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The Navier–Stokes–Korteweg (NSK) equations are a classical diffuse-interface model for 
compressible two-phase flows. As direct numerical simulations based on the NSK system 
are quite expensive and in some cases even impossible, we consider a relaxation of the 
NSK system, for which robust numerical methods can be designed. However, time steps for 
explicit numerical schemes depend on the relaxation parameter and therefore numerical 
simulations in the relaxation limit are very inefficient. To overcome this restriction, we 
propose an implicit–explicit asymptotic-preserving finite volume method. We prove that 
the new scheme provides a consistent discretization of the NSK system in the relaxation 
limit and demonstrate that it is capable of accurately and efficiently computing numerical 
solutions of problems with realistic density ratios and small interfacial widths.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are in general two approaches to describe the behavior of multi-phase fluids, the sharp interface (SI) and the 
diffuse interface (DI) approach. The first approach represents multiple phases with different sets of equations that are 
coupled by some interface conditions. The second approach, which used to describe, e.g. the merging process of droplets 
and bubbles, needs only one set of equations to model the phases and does not require the location of the interface to be 
tracked explicitly.

In this paper, we consider two DI models for a homogeneous two-phase compressible fluid: The Navier–Stokes–Korteweg 
system (NSK) and a relaxation system for the NSK system. The NSK system goes back to the work of Korteweg [31] and was 
formulated in its present form in [18,2]. The NSK system uses a Van-der-Waals like pressure function to identify two distinct 
phases and a third-order term to model phase transitions. Many authors achieved analytical results on the well-posedness 
of the NSK system and its variants, e.g. [4,7,24,32,37]. While some numerical methods have been successfully developed and 
used for these and related families of problems, see, e.g., [6,8,16,21,25,39], there are still many open problems, for which 
accurate and efficient numerical methods are yet to be designed. Up to our knowledge, the robust computation of realistic 
density values for liquid and vapor phases has not been suggested for the NSK model. Additionally, numerical methods also 
fail in cases when very small interface widths close to a sharp interface are to be considered. In both cases, the occurring 
problems are related to steep density gradients. Another source of difficulty one comes across while numerically solving 
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NSK systems is related to the Van-der-Waals like form of the pressure equation. The latter prevents one from using upwind 
hyperbolic solvers, which have been successfully applied, e.g., to stabilize computations for Navier–Stokes equations with 
high Reynolds numbers.

The issue of very small interfaces is especially important because the NSK model can only provide the correct amount 
of capillary forces if the interface is extremely small [17,25,27]. One idea to loosen the strict coupling between interfacial 
width and capillary forces is to introduce an additional Cahn–Hilliard or Allen–Cahn type equation for a new phase field 
variable. This was done for example in [1,5,42]. Another ansatz to avoid some of the difficulties for the NSK systems suggests 
to introduce a relaxation of the NSK system, in which the third-order term is replaced by a first-order term and a Poisson 
equation, that defines a new phase field parameter, see, e.g., [37]. This model is parametrized by a so-called Korteweg 
parameter α. If the Korteweg parameter tends to zero, the relaxation system formally converges to the NSK system. The 
most important feature of the relaxation system is the fact, that the first-order part is purely hyperbolic for sufficiently 
small Korteweg parameter. It should also be observed that the addition of the Poisson equation to the system does not 
increase the computational cost of numerical simulations as test cases demonstrate that the time savings, that come from 
the fact that one does not have to solve a third order system, are greater than the loss of time that comes from the 
numerical solution of the Poisson equation. These properties can be exploited to construct robust numerical schemes for 
the relaxation system. In [34], it has been shown that the overall approach is robust for problems with large density ratios 
and small interfacial widths. However, the numerical scheme proposed in [34] is an explicit scheme and thus the time steps 
decrease as the Korteweg parameter α tends to zero.

It is the main purpose of this contribution to construct an asymptotic-preserving (AP) scheme [28] in the Korteweg 
limit, that is, a scheme for the relaxation system that provides a consistent approximation of the original NSK system as 
the Korteweg parameter α tends to zero. The AP approach was developed in the framework of linear transport in diffusive 
regimes [22,29,33] and has been applied to many different areas, e.g. fluid and diffusion limits of kinetic models, relaxation 
methods for hyperbolic systems and low-Mach number limits for compressible flow problems; see, e.g., [11,12,14,15,20,23,
30,35,36]. In [23], the time and spatial discretization of the isentropic Euler and Navier–Stokes Equations in the low Mach 
number limit was investigated. Inspired by this research, we construct here a scheme that captures the Korteweg limit for 
the relaxation system and prove the AP property of the proposed scheme. The AP property of the new scheme is achieved 
by splitting the relaxation system into a non-stiff nonlinear, compressible hyperbolic Navier–Stokes like system and a system 
that can be treated by a Poisson solver, and allows the use of time and spatial steps that are independent of the Korteweg 
parameter. As the result the proposed numerical scheme is very efficient for small values of the parameter α, which is a 
significant improvement compared to an explicit scheme from [34]. Beyond that, we expect our scheme to be asymptotic 
preserving in the sharp interface limit. We cannot give analytical proof to that, but we support this statement by a numerical 
example.

The paper is organized as follows. In Section 2, we introduce the NSK and relaxation systems and describe their main 
properties together with the basic thermodynamical framework. We comment on the advantages of the relaxation system 
and point out why it is necessary to introduce a new scheme in order to solve the relaxation system efficiently. Section 3
contains the basic outcome of this contribution. We propose the AP scheme for the relaxation system and perform an 
asymptotic analysis to show that the scheme transforms into a scheme for the NSK equations in the Korteweg limit. In 
Section 4, we demonstrate that the algorithm provides a massive improvement compared to a standard explicit scheme for 
a number of problems in one and two space dimensions.

2. Navier–Stokes–Korteweg equations

2.1. The Navier–Stokes–Korteweg system

Let an open set � ⊆ R
d , d ∈ {1, 2, 3} up to the final time T > 0 be given. The isentropic Navier–Stokes–Korteweg (NSK) 

equations in arbitrary spatial dimension are given by{
∂tρ + ∇ · (ρv) = 0,

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇(p(ρ)) = ∇ · Tε[v] + γ ε2ρ∇�ρ,
(x, t) ∈ � × (0, T ), (2.1)

where ρ = ρ(x, t) is the density of the fluid, v = (v1(x, t), ..., vd(x, t))T ∈ R
d is its momentum and p(x, t) is the pressure. 

