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Few proteins have been characterized as abscisic acid transporters. Several of them are
NRT1/PRT Family (NPF) transporters which have been characterized in yeast using
reporter systems. Because several members of the NPF4 subfamily members were
identified in yeast as ABA transporters, here, we screened for ABA transport activity the
seven members of the NPF4 subfamily in Xenopus oocytes using cRNA injection and 3H-
ABA accumulation. The ABA transport capacities of NPF4.2, NPF4.5, NPF4.6, and
NPF4.7 were confirmed. The transport properties of NPF4.5 and NPF4.6 were studied
in more detail. Both ABA transporter activities are pH-dependent and slightly pH-
dependent apparent Km around 500 mM. There is no competitive inhibition of the ABA-
analogs pyrabactin and quinabactin on ABA accumulation demonstrating a different
selectivity compared to the ABA receptors. Functional expression of these ABA
transporters in Xenopus oocyte is an opportunity to start structure–function studies and
also to identify partner proteins of these hormone transporters.

Keywords: abscisic acid, transport, hormone, Km, pH
INTRODUCTION

The weak acid sesquiterpene abscisic acid (ABA) was identified in plant in the sixties (Zhang, 2014).
It is widely described as the stress hormone because it is involved in the plant responses to many
biotic and abiotic environmental signals (Cutler et al., 2010). From its discovery to 2010, most of the
work was dedicated to the identification of biosynthetic and catabolic pathways, and several
enzymes involved in these processes have been identified (Nambara and Marion-Poll, 2005). In
2009, the perception and signaling pathways came back to light with the identification of the ABA
receptors from the PYR/PYL/RCAR family (Ma et al., 2009; Park et al., 2009).

While long-distance ABA transport within the plant was characterized years ago, the firsts ABA
transmembrane transporters were only identified in 2010 (Boursiac et al., 2013). What are the ABA
transporters identified so far?

The first family of protein which have ABA transporters is the ABCG subfamily of ABC (ATP
BINDING CASSETTE) transporters, with four of them related to ABA transport: ABCG25, 30, 31,
and 40. ABCG25 exports ABA from the vascular parenchyma cells and AtABCG40/PDR12
.org February 2020 | Volume 11 | Article 1441
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mediates guard cells ABA uptake to trigger stomatal closure
(Kang et al., 2010; Kuromori et al., 2010; Kuromori and
Shinozaki, 2010; Kuromori et al., 2016; Kuromori et al., 2018).
These transporters, together with AtABCG30 and AtABCG31,
are involved in seed dormancy. AtABCG25 and AtABCG31
export ABA from the endosperm whereas AtABCG30 and
AtABCG40 import ABA in the embryo to suppress seed
germination (Kang et al., 2015). The Medicago MtABCG20 is
an ABA exporter involved in root development and seed
germination (Pawela et al., 2019).

The second family of ABA transporters is the NPF (NRT1/PTR
FAMILY) (Corratgé-Faillie and Lacombe, 2017). An elegant
functional screen of ABA transport in yeast was used to identify
NPF4.6/AIT1/NRT1.2, NPF4.5/AIT2, NPF4.1/AIT3, and NPF4.2/
AIT4 (Kanno et al., 2012). Their ABA transporting activities were
tested and confirmed by ABA accumulation studies in either yeast
cells or Sf9 cells (Kanno et al., 2012). NPF4.6 is expressed around
vascular tissues, and mutants defective in AtNPF4.6 have lower
surface temperatures than the wild-type, supporting a role as an
ABA transporter in planta (Kanno et al., 2012). NPF4.6 is also a
nitrate transporter (Huang et al., 1999), so the effect of nitrate on
ABA accumulation has been tested (Kanno et al., 2013), but an
interaction between the two substrates has not been demonstrated.
Using the same ABA-dependent two-hybrid system and screening
45 out of the 53 Arabidopsis NPF members, Chiba and coworkers
(Chiba et al., 2015) confirmed that NPF4.6, NPF4.1, and NPF4.5—
and also additional NPF members such as NPF1.1, NPF2.5,
NPF5.1, NPF5.2, NPF5.3, NPF5.7, and NPF8.2—are ABA influx
transporters. More recently, Tal et al. (2016) have demonstrated
the ability of NPF3.1-expressing oocytes to accumulate ABA. The
Medicago MtNPF6.8 is an ABA influx transporter when expressed
in Xenopus oocytes (Pellizzaro et al., 2014).

