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ABSTRACT. We consider a Boltzmann model introduced by Bertin, Drod @mégoire as a
binary interaction model of the Vicsek alignment interasti This model considers particles
lying on the circle. Pairs of particles interact by tryingreach their mid-point (on the circle)
up to some noise. We study the equilibria of this Boltzmanrdeh@nd we rigorously show
the existence of a pitchfork bifurcation when a parameteasugng the inverse of the noise
intensity crosses a critical threshold. The analysis isg@dover rigorously when there are only
finitely many non-zero Fourier modes of the noise distritmutiln this case, we can show that the
critical exponent of the bifurcation is exactly2. In the case of an infinite number of non-zero
Fourier modes, a similar behavior can be formally obtaihedks to a method relying on integer
partitions first proposed by Ben-Naim and Krapivsky.

Keywords: kinetic equation; binary interaction; mid-point rule; éduria; pitchfork bifurca-
tion; integer partition; swarms.

AMS Subject Classification: 35Q20, 35Q70, 35Q82, 35Q92, 60J75, 60K35, 82C21, 82C22,
82C31, 92D50

AcknowledgementsEC acknowledges partial support by U.S. National Scienagnéation
grant DMS 1201354. PD is on leave from CNRS, Institut de Mathfigues de Toulouse,
France, where this research has been partly conducted. Ridwledges support from the
Royal Society and the Wolfson foundation through a Royali@gdNolfson Research Merit
Award, from the French 'Agence Nationale pour la RecherdddR)’ in the frame of the
contract 'MOTIMO’ (ANR-11-MONU-009-01) and from NSF kinietresearch network Grant
DMS11-07444 (Kl-net). MCC was partially supported by FC®ject PTDC/MAT/100983/2008.
BW was partially supported by the Swedish research coundilgy the Knut and Alice Wal-

lenberg foundation. EC, MCC & BW wish to acknowledge the hiadipy of the Institut de
1


http://arxiv.org/abs/1404.3086v1

2 ERIC CARLENY, MARIA C. CARVALHO ® | PIERRE DEGOND» AND BERNT WENNBERG*?

Mathématiques, Toulouse and EC & MCC wish to acknowledgéehtbspitality of the Faculty
of Sciences, University of Gothenburg, where this reseatahpartly done.

1. INTRODUCTION

This paper is concerned with the study of some interactiochaisms between large col-
lections of agents subject to social interaction. Spedificare consider a Boltzmann model
introduced in [[9] as a binary interaction counterpart of Wesek alignment interaction [40].
The goal of the present work is to study the equilibria of Biudtzmann model and to rigorously
show that this model exhibits pitchfork bifurcations (ocged order phase transitions).

Systems of self-propelled particles interacting througgal alignment have triggered con-
siderable literature since the seminal work of Vicsek anggthors [[40]. Indeed, this sim-
ple model exhibits all the universal features of collectsystems observed in nature and in
particular, the emergence of symmetry-breaking phasesitrans from disorder to globally
aligned phases. We refer for instance(tol[1,[15,[21, 22| 2Pfd1he study of these phase
transitions. A recent review on this ever-growing literatgan be found in_[41]. The over-
whelming majority of references rely on Individual-Baseadéls (IBM) or particle models
[5,14,[15,16| 19, 20, 32, 34, 35,/36], mostly with applicaido animal collective behavior
from bacterias to mammals [2,/18, 30]. When the number oftadetomes very large, kinetic
models [6, 10} 111!, 27, 33] or hydrodynamic modéls.[3, 4,/ 10/2Z%523, 28| 37, 38, 39] are
more efficient and have received an increasing attentiomariterature.

The present work is concerned with a kinetic, Boltzmane-hkodel which has been pro-
posed as a kinetic version of the Vicsek particle model i®[8.0]. This model shows strong
similarity with a model proposed by Ben-Naim and Krapiveky7]. A zero-noise version of
this model has been studied in_[24] ; it is shown that genbyicRirac deltas are the stable
equilibria of this model. Here, we study the noisy versionha$ model and show that peaked
equilibria (i.e. noisy versions of the Dirac deltas) emenden the noise intensity becomes
smaller than a critical value, and that, at the same timdptmiequilibria become unstable.
Our rigorous proof is limited to the case where the noise Hasta number of Fourier coeffi-
cients, leaving the case of generic noises open. Howeuae $ormal results can be found by
adapting the method of integer partitions by Ben-Naim arabi/sky [7].

The main concern of this paper is the following Boltzmannagopn:

. . . dx, dxt
fta) = [ [ Hase gt - i) s(lsinga) - 1)) 5 5
—m J -7 2 21
i . N dxo
1) —f(t ) [ f(tw2) B(lsin(zz — 212)]) 5~
Here, %1, = Arg{%} is the argument (moduldr) of the midpoint on the smallest arc

on the unit circle betweeef® ande’2, i/, = A Q{M} The quantity?| sin(zy, — 212)|

RENRE:
is the euclidean distance R’ between:; andzxs. As usual in kinetic theory, the collision rate
between two patrticles is a functighof this distance. The unknowhfis a probability density
on the circleS' ~ R/(27Z), giving e.g. the distribution of directions in a fish school, and
is a given probability density modeling the noise in the modlae first term at the right-hand
side (the gain term) expresses the rate at which particlpgsirgcthe velocityr; as a result of
collisions of two particles of velocities, andz),. The post-collision velocity; of particlel is
distributed around the “mid-point” (in the sense aba¥g)of the two pre-collisional velocities
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FIGURE 1. The jump process in the BDG model

xy andx), according to the probability distribution The loss term (the second term) is found
in a similar way reversing the roles of the pre- and postisiolhal velocities. In our casé is
just a constant (to mimic “Maxwellian molecules” in gas dgmes) or if one takes a collision
rate proportional to the relative velocities of the padschs usual in kinetic theorg(z) is
proportional tar. A space-dependent version of this equation was first faatedlby E. Bertin,
M. Droz and G. Grégoire in [9] as a model for swarm dynamispired by the so-called Vicsek
model [40] (see also e.d.![8,/10]).