Note that ε is the Reynolds number and γ ε2 is the capillary number. We refer to [26,41] for a detailed explanation on the 
physical meaning of the scaling ε → 0 and γ = O(1). The matrix Tε[v] ∈ R

d×d in (2.1) stands for the viscous part of the 
stress tensor which is given for the viscosity coefficients ν, μ ∈ R with μ ≥ 0 and 3ν + 2μ > 0 by

Tε
i j := εν∇ · (v)δi j + 2εμDi j, Di j := 1

2

(
v j,xi + vi,x j

)
, (i, j ∈ {1,2}). (2.2)

We augment (2.1) with the initial data

ρ(x,0) = ρ0, v(x,0) = v0, x ∈ �, (2.3)
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Fig. 2.1. Pressure p as a function ff density ρ for the values b1 = b = 3, T∗ = 0.85, and R = 8.

and boundary conditions that correspond to a bounded box:

v = 0, ∇ρ · n = 0, x ∈ ∂�. (2.4)

To describe a two-phase fluid we choose the Van-der-Waals type pressure

p(ρ) = RT∗ρ
b − ρ

− b1ρ
2. (2.5)

Thereby, b, b1, R are positive constants and T∗ is the fixed temperature. If T∗ is chosen small enough, the pressure p is 
monotone decreasing in some non-empty density interval. This structure allows one to define phases. If the density ρ lies 
in the interval (0, α1], ((α1, α2)), {[α2, b)} the corresponding fluid state is called vapor (spinodal) {liquid}, see Fig. 2.1 for an 
illustration.

We observe that the first-order part of (2.1) is not purely hyperbolic for all density values. Indeed, consider, for instance, 
the one-dimensional (1-D) case, d = 1. It is easy to check that the eigenvalues of the Jacobian of the first order part of (2.1)
Df1(ρ, ρv) ∈R

2×2 are

λ1(ρ, u) = v −√
p′(ρ), λ2(ρ, u) = v +√

p′(ρ) (2.6)

with corresponding eigenvectors

K1(ρ, v) =
(

1
v −√

p′(ρ)

)
, K2(ρ, v) =

(
1

v +√
p′(ρ)

)
. (2.7)

Therefore, the first order part of (2.1) is hyperbolic if and only if ρ ∈ (0, b) \ [α1, α2].
The lack of hyperbolicity in the first-order part of (2.1) and the presence of the third-order derivative in the momentum 

balance make the numerical solution of (2.1) to be a challenging task: Explicit schemes suffer from extremely small time 
steps while implicit discretizations lead to badly conditioned algebraic problems. The non-monotonicity of p prevents the 
use of most modern shock-capturing schemes.

2.2. A relaxation for the Navier–Stokes–Korteweg system

To overcome some of the shortcomings of the classical NSK system we propose a relaxation for the NSK system [37]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ
α + ∇ · (ραvα) = 0,

∂t(ρ
αvα) + ∇ · (ραvα ⊗ vα) + ∇p(ρα) = ∇ · Tε[vα] + 1

α2
ρα∇(cα − ρα),

γ ε2�cα + 1

α2
(ρα − cα) = 0.

(2.8)

Here α > 0 is the Korteweg parameter and cα is a new unknown, that is defined by the additional Poisson equation, and the 
stress tensor Tε given by (2.2). The relaxation system (2.8) is augmented with the initial conditions

ρα(x,0) = ρ0, vα(x,0) = v0, x ∈ �, (2.9)

and the boundary conditions

vα = 0, ∇cα · n = 0, x ∈ ∂�. (2.10)
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The system (2.8) has a structural advantage that becomes evident when we rewrite the time-dependent equations as⎧⎪⎨
⎪⎩

∂tρ
α + ∇ · (ραvα) = 0,

∂t(ρ
αvα) + ∇ · (ραvα ⊗ vα) + ∇

(
p(ρα) + 1

2α2
ρ2

)
= ∇ · Tε[vα] + 1

α2
ρα∇cα.

(2.11)

Again, if we consider the 1-D case for the sake of simplicity, then the eigenvalues of the Jacobian of the first-order part of 
(2.11) Df1(ρα, ρα vα) ∈R

2×2 are

λ1(ρ
α,ρα vα) = vα −

√
p′(ρα) + 1

α2
ρα,

λ2(ρ
α,ρα vα) = vα +

√
p′(ρα) + 1

α2
ρα,

(2.12)

with corresponding eigenvectors

K1(ρ
α,ρα vα) =

(
1

vα −
√

p′(ρα) + 1
α2 ρα

)
,

K2(ρ
α,ρα vα) =

(
1

vα +
√

p′(ρα) + 1
α2 ρα

)
.

(2.13)

A straightforward computation (see [38]) shows that we obtain a purely hyperbolic system for

1

α2
> |min{p′(s) : s ∈ (α1,α2)|, (2.14)

where (α1, α2) is the interval of the decreasing pressures, i.e., p′(s) < 0, see Fig. 2.1. The system (2.8)–(2.10) can be seen as 
an approximation of the classical NSK system with (ρα, ραvα, cα) → (ρ, ρv, ρ) for the Korteweg limit α → 0, where (ρ, ρv)

is the solution of the corresponding initial boundary value problem (2.1), (2.3), (2.4). We refer to [8,9,13,19,21] for first 
rigorous results on the Korteweg limit. It is possible to show that (2.8) formally converges to (2.1). We take the asymptotic 
expansion

ρα = ρ(0) + αρ(1) + α2ρ(2) + . . . ,

ραvα = ρ(0)v(0) + αρ(1)v(1) + α2ρ(2)v(2) + . . . ,

cα = c(0) + αc(1) + α2c(2) + . . . ,

(2.15)

for small α and look at the balances within the equations of system (2.8). Therefore we compute the Taylor expansion at 
ρ(0) for the pressure

p(ρα) = p(ρ(0)) + p′(ρ(0))(ρα − ρ(0)) + p′′(ρ(0))(ρα − ρ(0))2 + . . .

= p(ρ(0)) + αp′(ρ(0))(ρ(1) + αρ(2) + . . . ) + α2 p′′(ρ(0))(ρ(1) + αρ(2) + . . . )2 + . . .
(2.16)

A short computation leads to the following terms for the different powers of α:
O(α−2):

ρ(0) = c(0) (2.17)

O(α−1):

ρ(1) = c(1) (2.18)

O(1):

ρ
(0)
t + ∇ ·

(
ρ(0)v(0)

)
= 0,(

ρ(0)v(0)
)

t
+ ∇ ·

(
ρ(0)v(0) ⊗ v(0)

)
+ ∇

(
p(0)

)
= ∇ · Tε[v(0)]

+ ρ(0)
(

c(2) − ρ(2)
)

+ ρ(1)∇
(

c(1) − ρ(1)
)

+ ρ(2)∇
(

c(0) − ρ(0)
)

,

γ ε2�c(0) =
(

c(2) − ρ(2)
)

.