Two other proteins behave as ABA transporters. A DTX/
MATE (Detoxification efflux carrier/multidrug and toxic
compound extrusion), AtDTX50 is an Arabidopsis efflux
transporter involved in ABA sensitivity and drought tolerance
(Zhang et al., 2014). In rice, an AWPM-19-family member
(OsPM1, PLASMA MEMBRANE PROTEIN1) is an ABA influx
transporter involved in drought response (Yao et al., 2018).

Despite the number and the diversity of the ABA transporters,
the detailed transport properties of these proteins are largely
unknown. The aims of our work were: (i) to identify functional
ABA transporters within the 7 NPF4 proteins, using heterologous
expression and 3H-ABA and (ii) to perform a detailed
characterization of the functional properties of NPF4.5 and
NPF4.6. Besides its numerous advantages for membrane transport
characterization, the use of Xenopus oocytes also gives the
opportunity to determine the transport parameters in other systems.
MATERIALS AND METHODS

Plasmids and cRNA Synthesis
NPF coding sequences (CDS) were either obtained from ABRC
(cloned in pENTR223 for NPF4.3, 4.5) or cloned in pENTR/D/
TOPO (for clones NPF4.1, 4.2, 4.4, 4.7), and pDONR207 (for
Frontiers in Plant Science | www.frontiersin.org 2
clones NPF4.1, 4.6). Each clone was sequenced and compared to
Col-0 genomic sequence. LR reaction was performed according
to the manufacturer's instructions (Life Technologies), to clone
the CDS into the Xenopus oocyte expression vector [pGEM-
GWC, (Leran et al., 2015)].

Oocytes Expression
NPFx-pGEM-GWC vectors were linearized and in vitro
transcribed with mMessage mMachine T7 Ultra Kit following
manufacturer protocol (Life Technologies). Xenopus oocytes
were purchased from the Centre de Recherche en Biochimie
Macromoléculaire (CNRS, Montpellier, France). Oocytes were
obtained and injected as previously described (Lacombe and
Thibaud, 1998).

ABA Uptake Experiments and 3H-ABA
Quantification
For ABA uptake, oocytes were incubated for 20 min in 1 ml of
ND96 solution (pH indicated in the figure legends) containing the
indicated concentration of ABA (10% of the labeled 3H-ABA,
American Radiolabelled Chemicals and 90% of cold ABA, Sigma).
They were then washed 4 times in 15 ml of ND96 solution (4°C)
containing 5 µM of cold-ABA. Each oocyte was then dissolved in
100 µl of 2% Sodium Dodecyl Sulfate (SDS). Lysis solution was
then mixed to 3 ml of scintillating solution (ULTIMAGOLD,
PerkinElmer). Incorporated radioactivity was measured by
Liquid-Scintillation analyzer (Tri-Carb 2100 TR, Perkin Elmer).

Fitting Procedure
Least squares fit using SIGMAPLOT (11.0, Systat Software Inc.)
has been used. The ABA concentration range was between 0 and
5 mM 3H-ABA. Data were fitted by a Michaelis–Menten
equation: A = (Amax * [ABA])/(Km + [ABA]), where A is the
intracellular ABA accumulation, Amax is the maximum
intracellular accumulation, (ABA) is the external ABA
concentration and Km is the apparent affinity.
RESULTS