A rigorous derivation of equationl(1) as a limit & — oo of an N-particle system was car-
ried out in [12/ 13], where a genemalopagation of chaosesult is obtained fopair interaction
driven N-particle systemsThese are defined as Markov jump processes iV dold product
spaceT” = (SY)¥, where jumps almost surely only involve two coordinatese Jumps are
triggered by a Poisson clock with rate proportionaMpand the outcome of a jump is indepen-
dent of the clock. A jump involves first a choice of a pgirk) from the setl < j < k < N,
and then a transitiom — 2/, independent of7, k):

L= (L1, ey Ty ooy Ty ooy TN) = (X1, e, Ty oy Ty oy o) = 2

The jump process behind equation (1) is defined inXhdimensional torus, represented by
coordinates;; € [—nn[ . The jumps take a pair;, z) to

(.T;,I’;C) = (i’]k —}—Xj,f(jjk +Xk) mod 21 X 271',

whereX; and.X;, are independent and equally distributed angles (see Hijur@f course this
is not well defined on the set; = —x;, but that is a set of measure zero, and at least if the
distribution ofz; has a density, this case may be neglected.

An interesting feature of this process is that, althouglpagation of chaos holds, as required
for the derivation of equationi 1), this equation has stipmgaked solutions, which implies
certain dependence between two particles distributed-dicapto the density’. We will expand
on this statement below, where the formal calculations ingérom an/V-particle system to
the kinetic equation are repeated.

The main new results in this paper concern equalibn (1)t, Rirs easy to see that the uniform
density, f(x) = 1/27 is a stationary equilibrium, and that the (linearized) Bitgbof this
equilibrium depends on the first momentof the noise distributiop. The momenty, indicates
how peaked, is (the largery;, the more strongly peakedis). Second, in the Maxwellian case,
we explicitly construct non-uniform stationary solutionwken the noise distribution has a
finite number of non-zero Fourier coefficients. We prove thistence of a pitchfork bifurcation
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(or second-order phase transition) whgrcrosses a critical valug. = /4. Forvy; < ., the
uniform stationary distributions is stable. Fgr > ~. and close to it, there exists another
class of equilibria which are stable while the uniform sta#iry distribution becomes unstable.
Additionally, we can prove that the associated criticalangnt is1/2 when considering the
first moment of the stationary solution as an order parameter

An equation very similar td (1) is studied by Ben-Naim and pdvaky in [7] as a model for
rod alignment:

2 ™

(2) % (x,v) = D%f@,t)Jr i f(x+y/2,t)f(x—y/2,t)g—7yr—f(x,t).

While in equation([(]l) all particles remain fixed between thi& mteractions, the model of Ben-
Naim and Krapivsky assumes that each particle follows a Brawmotion between the jumps.
On the other hand, contrary to equatibh (1), the jumps inggug) imply perfect alignment.
More considerations about this model will be found in Sedfipand in particular in Sectidn 6,
where the analysis in [7] is studied in more detail. Theirlgsia also uses the Fourier series
expansion of the stationary solution, and semi explicitregpions for the Fourier coefficients
are obtained by expanding these coefficients as a powess#drtbe first coefficientqa,. We
adapt their method to our case, and at the same time we tratidyckome technical points of
the method. The result is formal in the sense that we do nateptonvergence of any of the
series appearing in the work, but it does provide new insighthe behavior of the model.

The layout of the paper is as follows. In Sectldn 2, we revibe $imple case where the
model is posed on the real line (instead of the circle). Is ttase, an explicit formula for
the equilibria can be found in Fourier-transformed vaeablGoing back to the model posed
on the circle in Sectioql3, we show that the Fourier coefftsief the distribution function
satisfy a fully-coupled nonlinear dynamical system. Timedirization of this system about an
isotropic equilibrium is studied in Sectioh 4. We show theg isotropic equilibrium is unstable
for noise intensities below a certain threshold and thairiktability only appears in the first
Fourier coefficient, suggesting that the first Fourier mocks as an order parameter for this
symmetry-breaking phase transition. In Secfibn 5, we agsly prove the emergence of the
phase transition and determine the critical exponent itdise where the noise probability has
only finitely many non-zero Fourier modes. Indeed, in suclr@umstance, any equilibrium
solution has also finitely many non-zero Fourier coeffigeaind finding such an equilibium
can be rigorously accomplished using the Implicit Funcildreorem. We also show that the
critical exponent of the phase transition is equal t@. It is interesting to contrast this result
with that of [22] where all critical exponents betweent and 1 were found for the Vicsek
dynamics. Removing the assumption of finitely many mode$y fmrmal calculations can
be performed at present. The work of Ben-Naim and Krapijgkguggests that the critical
exponentl /2 persists. In Sectionl 6, we relate their integer partitiorthoé to our approach.
Finally, conclusions and perspectives are drawn in Se@ion
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2. THE MODEL ON THE REAL LINE

In order to get a preliminary sense of the behavior of the hdatde useful to investigate the
more simple case wherec R. In this case, the Boltzmann equation is given by:

Of(tm) = / / £t 2 F(t,2y)g(a1 — Bp) Bl — &) da)y
—f(t,xl)/_ f(t,ﬁz)ﬁ(‘]?z—ilg‘)dﬂfz.

where nowz s = (1 + 22)/2 andxy — 212 = (22 — x1)/2. This corresponds to pair interac-
tions given by

) (xj,25) <M+X1’$j+$€k +X2)

2 2

where X; and X, are two independent, identically distributed random \#es. The process
is then similar to models considered in models of trade [1id & interesting in the present
context mostly because it permits rather explicit calcalet. A very similar model was also
obtained|[¥] as a limit of nearly aligned rods.