(2.19)
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Table 2.1
Discrete L2(�)-distance. The distance decreases as α does. The fifth line contains the experimental order of 
convergence (EOC) with respect to α and the third line contains the CPU time.

i 1 2 3 4 5

�x = 0.005, α−2
i = 1 10 100 1000 10000

CPU-time [s] 563 654 787 828 2178
Di

h = ‖uh − uα
h ‖L2 0.25 0.033 2.9e−3 2.4e−4 3.7e−5

EOCi = ln(Di
h/Di+1

h )

ln(αi+1/αi )
– 0.879 1.056 1.082 0.812

We substitute (2.17), (2.18) into (2.19) and obtain{
ρ

(0)
t + ∇ · (ρ(0)v(0)) = 0,

(ρ(0)v(0))t + ∇ · (ρ(0)v(0) ⊗ v(0)) + ∇p(0) = ε�v(0) + γ ε2ρ(0)∇ · �ρ(0),
(2.20)

which is the classical Navier–Stokes–Korteweg system, see (2.1).
We illustrate this result by the following numerical experiment that is taken from [34].

Example 2.1 (Numerical verification of the Korteweg limit).
We consider the 1-D system (2.8) with ε = 0.01 on interval � = (−1, 2) subject to the boundary conditions (2.10) and 

the following initial data

ρ0(x) =
{

0.3, x ∈ (0.3,0.6) ∪ (0.85,1.05)

1.8, otherwise
,

v0(x) = 0.

(2.21)

From the physical point of view, these initial conditions describe two vapor bubbles surrounded by liquid fluid. A numerical 
solution of this initial-boundary value problem, denoted by uα

h = (ρα
h , ρα

h vα
h , cα

h )T and a numerical solution of the corre-
sponding classical NSK system, denoted by uh = (ρh, ρh vh)T . Both solutions were computed in [34] using an explicit local 
discontinuous Galerkin (LDG) method, see, e.g., [3,10,16].

The numerical results, presented in Table 2.1, indicate that the relaxed model is an O(α2)-approximation of the original 
system. As one can also see from this Table, for decreasing values of α the CPU-time is increasing due to the dependence 
on α of the eigenvalues (2.12). The maximum wave speed for system (2.8) is λmax = |vα

max| +
√

p′(ρα
max) (where ρα

max and 
vα

max are the maximum values of the density and velocity, respectively). For an explicit scheme one needs

�t = cDG min

{
�x

λmax
,
�x2

ε

}
= cDG min

{
�x

|vα
max| +

√
p′(ρα

max)
,
�x2

ε

}
, (2.22)

for some 0 ≤ cDG < 1 to satisfy the CFL condition for stability. For small α one needs �t = O(α�x). This restriction is a 
huge drawback for numerical simulations and we are interested in finding a way to circumvent this restriction.

3. An asymptotic-preserving scheme in the Korteweg limit

Having in mind the shortcomings of the relaxation system (2.8), we propose a new AP numerical scheme. Note that from 
here on we suppress the index α of all of the primal variables in order to shorten the notation.

3.1. A hyperbolic splitting

The numerical solution of the relaxation system (2.8) requires a resolution of two scales: the (fast) wave scale, coming 
from the Korteweg part and the (slow) convection scale. In order to obtain an accurate and efficient numerical scheme, 
which is able to handle both scales, we implement a splitting approach. To this end we first introduce a parameter a and 
rewrite the system (2.8) in the following form (by adding and subtracting aρ∇ρ):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + ∇ · (ρv) = 0,

∂t(ρvα) + ∇ · (ρvα ⊗ v) + ∇ p̃(ρ) = ∇ · Tε[v] + 1

α2
ρ∇(c − ρ) + aρ∇ρ,

γ ε2�c + 1

α2
(ρ − c) = 0.

(3.1)

Here the pressure is defined as

p̃(ρ) = p(ρ) + a
ρ2 (3.2)
2
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with

a = |min{p′(s) : s ∈ {α1,α2}}|, (3.3)

where (α1, α2) is the interval of the decreasing pressures, i.e., p′(s) < 0, see Fig. 2.1.
To resolve the different wave length scales, we then split (3.1) into two systems: The slow dynamics are described by 

the system{
∂tρ + β∇ · (ρv) = 0,

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇ p̃(ρ) = ∇ · Tε[v], (3.4)

and for the fast dynamics we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ + (1 − β)∇ · (ρv) = 0,

∂t(ρv) = 1

α2
ρ∇(c − ρ) + aρ∇ρ,

γ ε2�c + 1

α2
(ρ − c) = 0.

(3.5)

The splitting parameter 0 < β < 1 in (3.4) and (3.5) determines how much of the momentum is seen by each system and 
the choice of a in (3.3) is motivated by hyperbolicity. In the 1-D case, for instance, the wave speeds are

λ = v ±
√

(1 − β)v2 + β p̃′(ρ)

and when we choose a as in (3.3), we ensure that the slow system (3.4) is hyperbolic and that the wave speeds do not 
depend on α any more.

In what follows, we present numerical methods used to solve each one of the subsystems. We can discretize the slow 
system (3.3) using any explicit shock-capturing scheme for the compressible Navier–Stokes equations noting that the wave 
speeds are no longer stiff which avoids time step problems seen in the original system (3.1). A stability analysis shows that 
we need to fulfill the following CFL condition for the slow system:

�t = c A P min

{
�x

λmax
,
�x2

ε

}

= c A P min

⎧⎪⎨
⎪⎩

�x

|vmax| +
√

(1 − β)v2
max + β p̃′(ρmax)

,
�x2

ε

⎫⎪⎬
⎪⎭ .

(3.6)

for some 0 ≤ c A P < 1. For the fast dynamics governed by (3.5), we introduce an implicit scheme that corresponds to the 
discretization of a linear hyperbolic system with variable coefficients and therefore does not have any time step restrictions.