Expression of the Seven AtNPF4 in
Xenopus Oocytes
Xenopus oocytes are used to express the seven Arabidopsis NPF4
proteins after injection of in vitro transcribed cRNA.
Noninjected oocytes were used as negative controls. We used
3H-labeled ABA as a tracer for ABA accumulation into oocytes.
After 20 min incubation in 3H-ABA containing ND96 solutions,
3H was quantified into oocytes (Figure 1). Control oocytes
accumulate low levels of 3H, this could be explained by the
membrane diffusion of protonated form of ABA (ABA-H).
Whereas in yeast NPF4.1 is an ABA influx transporter (Kanno
et al., 2012; Kanno et al., 2013; Chiba et al., 2015), NPF4.1-
expressing oocytes accumulate 3H at the same level as the
control. NPF4.2 and NPF4.7-expressing oocytes accumulate
more than 2.5-fold 3H compared to control oocytes suggesting
that ABA is a substrate for these transporters. NPF4.3 and
February 2020 | Volume 11 | Article 144
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NPF4.4-expressing oocytes accumulate less 3H; this suggests that
they behave as ABA efflux transporters. However, this should be
confirmed by performing an experiment specifically designed to
identify efflux transporter by injecting ABA into the oocytes. The
highest accumulation was obtained in oocytes expressing NPF4.5
and NPF4.6 (Figure 1).

Since NPF4.5 and 4.6 showed high ABA accumulation, we
focused on these two transporters for further characterization.

Effect of External pH on ABA
Accumulation
Most of the NPFs and their animal and bacterial counterparts are
proton-coupled transporters. So, we quantified 3H accumulation
at different external pH, ranging from 5.0 to 7.5 (Figure 2). In
control oocytes, 3H accumulation is not affected in the 5.5–7.5
range and slightly increases at pH 5.0. This is probably due to an
increase in the concentration of the protonated form of ABA at
acidic pH which increases the membrane diffusion of this form.
The external pH sensitivity of NPF4.5 and NPF4.6 is equivalent.
3H accumulation is enhanced by acidic pH and NPF-dependent
3H accumulation is very low at pH above 7.0.

ABA Dose Response
An important property of a transporter is its affinity towards its
substrate. We have assessed the apparent affinity (Km) of NPF4.5
and NPF4.6 towards ABA by quantifying 3H accumulation into
the oocytes at different external ABA concentrations in the 0–5
µM range (Figure 3) and at different pH (5.0, 5.5, 6.0, 6.5, 7.0).
Data were fitted by a Michaelis–Menten equation: A = (Amax *
[ABA])/(Km + [ABA]). This fitting procedure allows
determining the apparent affinity of ABA for the transporters
(Km). The calculated Km is slightly dependent on the external
Frontiers in Plant Science | www.frontiersin.org 3
pH: the Km increases with increase in external pH. At the four
tested pH, the Km for both transporters are around 500 nM
(Table 1).

Effect of Quinabactin and Pyrabactin on
ABA Accumulation
Several ABA-analogs have been identified and characterized
(Cao et al., 2017). Within these analogs, pyrabactin and
quinabactin induce physiological responses, similar to ABA,
through their direct binding to the ABA-receptors from the
PYR/PYL/RCAR family. However, nothing is known about
their effect on ABA transporters. Direct transport of these
ABA-analogs was not possible because there is a no labeled-
form of these molecules; so we tested their effect on ABA
transport (3H accumulation). To test the competition, two
concentrations of ABA-analogs were tested at 0.5 and 5 µM
in the presence of 1 µM ABA. Neither quinabactin (Okamoto
et al., 2013) nor pyrabactin (Park et al., 2009; Kanno et al.,
2012) was able to decrease the 3H-ABA accumulation into the
oocytes, suggesting that they are not transported by, nor bound
to NPF4.5 and NPF4.6.
DISCUSSION