By a simple change of variable$ = = + y, and using the fact that we look fgrbeing a
probability distribution, the Boltzmann equation in the Meellian case simplifies to:

+oo +oo
/ / / y
asta) = [ [ s v ylgte o - ) dudy — ft.0).
We note that this can be written equivalently as

Of = QU N)2)xg— 1.

Therefore, equilibria are solutions of the fixed-point dqa

(4) f=Q0f = f)2))*g,

which expresses that the distribution—’@% + X whenz; andz, are i.i.d. with densityf and
X is arandom variable of densigymust be equal t¢ itself.

Theorem 1. We suppose that € P, N L*(R) N C°(R) whereP; is the space of probability
measures oR with bounded second moments. Additionally, we suppose thas zero mean.
The solutions iP, N L!(R) of (4) are given by translations by an arbitrary real numbéro
probability f € P, N L'(R) whose Fourier transfornj (¢) has the expression:

f(&)=[Tate/2)”.

Proof. We define -

a(&) =[] ate/2)*.
We note thay, is the Fourier transform (jnjv?/hich satisfies the recursion far> 1:
(5) gn = 9% 2gn-1(2)) * (29n-1(2-)).
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andg, = g. Now, by recursiong,, is a probability density. Indeed, supposing that, is a
probability density, we obtaig, as the convolution of three probability densities. Now, we
write, uniformly on any compact set far (&) = 1 — 11,62 + 0(¢?), wherey, = [, g(x) 2% d

is the second moment gf Then, uniformly for{ in any bounded interval and € N, we get:

n—1

g, = 32 (1- Joale/27 +ol(€/27))

=0
1 n—1 ‘
= —57252 > 27408,
j=0

Lettingn — oo, we get
lim log g, (§) = —72€" + O(¢7),
uniformly for £ in any compact set dR. Hence, this defineg..(¢) as a continuous function

of £ which by Levi’s continuity theorem, is the Fourier transfoof a probability measure,..
Now, takingn — oo in (§), we get

(6) Goo = 9% (2050(2")) * (290 (2-)).

which expresseg., as the convolution of a continuous functignvith a measurg2g..(2-)) *
(2950(2)). Therefore,g,, is a continuous function and consequently an element'¢R).
Finally, by a simple change of variables] (6) is nothing bat @) with f = g... Thereforeg.,
is a solution of[(4).

Remark 2. The equilibrium distributiory., has a second moment that is twice thatofig-
ure[2 shows the solution to equatid (4) in the case where = 11;_; ), wherel;_; is
the indicator function of the intervdl-1, 1]. Wheng is a centered Gaussian, thghnis also a
Gaussian with twice its variance.

0.25

0 1. 2. 3.

FIGURE 2. A solution f to equation[(#) (the blue, thick curve) wig{z) =
%1[_171] (red, thick curve) compared with the Gaussian function i same
variance (the thin curve).
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Remark 3. A model where the pair interacts more weakly can be obtaiya@placing Equa-
tion (3) with

(xj, 1) = (Az;+ (1 =N+ Xq, (1 — Nz + Ay + Xo)

One can then proceed in the same way by taking the Fouriestoam to get

&) = FOOF(1—Na(),

and as in the case of = 1/2 obtain a solution

HHg )\J kjg)()

k=0 j=0

In this case the variance gfcan be expressed in terms of the variance aé

Varlf] = Varlg]

2A(1— )

Now, we are going to apply the same method to the original inpaleed on the circle. But
we will see that the difficulties are considerably bigger.

3. FOURIER SERIES EXPANSION OF THE MODEL ON THE CIRCLE

Now, we are back to modell(1) posed on the circle. We first r&rtaat, by the change of
variablesr, = = +vy, y €| — m, 7|, we havet|, = =} +y/2, z}, — &}, = y/2, so that the model

can be written:
| (searses + pata—a -9

@) —ﬂu@ﬂtx+w>MNm@ﬂm¢x@

21 21

Multiplying with a test functiong, integrating over—=, 7], and performing a change of
variables gives the following weak form of the equation,

G ﬂtﬂw)gx
3 dx dy d
/_ /_ B ftx)f(t,x+y)g(2)B(y) (d(z +y/2+2) — ¢(x ))%%ﬁ
(8)
We will only consider the cases whete = 1 (Maxwellian molecules) o8 = | sin(y/2)]

(hard-sphere case).
Note that formally the system conserves mass:

/ f(z,t)dx = Constant

We may therefore require thitz, t) dx is a probability, i.e. take this constant equal to unity.
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Because all functions are periodic, it is natural to consideewrite the system in terms of
the Fourier series. Introducing

0 = Y a= @l

k=—o0

o= @0 [ ot =ent [ e,

—T

we have the following:

Proposition 4. Suppose thaj is even and let(t) be the Fourier coefficients of a solution of
Eq. (@) which is an even probability density. Thep,= 1 anda, for k& # 0 satisfya_;, = a,
and solve the following system:

d

Zar(t) = (2uT(k/2) = T(0) = T(k) ) ax(t) +

k-1

Z (l'(n = k/2) = T'(n)) an(t)ar-n(t) +

3

e 17

(9) 2ul'(n = k/2) =T(n) = T(n — k)) an(t)an—r(t)

n=k+1

The function*(u), which is to be evaluated only on half-integer points, is

: 1 when u=0
[(u) = sin(mu) _ J g Z when ue Z\ {0}
™ 2(—1
7r((2Z+)1) when  u=/(+1/2

(10)
in the Maxwellian case, whef(1) = 1; and

. 2/(m(1 — 4u?)) when v cZ

I'(u) = 2;4uz1:1(;2m) _ 1(/7r)l o when v = 41/2 ’
- 2(—1)44+(—1)"—1
BTN when u=/¢+1/2,0+#0,-1

in the hard-sphere case, whéify) = | sin(y/2)|.

Proof. Taking¢(z) = e~*= in (8), we get (withay, = ax(t)) for k # 0

d Y Y L ~ . i dx dy dz
- — imz in(z+y) ik(z+y/2+z) _ —ikx) Y BT e
i = 2 S | g ey 282

— Zzaman/ / / B (m+n k)z+(n—k/2)y—kz) _

i(m4n—k)z+ny) ) dx dy dz

i(
€ o1 21 27

2 n— z i(n d’de
_ Zaknan/ / By (1) i) 20 82
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which leads to

Za(t) = Y aa(Oen(®) (hT 0 k/2) = T(0)
(11) = Y ait)a;(t) (WG —1)/2) = T()) -
itj=k

Using thaty_,, = v, anda_;, = a;, we get[(9).

Remark 5. Eq. (9) for the Maxwellian case can be simplified and gives:

%ak(t) = (2%D(k/2) = 1) ax(t) +
k—1
Sl — k/Dan (- (t) +
Z QWkF(TL - k’/2)an(t)an—k(t)

Remark 6. For comparison, we note that the Fourier coefficients of sohs to equation[(2)
satisfy

d .
Za(t) = —(1+ DE)ax(t) + > T = §)/2)a;(tailt)

it+j=k
with I" as in equation[(10) (s€fg]]). The only essential difference with equatibnl (11) is that t
diffusion term manifests itself as a multiplirk? of a;, (and moreover that(11) includes the
possibility of non-Maxwellian interactions).

4. THE LINEARIZED EQUATION

It is easy to verify thaff () = 1 is a solution, which correspondsdg = 1, a;, = 0, (k # 0).
If fis asolution, then any translation ¢fi.e. x — f(z + s)) is also a solution. Expressed in
terms of the Fourier coefficients, this means thatif) .z is a solution, then so iGi,e?*) 2.
To investigate the stability of the uniform density, fét, t) = 1+cF(x,t), and let,(t), k €
Z be the Fourier coefficients df (z, t). Thenb, = 0, and fork # 0,
d

o) = (t) @nul(k/2) = T(0) = T(k)) -

Hence the linearized stability may be determined by anatyzeparately the sign of Rg
where

(12) A = (2l(k/2) = T(0) = T'(k)).

Indeed, if Re\, < 0, Vk € Z, the system is stable, and it is unstable otherwise. Note\tha 0
and)\, € R, Vk € Z in our case.

Remark 7. The uniform density is also stationary for the mode[idh where its stability is
analyzed in very much the same way, giving an explicit espmsnvolving the only parameter
in the model, the diffusion coefficiebt

We assume thatis even. In both the Maxwellian and hard-sphere case, wethave
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Theorem 8. We have\, < 0, Vk € Z, |k| > 2, meaning that the linearized stability depends
only onthesignoh; = A_q:

the system is stable— X\; <0

Proof. In the Maxwellian case, we have

oT(k/2) — [(0) — D(k) = % ~1

It is easily seen that the right-hand side is negative whepr 2. Hence it is only\; that may
become positive, and therefore the condition for stabaftthe uniform solution is thay; < 7.
In the hard-sphere case, we find that1/2) — I'(0) — I'(1) = 2/(37), and that fork > 1,

4 (2k* — 4sin (57) k® + k? +sin (&7) k)
B (2 —1)(4k2 — D)=

2I(k/2) = T(0) = '(k) =

Becausd' is an even function, it is enough to consider 2, and in that case the numerator is
larger than

k k
4 <2k4 — 4sin (;) K+ k2 + sin <§) k:) > 4 (2K — 4k 4+ k2 — k)
> 4(K*—k)>0

and hence we may deduce that < 0 for |k| > 1 also in this case. If, changes sign the
calculation is more complicated, but the result is the sams:only the first Fourier modes of
the solutionf that may cause instability of the uniform stationary states

For concreteness, we now consider a family of distributigps defined as the periodization
of }p(%), wherep is a given even probability density d

1 y—2my

).

T T

Then

T — 1 y—2mj dy * R
Ww(r) = / e Mom Y Al ) oo = e "™p(y)dy = p(tk) .