3.2. Time discretizations of the split schemes

In this section, we outline the first-order in time discretizations for the systems (3.4) and (3.5). Note that the MUSCL 
methodology allows us to turn any first order scheme into a second order one. As mentioned in the previous section, we 
choose an explicit time discretization for the slow dynamics

ρn+1 − ρn

�t
+ β∇ · (ρnvn) = 0,

ρn+1vn+1 − ρnvn

�t
+ ∇ · (ρnvn ⊗ vn) + ∇ p̃(ρn) = ∇ · Tε[vn],

(3.7)

and the following implicit–explicit discretization for the fast dynamics:

ρn+1 − ρn

�t
+ (1 − β)∇ · (ρn+1vn+1) = 0,

ρn+1vn+1 − ρnvn

�t
= 1

α2
ρn∇(cn+1 − ρn+1) + aρn∇ρn+1,

γ ε2�cn+1 + 1

α2
(ρn+1 − cn+1) = 0.

(3.8)

The time discretization of the nonlinear terms in the fast dynamics system (3.8) is one of the key ingredients of our scheme. 
With this choice, the system for the fast dynamics is a linear hyperbolic system with constant coefficients at each time step. 
We show the benefit of this choice further below.
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Now we follow the idea of [23] to obtain an efficient numerical solution strategy. We sum up (3.7) and (3.8) to have

ρn+1 − ρn

�t
+ β∇ · (ρnvn) + (1 − β)∇ · (ρn+1vn+1) = 0,

ρn+1vn+1 − ρnvn

�t
+ ∇ · (ρnvn ⊗ vn) + ∇ p̃(ρn) = ∇ · Tε[vn] + 1

α2
ρn∇(cn+1 − ρn+1) + aρn∇ρn+1,

γ ε2�cn+1 + 1

α2
(ρn+1 − cn+1) = 0,

(3.9)

and rewrite the third equation in (3.9) as

ρn+1 = cn+1 − γ ε2α2�cn+1. (3.10)

We then substitute (3.10) into the momentum equation of (3.9) to get

ρn+1vn+1 − ρnvn

�t
= −∇ · (ρnvn ⊗ vn) − ∇ p̃(ρn) − ∇ · Tε[vn] + 1

α2
ρn∇(cn+1 − cn+1 + γ ε2α2�cn+1)

+ aρn∇(cn+1 − γ ε2α2�cn+1).

(3.11)

Next, we solve (3.11) for ρn+1vn+1 and obtain

ρn+1vn+1 = ρnvn − �t∇ · (ρnvn ⊗ vn) − �t∇ p̃(ρn) + �t∇ · Tε[vn] + �tγ ε2ρn∇�cn+1

+ a�tρn∇(cn+1 − γ ε2α2�cn+1).
(3.12)

Finally, we substitute (3.12) into the density equation of (3.9), obtaining a plate equation for cn+1:

cn+1 − γ ε2α2�cn+1 − ρn

�t
+ β∇ · (ρnvn) + (1 − β)∇ · ρnvn + (1 − β)�t∇ · [−∇ · (ρnvn ⊗ vn) − ∇ p̃(ρn)

+ Tε[vn] + γ ε2ρn∇�cn+1 +a
(
ρn∇cn+1 − γ ε2α2ρn∇�cn+1

)]
= 0.

The last equation is now a plate equation with respect to the unknown variable cn+1 and the terms from the previous steps 
can be pushed to the right hand side as source terms. The crucial part is the discretization of the non-conservative terms. 
With the discretization we propose, we have to solve a symmetric, sparse linear system for cn+1. In two space dimensions, 
the biharmonic operator is a tridiagonal matrix M ∈ R

M×N with bandwidth O(N), where N(M) is the number of grid cells in 
the x-(y-)direction. This system can for example be solved with a conjugate gradient method. Note that we do not compute 
the inverse matrix M−1, but solve the linear system directly. As long as N, M are not too large, this strategy showed to be 
very efficient in our numerical test cases. The updated density ρn+1 and momentum ρn+1vn+1 are obtained from (3.10), 
(3.12).

Before we depict the spatial discretization, we want to sum up the key ideas of our numerical scheme. We split up the 
relaxation system into two smaller system to resolve the two wave scales. With our choice of the splitting parameter a, the 
time steps of the explicit scheme for the slow system are independent of α. Additionally, we proposed a linearization of the 
fast system, that leads to an implicit scheme. After some small computations we have also showed, that evolution in time 
corresponds to the solution of a plate equation.

3.3. Spatial discretization of the split systems

We assume a two-dimensional (2-D), rectangular grid with uniform spacing �x for ease of explanation. Let T = {Bi, j|i =
1, . . . , N; j = 1, . . . , M} be a partition of � where Bi, j is a square with length �x and N(M) is the number of cells in the 
x-(y-)direction. We define φi, j = φ(xi, y j) where (xi, y j) = (−�x/2 + i�x, −�y/2 + j�y). Within this section we define 
u = (ρ, ρv)T .

3.3.1. Discretization of the slow system
We rewrite system (3.7) as

un+1 − un

�t
+ f1(u)x + f2(u)y = ∇ · Tε[vn] (3.13)

with un = (ρn, ρnun, ρn vn)T and f1(u), f2(u) defined as

f1(u) = (βρu,ρu2 + p̃(ρ),ρuv)T , f2(u) = (βρv,ρuv,ρv2 + p̃(ρ))T .
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First, we treat the convective flux terms and thus recall that the eigenvalues of the Jacobians Df1, Df2 are given by

λ1
1(u) = u −

√
(1 − β)u2 + β p̃′(ρ),

λ1
2(u) = u,

λ1
3(u) = u +

√
(1 − β)u2 + β p̃′(ρ),

λ2
1(u) = v −

√
(1 − β)v2 + β p̃′(ρ),

λ2
2(u) = v,

λ2
3(u) = v +

√
(1 − β)v2 + β p̃′(ρ).

(3.14)

We discretize the fluxes f1 and f2 terms using a HLL-solver [40], so that the numerical fluxes are given by

H1(u−,u+) = λ1+f1(u−) − λ1−f1(u+) − λ1+λ1−(u+ − u−)

λ1+ − λ1−
,

H2(u−,u+) = λ2+f2(u−) − λ2−f2(u+) − λ2+λ2−(u+ − u−)

λ2+ − λ2−
.

(3.15)

with λi± defined as

λi+ := λi+(u−,u+) = max{λi
3(u−), λi

3(u+),0},
λi− := λi−(u−,u+) = min{λi

1(u−), λi
1(u+),0}.

