

Ek
∣∣∣ G, Iy

 = 1−
∏
k/∈Iy

(
1− Px(z ∈ Ek | G, Iy)

)
≤ 1−

∏
k/∈Iy

(
1− Px(z ∈ Ek | G)−O(r2(2−d))

)
≤ 1−

∏
k≤Nr

(
1− Px(z ∈ Ek | G)

)
+O

(
Nr

r2(d−2)

)

= Px(z ∈ V | G) +O
(
Nr

r2(d−2)

)
, (5.13)

15



where at the penultimate line we use that onA4, and when r is large enough, the termO(Nr/r2(d−2))
can be made smaller than 1. Then on the event A4, we get from (5.13),

Px((y, z) ∈ V2 | G) ≤
(
Px(z ∈ V | G) +O(ρr2−d)

)
· Px(y ∈ V | G).

Summing over y, z ∈ Qr, we deduce from (5.11), that on the event A4,

Ex

[
|V2|

∣∣G] ≤ Ex

[
|V|

∣∣G]2(1 +O(r2−d)).

Combining this with (5.12), we get for r large enough,

varx(|V|
∣∣G) = Ex

[
|V2|

∣∣G]+ Ex

[
|V1| | G

]
− Ex

[
|V|

∣∣G]2 ≤ 1

32
· Ex

[
|V|

∣∣G]2.
Together with (5.11), it follows that for r large enough, on the event A4,

Px(|V| ≤ ρ|Qr|
∣∣G) ≤ Px

(
|V| ≤ 1

2
Ex

[
|V|

∣∣ G] ∣∣∣ G) ≤ 4 varx
(
|V|

∣∣ G)
Ex

[
|V|

∣∣G]2 ≤ 1

8
.

Finally, using that Px(A4) ≥ 7/8, we obtain the desired bound for r large enough,

Px(|V| ≤ ρ|Qr|) ≤ Px(Ac4) + Px(|V| ≤ ρ|Qr|, A4) ≤ 1/4,

On the other hand, for small values of r, the result is immediate. This concludes the proof of (5.5)
and the proposition.
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