T 21

J=—00
An example isp(z) = e which gives/(rk) = e~(™0?/2_ Whenr is small, the noise
is small, and when is large, the noise is also very large, apdconverges to the uniform
distribution whenr — oo. Therefore;y;(7) is a continuous function of with v,(0) = 1 and

7 (1) = 0asT — oo. ThenA; = A\ (1) < 0 for 7 large and\; > 0 for 7 small. This shows
that the system is linearly stable for large values ahd unstable for small ones.
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5. AN EXPLICIT EXAMPLE WITH BIFURCATION

The calculation here is restricted to the Maxwellian casd vae only look for even solutions,
expressed as a Fourier cosine series. Hence we wish to solve

k—1
ap = 2D(k/2)ax + v > T(n—k/2)anan +
n=1
(13) 2k Z (n—k/2)ana,_x

n=k+1
for £ > 1. Note thaty, is a factor for all terms in the right hand side, implying thaj only has
finitely many terms in the Fourier series, only the corresidog terms are nonzero if. So,
here we make the following hypothesis:

Hypothesis 9. We assume that= g, is a family of noise distributions with a finite number of
non-zero Fourier coefficients: for somé < oo,
N

Gy () = 1427 cosz + 22%(71) coskx, Vax €]—m 7).
k=2

with C? functionsy; € [0, 1] — y%(71) € [—1, 1] and with~, such that

Y2(71) > 0.

Note thaty is a probability measure as soongs 0. We can now state the following

Theorem 10. Consider a one-parameter family of noise functignssatisfying Hypothesis 9.
Then:
(i) The uniform distribution, with Fourier coefficients = 1,a, = 0 (k > 1) is stationary.
It is stable fory; < 7/4 and unstable for; > 7 /4.
(i) Inaninterval’ < v < 4. there is another invariant solution to the dynamic prob-
lem, with Fourier coefficients, = 1,

ar = 22 4 O((yy — 7/4)2), ak =0 (k> N).

(iii) This solution is linearly stable with a leading eigenval(e;) = 1 — £(y; — 7/4) +
O((m —m/4)*2).

Before proving this theorem, we give a few comments. Onenpted to think that the same
result would hold for any noise distribution, at least pd®d its Fourier coefficients decay
sufficiently fast, but to prove that rigorously requires aldiional estimate showing that,,....
does not converge to/4 when the number of coefficients increases.

We illustrate the theorem by showing numerical calculaiosing the family of noise distri-
butions obtained as a convex combination of a Fejér kemb& the uniform distribution.

For such a noise distribution, we haye= A\(N —k)/N for 1 < k < N. Therefore, this family
can be put in the framework of Hypothesis 9 if we likko ~;, by A = %71. In the numerical
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simulations, we usé&’ = 9. Fig.[3 shows the Fourier coefficiemt as a function of the param-
eter~;. This figure exhibits a typical pitchfork bifurcation patte The order parameter, is
identically zero as long ag, is less than the critical valug,. = 7/4 and the associated uni-
form equilibrium is stable. Whemy, becomes larger than the critical vakyg a second branch
of non-uniform equilibria starts. This branch is stable i@tlihe branch of uniform equilibria
becomes unstable. In fact the non-uniform equilibria foemntinuum, because the system
is rotationally invariant, and therefore, ffis a non-isotropic equilibrium, then anf(e?°x)
with 6, €]0, 2| is another equilibrium. This feature is represented by ¢heet branch in the
diagram. In physical terms, the system exhibits a symmiategking second-order phase tran-
sition asy; crossesy;.. From the point (ii) of the theorem, it appears that the caitexponent

is 1/2, i.e. the order parameter behaves like~ (v; — 71.)"/? when~, = Y. Fig.[4 shows
the noise functiory and the corresponding stationary solutjpwhen~, = 7/4 + 0.1.

0.6
0.3

iz Sz

32 4 32
-0.3
-0.6

FIGURE 3. The stationary solution; plotted as a function of;. The noise
function is a parameterized Fejér kernel of order 9.

Proof of Theorem[10. The first statement, (i), is an immediate consequence ofrtalysis of
the linearized system in Sectibh 4.

To prove (ii) and (iii) we first note that in the Maxwellian @&$'(n — k£/2) = 0 whenk is
even and different fror@n. Therefore, ifk # 0 is even, there is only one non-zero term in the
right hand side[(13) and we get:

ar = Ykagp®, Vk#0, keven
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4

3

2\

1

r z z 3z

0 4 2 4 T

FIGURE 4. The parameterized Fejér kernel of order 9 with= 7/4+0.1 (red),
and the corresponding solutigiix) (blue)

We now concentrate on the casekabdd. First, after a minor reformulation,

N
a) = 271F(1/2)a1 -+ 2’}/1F<3/2)CL26L1 —+ 2’)/1 Z F(TL — 1/2)anan,1 s

n=3

N
as = 2ysT'(3/2)az + 2vsT(1/2)azar + 24sT(5/2)asar + 2y Y T(n — 3/2)ana, s

n=>

(k—1)/2
ar = 2 L(k/2)ag + 2% (1 — k/2)ag_1a1 + 2y Z [(n—k/2)anap_n+
n=2
N
+ 2D (1 + k/2)ak a1 + 2% Z I'(n—k/2)ana,—k
n=k+2

Becausé is odd, eithern orn — £ is even. So all terms contain a factor of the farpn,, where
pisodd and; > 2 is even. Above we have separated all terms that containarfactWe write
q in factorized form as

q = u(q)2™? = 2w(q)n(q)

with w(q) containing all odd factors af. With this notation,

_ 2 _ 2 22 _
Qg = anw(q)zm(q)fl - '7/q'7/w(q)2m(q)flaw(q)w(q)*2 e

m(q)—1

_ 27 am(@ _ ~ 2n(q)

(14) = Yq H Vw(q)zm(Q)*ja’w(q) =7q%?q§ :
j=1
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If a; # 0, we may writea, = a;a, for all p odd (this obviously holds also fgr = 1, with
a; = 1), and then