(3.16)

for i ∈ {1, 2}.
With the numerical fluxes (3.15) we define the discrete conservative operator for the convective part f1(u)x + f2(u)y of 

(3.13)

F(un
i, j) =

Hn
i+ 1

2 , j
− Hn

i− 1
2 , j

�x
+

Hn
i, j+ 1

2
− Hn

i, j− 1
2

�y
, (3.17)

where

Hn
i+ 1

2 , j
= H1(un,−

i+ 1
2 , j

,un,+
i+ 1

2 , j
), Hn

i, j+ 1
2

= H2(un,−
i, j+ 1

2
,un,+

i, j+ 1
2
). (3.18)

The values of ui±1/2, j at the cell interfaces are reconstructed component-wise using the generalized minmod limiter with 
θ ∈ [1, 2],

un,+
i+ 1

2 , j
= un

i+1, j − �x

2
σ n

i+1, j, un,−
i+ 1

2 , j
= un

i, j + �x

2
σ n

i, j,

σ n
i, j = minmod

(
θ

un
i+1, j − un

i, j

�x
, θ

un
i, j − un

i−1, j

�x
,

un
i+1, j − un

i−1, j

2�x

)
.

(3.19)

The values of ui, j±1/2 at the cell interfaces are reconstructed in a similar manner. The proposed scheme (3.17) is general 
and may be used in conjunction with one’s favorite numerical flux replacing the HLL-flux (3.15).

The viscous part of the stress tensor can be written as

∇ · Tε[v] = ε

(
ξ(ux + v y)x + μ(u y − vx)y

−μ(u y − vx)x + ξ(ux + v y)y

)
. (3.20)

Here we set ξ = 2μ +ν where μ, ν denote the coefficients of viscosity. We define the discrete central difference operators

Dxφ
n
i, j = φn

i+1, j − φn
i−1, j

2�x
, D yφ

n
i, j = φn

i, j+1 − φn
i, j−1

2�y
(3.21)

and write the discrete version of the stress tensor

∇̃ · Tε[vn
i,j] =

ε

(
ξ Dx(Dxun+1

i, j + D y vn+1
i, j )i, j + μD y(D yun+1

i, j − Dx vn+1
i, j )i, j

−μD y(D yun+1 − Dx vn+1)i, j + ξ Dx(Dxun+1 + D y vn+1)i, j

)
(3.22)
i, j i, j i, j i, j
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We combine (3.17), (3.22) together and obtain the following discretization of the system (3.13):

∑
i, j

[
ρn+1

i, j − ρn
i, j

�t
+F1(un

i, j)

]
= 0

∑
i, j

[
ρn+1

i, j vn+1
i, j − ρn

i, jv
n
i, j

�t
+F2(un

i, j) − ∇̃ · Tε[vn
i,j]
]

= 0.

(3.23)

3.3.2. Discretization of the fast system
The discretization of the fast system (3.8) consists of three parts. First, we discretize the momentum term by using 

central differences

∇̃ · (ρv)n+1
i, j = Dx(ρ

n+1
i, j un+1

i, j ) + D y(ρ
n+1
i, j vn+1

i, j ), (3.24)

with the operators Dx and D y defined in (3.21). Then we discretize the elliptic term as

�̃cn+1
i, j = Dxcn+1

i+1, j − Dxcn+1
i−1, j

2�x
+ D ycn+1

i, j+1 + D ycn+1
i, j−1

2�y
. (3.25)

The terms ρn�φ are non-conservative terms. The discretization of these terms is by no means unique and we chose for our 
scheme

(ρn
i, j∇̃φn+1

i, j )nc = ρn
i, j

2

⎛
⎝ φn+1

i+1, j−φn+1
i−1, j

�x
φn+1

i, j+1−φn+1
i, j−1

�y

⎞
⎠ . (3.26)

We combine (3.24), (3.25), and (3.26) together and obtain the following discretization for the fast dynamics (3.8):

∑
i, j

[
ρn+1

i, j − ρn
i, j

�t
+ (1 − β)∇̃ · (ρvn+1

i, j )

]
= 0,

∑
i, j

[
ρn+1

i, j vn+1
i, j − ρn

i, jv
n
i, j

�t
− 1

α2
(ρn

i, j∇̃cn+1
i, j )nc + (

1

α2
− a)(ρn

i, j∇̃ρn+1
i, j )nc

]
= 0,

∑
i, j

[
γ ε2�̃cn+1

i, j + 1

α2
(ρn+1

i, j − cn+1
i, j )

]
= 0.

(3.27)

3.4. Discretization of the NSK system

For the sake of completeness we also provide the discretization of the NSK system (2.1). We use the same ideas and 
notations as in the previous chapters. For the slow dynamics the discretization reads:

∑
i, j

[
ρn+1

i, j − ρn
i, j

�t
+F1(un

i, j)

]
= 0,

∑
i, j

[
ρn+1

i, j vn+1
i, j − ρn

i, jv
n
i, j

�t
+F2(un

i, j) − ∇̃ · Tε[vn
i,j]
]

= 0,

(3.28)

and for the fast dynamics we have

∑
i, j

[
ρn+1

i, j − ρn
i, j

�t
+ (1 − β)∇̃ · (ρvn+1

i, j )

]
= 0,

∑
i, j

[
ρn+1

i, j vn+1
i, j − ρn

i, jv
n
i, j

�t
− γ ε2(ρn

i, j∇̃�̃ρn+1
i, j )nc − a(ρn

i, j∇̃ρn+1
i, j )nc

]
= 0.

(3.29)
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3.5. Boundary conditions

We have to account for the boundary conditions (2.4), (2.10) and enforce this conditions by using ghost cells. We intro-
duce an associated cell at the edge of each element Bi, j which is part of ∂�. For scheme (3.23), (3.27) we set

ρ0, j = ρ1, j, u0, j = −u1, j, v0, j = v1, j, c0, j = c1, j,

ρN+1, j = ρN, j, uN+1, j = −uN, j, v N+1, j = v N, j, cN+1, j = cN, j,

ρi,0 = ρi,1, ui,0 = ui,1, vi,0 = −vi,1, ci,0 = ci,1,

ρi,M+1 = ρi,M , ui,M+1 = ui,M , vi,M+1 = −vi,M , ci,M+1 = ci,M ,

and for scheme (3.28), (3.29) we set

ρ0, j = ρ1, j, u0, j = −u1, j, v0, j = v1, j,

ρN+1, j = ρN, j, uN+1, j = −uN, j, v N+1, j = v N, j,

ρi,0 = ρi,1, ui,0 = ui,1, vi,0 = −vi,1,

ρi,M+1 = ρi,M , ui,M+1 = ui,M , vi,M+1 = −vi,M .