Within the different families of membrane transporters, NPF
can transport structurally different substrates (Corratgé-
Faillie and Lacombe, 2017). In this family, transporters for
different hormones have been identified: auxin, GA,
Jasmonate, and ABA. To date, the structure–function
relationships are not well defined (Jørgensen et al., 2015;
Jørgensen et al., 2017; Longo et al., 2018) and it is not
FIGURE 2 | pH-dependent 3H accumulation in NPF4.5 and NPF4.6 in Xenopus
oocytes. Control (noninjected, black circles), NPF4.5 (green circles) and NPF4.6
(red circles) injected oocytes were bathed in 1 mM 3H-ABA (pH = 5.0 to 7.5), and
3H accumulation in oocytes was quantified after 20 min. Values are mean +/−
SEM (n = 6–20 oocytes, biological replicates). ***P < 0.001, **0.001 < P < 0.005,
two-sided t-test after comparison with control oocytes.
FIGURE 1 | Screen for ABA transport activity of Arabidopsis NPF4 subfamily
members in Xenopus oocytes. Control (noninjected) and NPF4-injected
oocytes were bathed in 1 mM 3H-ABA (pH = 6.0), and 3H accumulation in
oocytes was quantified after 20 min. Values are mean +/− SEM (n = 5–12
oocytes, biological replicates). ***P < 0.001, **0.001 < P < 0.005, two-sided
t-test after comparison with control oocytes.
February 2020 | Volume 11 | Article 144
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possible to predict the substrate from the sequence. NPF ABA
transporters have been characterized in yeast and Sf9 insect
cells (Kanno et al., 2012; Kanno et al., 2013; Chiba et al., 2015).
These researches identified the NPF4 as a subfamily with
several ABA transporters. This work unveils the transport
properties of two of these expressed in Xenopus oocytes,
AtNPF4.5 and NPF4.6. These data give new insights into the
transmembrane transport of ABA influxer. Furthermore, we
present our screen of ABA accumulation in oocytes expressing
each member of the Arabidopsis NPF4 subfamily. This
demonstrates that Xenopus oocytes combined with 3H-ABA
quantification can be used to study plant ABA transporters.

Our screen confirms that ABA is a substrate for NPF4.5/
AIT2, NPF4.6/AIT1/NRT1.2 and NPF4.2/AIT4 (Figure 1,
Chiba et al., 2015). In our experimental conditions, we were
not able to demonstrate an ABA transport activity of NPF4.1/
AIT3, further experiments in different conditions should be
performed to understand the different results obtained in yeast
(Kanno et al., 2012; Kanno et al., 2013; Chiba et al., 2015). The
data obtained with NPF4.3 and NPF4.4 should also be studied
in more detail. Indeed, in all experiments performed, oocytes
expressing these transporters always accumulated less 3H
Frontiers in Plant Science | www.frontiersin.org 4
(ABA) than control oocytes (Figure 1). This is an indication
of a putative role in ABA efflux. This could explain the negative
results obtained with these transporters expressed in yeast
(Kanno et al., 2012; Kanno et al., 2013; Chiba et al., 2015).
Finally, NPF4.7 displays ABA transport activity in Xenopus
oocytes unlike in yeast (Kanno et al., 2012; Kanno et al., 2013;
Chiba et al., 2015). This demonstrates that the use of different
heterologous expression systems is a prerequisite to a
definitive conclusion about the substrate selectivity of a
specific transporter. The functional properties of different
FIGURE 3 | Effect of external ABA concentration on 3H accumulation in NPF4.5 and NPF4.6-expressing oocytes. 3H-accumulation in NPF4.5 (A) and NPF4.6
(B) expressing oocytes depending on the wide external ABA concentrations range (0–5 mM 3H-ABA). The solid lines are least-squares Michaelian fits. Data are mean
+/− SE (n = 6–10 oocytes, biological replicates).
FIGURE 4 | Effect of pyrabactin and quinabactin on 3H accumulation in
NPF4.5 and NPF4.6 in Xenopus oocytes. Control (noninjected), NPF4.5 and
NPF4.6 injected oocytes were bathed in 1 mM 3H-ABA (pH = 6.0), and 3H
accumulation in oocytes was quantified after 20 min in the presence or in the
absence of 0.5 or 5 mM of pyrabactin or quinabactin. Values are mean +/−
SEM (n = 9–11 oocytes, biological replicates). The pyrabactin and quinabactin
treatment has no significant effect on 3H accumulation (two-sided t-test).
TABLE 1 | Effect of external pH on ABA affinity. ABA accumulations have been
determined in different external ABA concentrations (0–5 mM 3H-ABA) at 4
different external pH levels: 5.0, 5.5, 6.0, and 6.5.

pH 5.0 5.5 6.0 6.5

NPF NPF4.5 NPF4.6 NPF4.5 NPF4.6 NPF4.5 NPF4.6 NPF4.5 NPF4.