(15) CLCqLCle 7q72_n(q) n(q )aw7(7((1‘§)&p

Inserting these expressions in the equatiorfare get, after dividing through by, and using
F(ZL’) _ Sin(7'('$)’

T

4 4
0= (;’71 — 1) — 3—”>/1a2—|—’}/1R2 F2(717a27a37a57'“>7

whereR, is a sum of terms of the fornd_(IL5) with > 3 andq > 2, i.e. monomials ina, and
a,,p = 3,5,7... of degree at least two. Similarly the equation égbecomes

4 4 5 -
0= —vas — <—73 + 1) as + y3Rs = F3(71, ag, a3, as, ...)
T 3T

where againk; is a sum of monomials of order at least two. And the remainogpéons are
of the form

0= 20(k/2)vk — 1) ax + YRy = Fi(71, as, as, as, ...) ,

with R, as before. We have replaced all by ~+; owing to the parametrization of;, by ~;.
As written here, the functions), depend only on one coefficient;. Here we also note that
v, = 0 implies thata, = 0, and hence restricting the analysis to noise functions wouitly
finitely many non-zero coefficients, the system of equatidns= 0)i—235... iS reduced to a
system of polynomial equations for the unknowas as, . . ., ay), with aright-hand side being
a function of;.

We observe that at the critical value of the parameter= 7 /4, the right-hand side as a
function of v, vanishes. Hence, the polynomial system has no degree zeratel is solved
bya, = a3 = a3 = ... = a, = 0. The implicit function theorem then implies that for a
sufficiently small interval around, = 7 /4, there is a solutioms (1), as(v1), -.., as(y1) if the
Jacobian

oFy  OF i)
8a2 8&3 e 8&1\;
OF3  OF3 OFy
J - 8a2 8&3 T 8&1\;
OFy  OFN OFN
Oas oas o dan
4’\/1 ORy ORy ORs
+m Oasz N das N 19an
4vs OR3 (43 OR3 OR3
= = T V350 (37r +1) + V3 5a, 73aaN

IN %ﬁ? IN %ﬁ? (VNS'nO(WN/Q) -1 aRN
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is invertible aty, = 7,a, = a3 = ... = ay = 0. Because all thé;, are polynomials of degree
greater than two, we find that at the critical point
-1 0 0
J=| = -(GE+1) . 0
0 0 . 2(ynSingTN/2) — 1)
Moreover, since, as seen before, figs are sums of monomials ifu,, as, . . ., ay) of degree

at least two, and thanks to the assumption thét; ) is C*, we have:

(%) -
8’}/1 mn=7%,a2=a3=...=any=0 T

oF,
<_'f) =0 k=35 ..,N.
o == ap=a3=...=an=0

The implicit function theorem then implies that sufficigntieary = = /4, the polynomial
system can be solved, and that the solutiongs, as, ..., ay are differentiable functions of,
with

a9 F2
4 S g1 1?3 ’
dy : dm

ay Fy

where all derivatives in the right hand side are to be evatliat the critical point. Computing
the inverse of the Jacobian, we find easily thigtr /4) = 12/7, and with a little more effort

thatas(m/4) = %, and then thai; (7 (4) = 0 for k > 3. Hence

=22 o ((u-2)).
az(m) = % (71 - %) + 0O ((71 - %)2) ;

&k(fyl):(’)(<’yl—£)2) , k=579, .

The Fourier coefficients, ...., ay of a stationary solution may now be computed directly
from ax(71), az(71), ..., an(71) usinga, = a1a, and Eq.[(I4). Because = ~,a? andy, > 0,
and because we expect all coefficiemts..., ay to be real, onlyy; > /4 yields an admissible
solution. All coefficients are continuous functionsgf and therefore whety, — /4 is sulffi-
ciently small, the Fourier cosine series with these coeffits is non-negative. Interestingly the
behavior ofa, near the critical point is completely independent of theeottoefficients of the
noise function than,.

The uniform distribution, withu, = 0, £ = 1,2,3.... is always a stationary solution, and
the linearized analysis from Sectibh 4 showed that thistewlus stable fory; < /4 and
unstable fory; > w/4. The analysis in this section shows that in an intewal < v <
Tmaz there is a new invariant solution defined by the coefficients, ), ....,ax(v:) defined
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as above. It now remains to prove that this new solution isdlily stable. Setting(t) =
(a1(t), as(t), ...,an(t))", we may write Eq.[(9) as

d

S at) =Q(n :at)) —a(t),

whereQ(vy; : a) is a vector whosé-th element is given by the right hand side of Hq.l (13).
To prove linear stability of the stationary distributicigy;) computed from above amounts to
proving that the eigenvalues of the Jacobian matrix

% (11 :a(n)) = (%Qk(% 35(71)))

all lie inside the unit circle. The characteristic polynaiis

p(y, A) = det ((%Q(% ra(y)) — M) :

N

jk=1

Aty =7/4,a1 = ... = ay =0, £Q(7 : a()) is a diagonal matrix whose diagonal entries
are the coefficients, 4+ 1 as determined by (12). They are explicitly given here by:
1 4 4

0, ——— 0, ——s,.....
) ) 37_[_/2737 ) 571_/2757

They all lie inside the unit circle except the first one. Theg aontinuous functions of,
Therefore, as, is moved around the critical value/4 by a small amount, they all stay within
the unit circle, except may be the first one, which are aregytonstudy now. We note that,
A = 1is a simple eigenvalue at this point:

m
We will now again use the implicit function theorem to showttthere is a function(v;) such
that\(7/4) = 1, p(y1, A(11)) = 0, and

-1
(16) Ny = - <5‘p(%,k)> (5‘p(71,A)) __8
4 O Jamgamt N M S T

This implies that fory; > x/4, sufficiently small,|\(y1)|] < 1, and thata(v;) is a stable
(hyperbolic) fixed point for the system in E@l (9) in the Maties case and withV non-zero
noise coefficients.