3.6. Asymptotic preserving property

In the previous section we provided numerical schemes for the Navier–Stokes–Korteweg system and for its relaxation. 
This allows use to formulate the main theorem of this work.

Theorem 3.1. The fully discrete numerical scheme (3.23), (3.27) is asymptotic preserving in the Korteweg limit α → 0 in the sense that 
it transforms into a consistent discretization of the Navier–Stokes–Korteweg system (3.28), (3.29) as α → 0.

Proof. We start with the asymptotic expansion with respect to a small parameter α:

ρn
i, j = ρ

n,(0)
i, j + αρ

n,(1)
i, j + α2ρ

n,(2)
i, j + . . . ,

ρn
i, jv

n
i, j = ρ

n,(0)
i, j vn,(0)

i, j + αρ
n,(1)
i, j vn,(1)

i, j + α2ρ
n,(2)
i, j vn,(2)

i, j + . . . ,

p̃n
i, j = p̃n,(0)

i, j + α p̃n,(1)
i, j + α2 p̃n,(2)

i, j + . . . ,

From (3.23), we obtain

ρn+1
i, j = ρ

n+1,(0)
i, j + αρ

n+1,(1)
i, j + α2ρ

n+1,(2)
i, j + . . . ,

ρn+1
i, j vn+1

i, j = ρ
n+1,(0)
i, j vn+1,(0)

i, j + αρ
n+1,(1)
i, j vn+1,(1)

i, j + α2ρ
n+1,(2)
i, j vn+1,(2)

i, j + . . . ,

and from (3.27)3 we obtain

cn+1
i, j = cn+1,(0)

i, j + αcn+1,(1)
i, j + α2cn+1,(2)

i, j + . . . .

Then we look at the balances within the equations (3.23), (3.27). At O
(
α−2

)
, we have the balance

ρ
n+1,(0)
i, j = cn+1,(0)

i, j , (3.30)

and at O
(
α−1

)
we have

ρ
n+1,(1)
i, j = cn+1,(1)

i, j . (3.31)

For the O (1) terms we compute for the slow system

ρ
n+1,(0)
i, j − ρ

n,(0)
i, j

�t
+F1

(
un,(0)

i, j

)
= 0,

ρvn+1,(0)
i, j − ρvn,(0)

i, j +F2
(

un,(0)
i, j

)
= ∇̃ · Tε[vn,(0)

i,j ],
(3.32)
�t
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and the fast system

ρ
n+1,(0)
i, j − ρ

n,(0)
i, j

�t
+ (1 − β) ∇̃ ·

(
ρvn+1,(0)

i, j

)
= 0,

ρun+1,(0)
i, j − ρun,(0)

i, j

�t
=
(
ρ

n,(0)
i, j ∇̃

(
cn+1,(2)

i, j − ρ
n+1,(2)
i, j

))
nc

+ a
(
ρ

n,(0)
i, j ∇̃ρ

n+1,(0)
i, j

)
nc

+
(
ρ

n,(1)
i, j ∇̃

(
cn+1,(1)

i, j − ρ
n+1,(1)
i, j

))
nc

+
(
ρ

n,(2)
i, j ∇̃

(
cn+1,(0)

i, j − ρ
n+1,(0)
i, j

))
nc

,

γ ε2�̃cn+1,(0)
i, j +

(
ρ

n+1,(2)
i, j − cn+1,(2)

i, j

)
= 0.

(3.33)

Now we use (3.30), (3.31) and the third equation in (3.33) and finally obtain for the slow system

ρ
n+1,(0)
i, j − ρ

n,(0)
i, j

�t
+F1

(
un,(0)

i, j

)
= 0,

ρvn+1,(0)
i, j − ρvn,(0)

i, j

�t
+F2

(
un,(0)

i, j

)
= ∇̃ · Tε[vn,(0)

i,j ],
(3.34)

and for the fast system

ρ
n+1,(0)
i, j − ρ

n,(0)
i, j

�t
+ (1 − β) ∇̃ ·

(
ρvn+1,(0)

i, j

)
= 0,

ρvn+1,(0)
i, j − ρvn,(0)

i, j

�t
= γ ε2

(
ρ

n,(0)
i, j ∇̃�̃ρ

n+1,(0)
i, j

)
nc

+ a
(
ρ

n,(0)
i, j ∇̃ρ

n+1,(0)
i, j

)
nc

.

(3.35)

This is the numerical scheme that we derived in (3.28), (3.29). This means that the scheme (3.23), (3.27) is an AP scheme 
for α → 0.

Note that this AP analysis does not depend on whether the diffusion terms in the momentum equation are approximated 
explicitly or implicitly in time. In order to make the simulation less time restrictive with respect to diffusion, it could be 
interesting to use an implicit discretization of the diffusion terms instead of the explicit one presented here.

4. Numerical experiments for the asymptotic-preserving scheme

In this section, we present a series of experiments that compare the performance of the AP scheme presented in the 
previous section with the results obtained by using the explicit discontinuous Galerkin scheme from [34]. The time step 
�T was chosen according to the CFL condition (2.22) for the discontinuous Galerkin scheme with cDG and according to CFL 
condition (3.6) with c A P = 0.4 for the AP scheme in all numerical computations.

4.1. Computational efficiency

In this test case, we consider two different numerical schemes for the relaxation system (3.1). We set d = 1, γ = 0.16, 
γ ε2 = 10−5 and start with initial conditions

ρ0(x) =
{

0.3, x ∈ (0.3,0.6) ∪ (0.85,1.05)

1.8, otherwise
,

v0(x) = 0.

(4.1)

that correspond to a two-phase density distribution. Fig. 4.1 shows the evolution of the density at different times that was 
computed with the AP scheme (3.23), (3.27).

We compare the performance of the AP scheme and Discontinuous Galerkin scheme of polynomial order 1, which was 
introduced in [34]. We use the two schemes to approximate solutions of the NSK system (2.1).

Tables 4.1 and 4.2 provide numerical evidence to the properties of the our scheme that we stated in Section 3. We take 
a column wise look at the CPU-times in Table 4.1 and notice that they are constant for all values of α and for fixed �x. 
This means that for this test case the CPU time is independent of the parameter α. In contrast, the CPU-time increases as α
decreases for fixed �x in Table 4.2. For example the AP scheme is faster by a factor 73 for α = 10000 and �x = 0.005 and 
even by a factor 84 for α = 100000 and �x = 0.00125.
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Fig. 4.1. Density evolution for the relaxation system (3.1) and α = 100 with initial datum (2.21). The initial configuration at t = 0 corresponds to two 
bubbles in a box filled with liquid. The smaller bubble shrinks (t = 0.02, t = 0.04), and emits a shock wave as it collapses (t = 0.4, t = 1). At t = 4 the 
material seems to be in equilibrium.