Km
(nM)

462 395 485 423 522 452 545 472

±
SEM

± 35 ± 25 ± 47 ± 33 ± 41 ± 25 ± 55 ± 62
6

At each pH, data were fitted by a Michaelis–Menten equation: A = (Amax * [ABA])/[Km +
[ABA]) to determine the Km. Values are mean +/− SEM (n = 5–12 oocytes, biological
replicates).
February 2020 | Volume 11 | Article 144
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plant transporters have been determined in several expression
systems and are known to be affected by the expression host
[e.g. (Dreyer et al., 1999)]. Several explanations have been
proposed and it is not possible from our results to discriminate
between them: membrane lipid composition, membrane
potentials, expression of endogenous regulators (kinases,
phosphatases, …), different cytosolic compositions (pH,
calcium). In a previous screen (Leran et al., 2015), the nitrate
uptake capacity of NPF4.3, 4.3, 4.5, 4.6 was tested, and none of
these proteins displayed nitrate transport properties.

We have identified a strong positive effect of external
acidification (Figure 2) with small effect on the Km (Table
1). This could be indicative of an increase in the diffusion of
the protonated membrane-permeable form of ABA (ABA-H)
because acidification increases its concentration. ABA is a
weak acid in equilibrium between the anionic (ABA−) form
and the protonated (ABA-H) form. The pKa (4.7 for ABA) is
the pH at which both forms are at the same concentration (at
pH 4.7, 50% of abscisic acid is ABA− and 50% is ABA-H form).
At a more acidic pH, ABA-H is the dominant form; whereas at
a basic pH [ABA−] > [ABA-H]. For example, at pH 7.7,
[ABA−] = 1000 × [ABA-H]. The protonated form (ABA-H)
is uncharged, and therefore, is able to diffuse freely through
the membrane lipid bilayer. This phenomenon did not
significantly affect ABA accumulation in the control oocyte
which is very slightly pH dependent (Figure 2). The three
other explanations for this are: (i) as most of the NPF
characterized so far, NPF4.5 and NPF4.6 are proton coupled
transporters, (ii) acidification induces protonation of some
amino-acids which induce a modification of the transport
properties, and (iii) the transported form of ABA is ABA-H
and not the negatively charged ABA−. It is not yet possible to
determine which one of these explanations is the right one. It
could even be a combination of two or three of these
hypotheses. Further studies using site-directed mutagenesis
will give the opportunity to test these hypotheses.

The dose response curve of ABA transport activity versus the
external ABA concentration follows a Michaelis–Menten
behavior (Figure 3). Fitting the data allows determining the
affinity: the Km is ca. 500 nM for both transporters and is only
slightly modified by external pH (Table 1). This is 10-fold lower
than what has been previously determined by NPF4.6-expression
in yeast [5 µM, (Kanno et al., 2012)]. These experiments in yeast
have been performed at pH 7.5, whereas our experiments were
done at pH 6.0. We cannot test this in oocytes because, at pH 7.5,
there is no NPF-dependent 3H accumulation. But the small
change in Km in the 5.0–6.5 range (Table 1) does not support
the fact that the difference in Km observed in yeast and in oocyte
is explained by a different external pH.

The selectivity and affinity of ABA receptors have been
studied, and several ABA analogs with higher affinity for the
receptors have been identified, as pyrabactin and quinabactin
(Figure 4) (Park et al., 2009; Okamoto et al., 2013). The effect of
Frontiers in Plant Science | www.frontiersin.org 5
these molecules on ABA transport has been tested. They have no
effect on 3H accumulation, suggesting that (i) they are not
competitive inhibitors of NPF-dependent ABA transport and
(ii) they are not transported. However, the development of
labeled forms of these molecules is necessary to confirm the
absence of transport.

Xenopus oocytes have been used to characterize plant
transporters from different transporter families (Larsen et al.,
2017). The possibility to use this convenient system for most
plant hormones is now established (Wulff et al., 2019), and
specific drawbacks have been recently identified (Wulff et al.,
2019). This system can be used to characterize ABA transport
from the NPF family and will be used to perform a structure–
function analysis to identify the amino-acids involved in the
ABA selectivity of these transporters. It will be also interesting to
study the properties of the ABA transporter from the ABCG
family expressed in Xenopus oocytes. Some more data should
also be obtained in planta to have a better understanding of the
transport properties in different tissues (Boursiac et al., 2013).
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