To obtain [16) we Writeaa—aQ(% : a(y1)) — M in more detail. Explicitly for 5 non-zero
coefficientsy,, this matrix is equal to:

dayry 4y 2a 2a 2a 2a 2a 2a dayy
~2m 2, 2(—3_—1)% 2(_2__4)% 2(9—;-—3)% 2,

5% 3T Y T T
2(1,1’)/2 A 0 0 0
4asys I dasys dayyz  4dasys sy daiys _4dasys
s Y s T 3 Y T
0 2&2’}/4 0 - 0
_dayys dazys 4ayys _darys 4y
37 T T 3T Y
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Substitutingy; with =/4 + 7 and with 1 + p we find, retaining only the lowest order terms in
each coefficient and only coefficients of order one or lessandy,

S e S S
20175 1 0 0 0
487:'2’73 4a71Tf73 _% 1 4%17?3 _ 43;’273

0 2477 0 1 0
0 0 487:2’75 _4%17?5 % 1

In this expressiory, = ~i(m/4). It is easy to see that this matrix has essentially the same
form for any number of non-zero coefficienig, a five-diagonal matrix where the diagonal
elements except the first one are of or@¥i ) and all other elements a¢@(y. + 7'/?) (because

ay ~ aé/Q = O(7'?)). Hence, expanding the determinant, we find, after some atatipn,
that
s 2
p(z + 7,1 +M) = CN(M + gﬁ/ga%) + O(MQ + 7'3/2)
2
= Cyln+ a2) + O(u* + 7°7%)

8
= Cw(p+ —7) + O + %)

whereC'y is the product of the diagonal elements from row three anovbeAnd we conclude,
as stated in eq_(16) that
0
_Op 9 _ 8/,
8’}/1 O\
when evaluated at the critical poift = 7/4, A = 1. Again we note that this is independent of
the Fourier coefficients of the noise function.

6. THE METHOD OF PARTITIONS OF INTEGERS BBEN-NAIM AND KRAPIVSKY

In this section we adapt a method of Ben-Naim and Krapivskytdahe construction of
invariant densities for our equation in the Maxwellian casfe no longer require Hypothesis 9,
but on the other hand, we shall not control the convergeni#ioite sums, and our conclusions
are therefore formal. Nonetheless, aslih [7], the methodliges another view of the phase
transition studied here.

With ~, defined as above aldu) = sin(7u)/(7u), we let

Vit <Z —j)
G, — T ,
’ 1= 27,5 (%) 2

which is defined foi, j € Z. Clearly
Gij=Gji Gij =Gy, and Gij=2-
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Also
(a7) Gi,; =0 when (i—j)#0 iseven
whereas foyj — 7 odd, G, ; satisfies
|7+ 2
Ayisl/ (i 4 j]) mli — j
Because we only look for even solutiors,= a_;, equation[(R) may now be written

Gl <
| 7]|—1_

k—1 0o
(18) ap = Z Gk_mak_jaj + 2 Z Gk+j7_jak+jaj .

j=1 j=1

It follows from (17) and[(1IB) that wheh is a power of two, one can express in terms of
a; = a_;. Hence withk = 2™,

Qgm = 7om (a2m4)27
and iterating gives
m—1 _
(19) azn = [[ (om-s)* a}".
§=0

One might hope that it is possible to expressrya, as, if not a polynomial i, at least as
a power series in;. The strategy in[[7] provides such an expression,@antself is considered
anorder parameteand denoted?: for k > 2,

(20) ar = Zpk,nR‘k|+2n7
n=0

where the the coefficients;, ,, are a sum of various products 6f ; computed using a gener-
alized integer partition ok as a sum of + n terms of+1 andn terms of—1. The formula
corresponding td_(20) in [7] is written with instead of/k| in the exponent of?, and this leads
to the erroneous formula (15) in their paper. We will now dem correct replacement of their
formula (15) adapted to our case.

6.1. The recursion formula. Here we look for an invariant densityy whose Fourier coeffi-

cients,a;, (k > 2) are given by a power series i of the form [20), using, of coursé, = |k]|.
Foray, there is such a representation,

1 if n=0
(21) Pin = n,O:{ 0 if ’I”L7£0

but we will also use a different representation in whigly = 0. Combining the two expressions
gives the equation

R — ianRlJan 7
n=0

from which the value of? can be determined. Clearliz = 0 is a solution, corresponding to
the uniform distributionf = (27)~1.
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Lemma 11. For each positive integek, let {p; .} be a sequence of numbers such that the
power serieS 7, pr.,2" 2" has radius of convergence at least one. Far < R < 1, define

a_y(R) = ap(R) =Y praRF".
n=0

Then theu, (R) satisfy [I8) for allR and allk > 1 if and only if the number$py. ., } for & > 1
andn > 0 satisfy

k—1 n n n—j
(22) Prn =Y GhojiPhoiiPin—t+2D > GrijmiDirjilim—(i+0) -
j=1 (=0 j=1 =0

Note that forn = 0 the second sum is zero.