Table 4.1
CPU-times, discrete L2-distances between the solution of the AP scheme and the reference solution ū, and experimental asymptotic orders of convergence. 
The reference solution was computed with an implicit DG scheme.

α−2 �x 0.01 0.005 0.0025 0.00125 EOC

10 CPU-time [s] 15.9 32.1 89.1 471.0
‖ū − uα

h ‖L2 5.4e−1 6.3e−2 1.3e−2 3.4e−3 1.93

100 CPU-time [s] 15.8 32.1 89.3 470.8
‖ū − uα

h ‖L2 5.4e−1 5.1e−2 1.2e−2 3.3e−3 1.87

1000 CPU-time [s] 16.2 32.9 88.0 466.4
‖ū − uα

h ‖L2 4.7e−1 5.0e−2 1.2e−2 2.5e−3 2.26

10000 CPU-time [s] 15.7 32.5 89.3 467.5
‖ū − uα

h ‖L2 4.6e−1 5.0e−2 1.1e−2 2.4e−3 2.20

100000 CPU-time [s] 15.7 33.2 88.2 468.0
‖ū − uα

h ‖L2 4.6e−1 5.0e−2 1.1e−2 2.2e−3 2.32

Now we look at the discrete L2-distances for different α and �x compared to a reference solution ū, that was computed 
with an fully implicit DG-scheme of polynomial order 1 for system (2.1) at �x = 0.000625. The last line in Table 4.2 displays 
the discrete L2-distance for a fully implicit DG-scheme of polynomial order 1 for system (2.1). Tables 4.1 and 4.2 allow to 
make three statements on the L2-errors for this test case. First, the L2-error for fixed α decreases as �x does for both 
schemes and one can observe that the experimental asymptotic order of convergence (EOC) is close to 2 for both schemes. 
Secondly, the discrete L2-distances decreases for fixed �x as α does for both schemes. Thirdly, the L2-error for each α and 
�x for the DG scheme is slightly better than the error for the AP scheme. However, for large α both errors are close to the 
error of the implicit scheme that can be regarded as a reference solution for fixed �x.

In summary, we observe that the AP scheme (3.23), (3.27) is able to provide solutions with the same magnitude of error 
as the DG scheme much faster. The AP scheme provides the numerical solution independent of the parameter α and thus 
is more efficient for small α.



A. Chertock et al. / Journal of Computational Physics 335 (2017) 387–403 399
Table 4.2
CPU-times, discrete L2-distances between the solution of the discontinuous Galerkin scheme and the reference solution ū, and experimental asymptotic 
orders of convergence. The last line contains the discrete L2-distance for an explicit DG discretization of the NSK system. The reference solution was 
computed with an implicit DG scheme.

α−2 �x 0.01 0.005 0.0025 0.00125 EOC

10 CPU-time [s] 50 103 229 483
‖ū − uα

h ‖L2 7.7e−2 5.1e−2 1.2e−2 3.6e−3 1.73

100 CPU-time [s] 133 440 615 1403
‖ū − uα

h ‖L2 7.3e−2 5.1e−2 8.8e−3 3.0e−3 1.55

1000 CPU-time [s] 440 857 1736 3855
‖ū − uα

h ‖L2 7.0e−2 3.3e−2 8.5e−3 2.5e−3 1.77

10000 CPU-time [s] 1117 2375 5687 13154
‖ū − uα

h ‖L2 6.9e−2 3.2e−2 8.3e−3 2.2e−3 1.92

100000 CPU-time [s] 3694 7949 16246 39526
‖ū − uα

h ‖L2 6.9e−2 3.1e−2 8.2e−3 2.1e−3 1.97

NSK ‖ū − uNSK
h ‖L2 6.8e−2 3.0e−2 8.0e−3 2.0e−3 2.00

Table 4.3
Discrete L2(�)-distance for �x = 0.00125 and γ ε2 = 1e−5 between the solution of the AP scheme and a reference solution that was computed with an 
implicit DG scheme. The distance decreases as α does. The second line contains the experimental order of convergence (EOC) with respect to α and the 
third line contains the CPU time.

i 1 2 3 4 5 6
α−2 10 100 1000 10000 100000 1000000

‖uNSK
h − uα

h ‖L2 2.21e−1 3.15e−2 3.30e−3 3.31e−4 3.30e−5 4.07e−6

EOCi = ln(Di
h/Di+1

h )

ln(α2
i /α2

i+1)
– 0.84 0.98 1.00 1.00 0.90

CPU-time [s] 594 594 594 596 594 594

4.2. Large density variations

We already pointed out in Section 1 that explicit numerical methods for the NSK system (2.1) are not able to deal with 
large density jumps. As we explained above the first-order part of the system is of mixed hyperbolic–elliptic type and one 
cannot use shock-capturing numerical solvers for computations. Thus, there is no chance to stabilize the numerical scheme 
for large density gradients. In [34], it was shown that this problem could be overcome if one uses the relaxation system 
(2.8).

In this 1-D test case, we introduce a modified version of the Van-der-Waals pressure equation (2.5)

ps(ρ) = s · p
(ρ

s

)
,

with the scaling parameter s = 100 to enlarge the elliptic region (cf. [5]). This enables large density jumps for phase bound-
aries. We apply the AP scheme (3.23), (3.27) to the relaxation system (2.8), which is considered with γ = 0.16, γ ε2 = 10−5

and subject to the following initial conditions:

ρ0(x) =

⎧⎪⎪⎨
⎪⎪⎩

30 : x ∈
(0.08,0.12) ∪ (0.14,0.16) ∪ (0.18,0.22) ∪ (0.30,0.32)∪
(0.38,0.42) ∪ (0.44,0.46) ∪ (0.48,0.52) ∪ (0.58,0.62)∪
(0.70,0.72) ∪ (0.78,0.82) ∪ (0.84,0.86) ∪ (0.88,0.92)

180 : otherwise,

v0(x) = 0.