Proof. Takek > 0. Substituting[(2D) into equatioh (IL8) gives
00 k—1 oo o0
S e R =N N REEEIG, bk Dim
n=1 j=1 £=0 m=0

(23) +2) NN REROTG D P -

j=1 ¢=0 m=0

Equating coefficients of like powers &, we obtain[(2R). Conversely, {f(22) is satisfied for all
k > 2, then [2B) is also satisfied fér> 2. O

As the proof of the lemma show, if we could find numbggs such thatl(2R) is satisfied for
all £ > 1, then we would construct a family, parameterizedfyof solutions (not necessarily
positive) of the invariant measure equation.

This, of course, is more than we expect to find, and so the lemos be supplemented by
two things: (1) A construction of the numbess,,. (2) A mechanism for selecting a particular
value of R.

Following [7], we present a recursive construction of thenbersp, ,,, and a consistent
argument for determining.

6.2. The recursion formula. We need some known values of thg, to start the recursive
construction. First, notice that whéns a power of two, there is only one non-zero term in the
right-hand side of.(22), and a simple recursion gives

m—1

(24) Pom n = H (72m*a')2] 5n,07
§=0

which is consistent witH_(19).

On the other hand, equatidn {22) is inconsistent with (2dyleéd, fork = 1, the first sum
in (22) is zero because the range of summation is empty. Tdren £ 0 also the second sum
is zero, sop; o = 0. This can be seen already In{23), because there, in thehagtu side, the
smallest power oR that is present i®!'+20—"=0 with j = 1 andm = ¢ = 0, i.e. R>. However,
the coefficient ofR? is a multiple ofp, o, Sop;; = 0 as well. Hence the first non-vanishing
coefficient fora, is p; 5.

This discrepancy is the source of the criterion for selgcaéiparticular value oR that yields
an invariant density.
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To start the recursive determination of the coefficientse lwat whem = 0, the range in the
second sum ir(22) is empty. Thus, we have
k—1
Pro = Z Gr—j,jPr—5,0Pj,0 -
j=1
Since as noted aboyg, = 1 andpsy = 72, p3 IS determined and then, recursively, s@js
for all k.
Next, we considepy , for k = 1. Specializing[(2R) t& = 1, we obtain
n n—j
Pin = 2 Z Z G14j,—j P14, Pr—(j+0) -
j=1 ¢=0
The first two terms in this sequence are

P12 = 2G3 _2D30P20
and
P13 = 2 (GQ,—1p2,o D12+ G3,—2p3,1 p2,0) .
Here we have useg o = p11 = p21 = 0, the latter being true because bf|(24), which reduces

t0 P2, = Y20,,0 Whenk = 2. All terms in the expression fgr, » have been determined above.
To computep, 3, we needp; ;. However,

2 1
P31 = Z Z Gr—j,iPk—j.Pii—e + 2G4 _1DaoP1o -

j=1 ¢=0
Sincep, o is known, we haveys ; and hence, ;. So far, we have determined the values of all
pr.n forall k4+n < 4, and then some. From here itis not hard to see that the valadisohthe
pr.n are determined. For a discussion of this in terms of integetitppns, see [[7]. Though all
of the coefficients are determined, it does not seem to be geimatter to estimate the size of
the coefficients in a manner that is useful for proving thayttio define power series with even
a positive radius of convergence.

6.3. The consistency condition.At this stage, we have the coefficienis, for all £ > 1 and
all n > 0. The equationd (22) are satisfied for al> 1, by construction, but not, as we have
pointed out, fork = 1 by the coefficients given in_(21), which correspondat@R) = R for all
-1<R<1.

Nonetheless, assuming convergence, we have (19Rtkat;. Using the coefficients
derived above, we have

ai (R) = Zpl,nR1+2n )
0

and the first non-vanishing term in the power series on the iiforn = 2, so thatu; (R) ~ R®
atk = 0.
Therefore, any value aR giving an invariant measure must satisfy

R= Cll(R) s

wherea; (R) is the function defined by the power series derived above. dDfse, there is
always the solutio® = 0. However, there may be other solutions.[Ih [7], the functip(R?) is
approximately computed numerically and plotted. For np@aemeters such th&t = a,(R)
has a non-zero solution, they find a non-trivial invarianaswee. However, rigorous analysis of
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this construction, and especially analysis of stabilityre invariant measures so constructed,
seems difficult, and this has motivated our different treattnWhile less general in its scope,
due to Hypothesisl9, it does permit rigorous analysis.

7. CONCLUSION

In this paper, we have studied a Boltzmann model intendetbtage a binary interaction de-
scription of alignment dynamics which appears in swarmimglets such as the Vicsek model.
In this model, pairs of particles lying on the circle intdrag trying to reach their mid-point
up to some noise. We have studied the equilibria of this Budtzn model and, in the case
where the noise probability has only a finite number of nom-Zeourier coefficients, rigor-
ously shown the existence of a pitchfork bifurcation as afiom of the noise intensity. In the
case of an infinite number of non-zero Fourier modes, we hdaptad a method proposed by
Ben-Naim and Krapivsky to show (at least formally) thatraikr behavior can be obtained. In
the future, we expect to be able to show the rigorous connergef the infinite series involved
in the Ben-Naim and Krapivsky argument, and therefore jte g solid mathematical ground
also to this case. Extensions of the model to higher dimeasgpheres or other manifolds is
also envisionned. Finally, the non-isotropic equilibiaihd beyond the critical threshold will
allow us to develop non-trivial Self-Organized Hydrodynesn as done earlier in the case of
the Vicsek mean-field dynamics.
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