(4.2)

Tables 4.3, 4.4 and Fig. 4.2 indicate that it is possible to simulate large density ratios with the AP scheme (3.23), (3.27). 
The first and second line of Tables 4.3, 4.4 show that the scheme is asymptotic preserving in this test case, as the discrete 
L2-distance decreases as α does. We even see, that the order of convergence is of order one in α−2. The third line in both 
tables underline that, analogously to the previous test case, the CPU time does not depend on the Korteweg parameter α. 
Finally, the comparison between Tables 4.3 and 4.4 shows that the experimental order of convergence does not depend on 
the parameter ε either (it even looks like smaller values of ε lead to reduced CPU times).

4.3. Sharp interface limit

We again consider the 1-D version of the relaxation system (2.8) with α = 100000, γ = 0.16 and the following initial 
conditions:
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Table 4.4
Discrete L2(�)-distance for �x = 0.00125 and γ ε2 = 1e−6 between the solution of the AP scheme and a reference solution that was computed with an 
implicit DG scheme. The distance decreases as α does. The second line contains the experimental order of convergence (EOC) with respect to α and the 
third line contains the CPU time.

i 1 2 3 4 5 6
α−2 10 100 1000 10000 100000 1000000

‖uNSK
h − uα

h ‖L2 2.33e−1 3.35e−2 3.17e−3 3.21e−4 3.25e−5 4.13e−6

EOCi = ln(Di
h/Di+1

h )

ln(α2
i /α2

i+1)
– 0.84 1.02 0.99 0.99 0.90

CPU-time [s] 374 364 354 356 354 354

Fig. 4.2. Density evolution for the relaxation system (3.1) with �x = 0.00125, γ ε2 = 1e−5, α = 100000 and initial datum (4.2). The small bubbles shrink 
and merge (t = 0.5, t = 1) and form one bubble (t = 2). At t = 15 the material seems to be in equilibrium.

ρ0(x) =
{

0.3 : x ∈ (0.3,0.7),

1.8 : otherwise,

v0(x) = 0.

(4.3)

The initial datum is a non-equilibrium bubble that will be driven towards a two-phase equilibrium by the evolution of the 
relaxation system. We want to study if the AP scheme (3.23), (3.27) can deal with tiny interfaces which appear in the sharp 
interface limit (ε → 0) for fixed �x = 0.00125.

The density distributions computed by AP scheme (3.23), (3.27) with �x = 0.00125 are plotted Fig. 4.3 doe different 
values of ε. As one can see, shows the AP scheme is able to accurately capture tiny interfaces which appear in the sharp 
interface limit (ε → 0). This means that we are able to obtain numerical solutions that show the expected behavior even 
for underresolved meshes. However, we were not able to give analytical proof for this property of the scheme.

Another property of the AP scheme (3.23), (3.27) can be seen in Tables 4.5. For decreasing values of ε the CPU time 
decreases. For γ ε2 ≤ 105 the CPU-times are constant. We recall (2.22) and see that the diffusive term dominates for larger 
ε while the convective term does so for smaller ε. Additionally, the solution of the fast system is very time consuming for 
the small time steps that occur for larger ε. In fact, it is a nice feature of the AP scheme, that it is faster for smaller and 
thus more realistic ε.
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Fig. 4.3. Approximate density distribution at t = 15 for different ε. The right figure displays a zoom of the upper corner of the right interface.

Table 4.5
CPU time for different ε. The CPU-time decreases as ε does.

γ ε2 = 10−3 10−4 10−5 10−6 10−7 10−8 10−9

CPU-time [s] 8001 2599 831 465 463 464 461

Fig. 4.4. Density evolution for the relaxation system (3.1) and �x = �y = 0.005. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

4.4. 2D test case: static equilibrium

In this example, we compute a numerical solution to the relaxation system (2.8) in the 2-D case. We start with 22 
bubbles in a bounded box (0, 1)2 filled with liquid. We choose α−2 = 1000, γ = 1, ε = 0.01.

We use a uniform rectangular grid and run the simulation up to t = 5 on two different grids with �x = �y = 0.005 and 
�x = �y = 0.0025. The results (the density distribution) computed at different times are plotted in Figs. 4.4 and 4.5. The 
density varies between 0.3 (blue) and 1.8 (red). At t = 0.06, t = 0.1 bubbles collapse and emit shock waves. At t = 1, t = 3
the smaller bubbles shrink and the biggest bubble grows. At t = 5 the fluid seems to be in an equilibrium configuration. 
Note that the position of the bubbles and the coalescence dynamics are the same for both gird widths. Even though we are 
not able to resolve the interface by the underlying grid due to CPU time constraints, the results show the desired behavior 
for a two-phase system. The computations for different grid sizes support the statement, that the behavior of the solution 
is not only qualitatively but also quantitatively correct. However, to be absolutely sure, one has to compare it with a fully 
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Fig. 4.5. Density evolution for the relaxation system (3.1) and �x = �y = 0.0025. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

resolved solution. In order to run such a simulation, one would need to implement a scheme that incorporates adaptive 
time and spatial stepping, which is out of the scope of the current paper.

5. Conclusion/outlook

In this work, we presented a new asymptotic-preserving scheme for a relaxation of the Navier–Stokes–Korteweg system. 
The method has two key ingredients. First, we introduced a modified pressure that guarantees that the Euler part of the 
system is hyperbolic. Second, we split the relaxation system into a nonlinear conservative system for the slow dynamics 
and a non-conservative stiff system for the fast dynamics that come from the Korteweg term. We showed that our scheme 
is asymptotic preserving, i.e. it converges to a numerical scheme for the Navier–Stokes–Korteweg equations on the fully 
discrete level. We supported this result with several numerical tests. In all test cases, the solutions showed the expected 
behavior. We were able to compute large density ratios and small interfacial widths for fixed grid widths and we were able 
to obtain approximate solutions of the same quality as those of an explicit scheme, but with significantly smaller compu-
tational costs. Additionally, our scheme showed to be asymptotic preserving in the sharp interface limit in our numerical 
tests. Note that up to now we have not been able to give analytical proof to that.

The numerical proof of the asymptotic preserving property is one goal for future work. This is by no means an easy task, 
because the system has a jump of the density at the phase boundaries. Therefore one needs to impose special coupling 
conditions at the interface and to introduce an interface tracking algorithm. Another main goal is the extension of the 
numerical algorithm to three space dimensions. In order to accomplish this, we will look to introduce an adaptive time 
and spatial stepping and to use a discontinuous Galerkin formulation instead of the finite volume formulation. These two 
extensions guarantee that the solution of the linear system remains efficient, because we are able to control the number 
of cells, even if we need to refine the grid at the interface. This could prove to be important for the simulation of realistic 
two-phase flow examples such as underwater explosions.

Data statement

No new data was collected in the course of this research.
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