
HAL Id: hal-02498833
https://hal.science/hal-02498833

Submitted on 4 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phase transition and diffusion among socially interacting
self-propelled agents

Alethea B T Barbaro, Pierre Degond

To cite this version:
Alethea B T Barbaro, Pierre Degond. Phase transition and diffusion among socially interacting self-
propelled agents. Discrete and Continuous Dynamical Systems - Series B, 2014. �hal-02498833�

https://hal.science/hal-02498833
https://hal.archives-ouvertes.fr


ar
X

iv
:1

20
7.

19
26

v1
  [

m
at

h.
A

P]
  9

 J
ul

 2
01

2

Phase transition and diffusion among socially

interacting self-propelled agents

November 5, 2018

Alethea B.T. Barbaro

Department of Mathematics
Case Western Reserve University

10900 Euclic Avenue–Yost Hall Room 220
Cleveland, OH 44106-7058, USA.

alethea.barbaro@case.edu

Pierre Degond
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Abstract

We consider a hydrodynamic model of swarming behavior derived from the ki-
netic description of a particle system combining a noisy Cucker-Smale consensus
force and self-propulsion. In the large self-propulsion force limit, we provide ev-
idence of a phase transition from disordered to ordered motion which manifests
itself as a change of type of the limit model (from hyperbolic to diffusive) at the
crossing of a critical noise intensity. In the hyperbolic regime, the resulting model,
referred to as the ‘Self-Organized Hydrodynamics (SOH)’, consists of a system of
compressible Euler equations with a speed constraint. We show that the range of
SOH models obtained by this limit is restricted. To waive this restriction, we com-
pute the Navier-Stokes diffusive corrections to the hydrodynamic model. Adding
these diffusive corrections, the limit of a large propulsion force yields unrestricted
SOH models and offers an alternative to the derivation of the SOH using kinetic
models with speed constraints.
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1 Introduction

There is a considerable literature devoted to the observation and understanding of systems
of swarming agents. Examples of such systems in nature are fish schools [6, 39], bird
flocks [2, 40], insect swarms [14, 18] or migrating cell assemblies [55] (see also the reviews
[19, 54]). Some simple inanimate physical systems also exhibit collective behavior [29, 47].
Many of the models proposed in the literature are ‘Individual-Based Models (IBM)’. They
consist in following the dynamics of the agents and their interactions over the course of
time. The ‘three zone model’ of Aoki [1, 20] postulates that interactions obey long-
range attraction, short-range repulsion and medium-range alignment. Vicsek et al. [53]
have proposed a simplified version of this model where particles move at a constant
speed and interact through alignment only. In spite of its simplicity, the Vicsek model
exhibits complex features which have triggered a large literature (see [54] for a review and
references). On the other hand, the Cucker-Smale model [22] is based on a large-scale
velocity consensus formation and does not impose any constraint on the particle speed.
The Cucker-Smale model has triggered considerable mathematical activity [15, 21, 35, 36,
37, 46]. Many other kinds of IBM’s of collective motion can be found and it is impossible
to cite them all (see e.g. [16, 17, 30, 42] and the review [54]). Additionally, comparisons
of models with data can be found e.g. in [4, 5, 38].

IBM’s are very successful but become computationally intensive for large systems.
For this reason, macroscopic models of fluid type have been proposed in the literature.
Macroscopic models of collective motion have been derived from heuristic rules and sym-
metry considerations in [48, 49]. The rigorous derivation of continuum models usually
starts from a statistical version of the IBM, the so-called kinetic model. Kinetic models of
collective motion have been derived in [11, 12, 15] for various versions of the Cucker-Smale
and Vicsek models. The convergence of the kinetic Cucker-Smale model to the kinetic
Vicsek model is shown in [10]. In [7, 8], a Boltzmann type kinetic model has been proposed
for binary collision processes which mimics the Vicsek alignment dynamics. In the same
spirit, a Boltzmann-Povzner type approach which mimics the Cucker-Smale process and
its fluid limit has been developed in [32]. In [7, 8], a hydrodynamic model for the binary
version of the Vicsek interaction is derived from the kinetic model under an assumption
of weak anisotropy of the velocity distribution function. In [45] a direct passage from
the Vicsek IBM to a fluid model is attempted. The first derivation of hydrodynamic-like
equations from the mean-field kinetic version of the Vicsek model has been performed in
[26]. Further elaboration of the model can be found in [24, 25, 33, 34]. Diffusive correc-
tions to the model of [26] have been derived in [28] and bear analogies with the model
proposed in [43]. Other kinds of macroscopic models can be found in [9, 31, 41, 50, 51].

The aim of the present work is twofold. The first objective is to give evidence of a
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phase transition from disordered to ordered motion in a hydrodynamic model of socially
interacting agents with self-propulsion. Specifically, we want to emphasize the role of the
self-propulsion in the emergence of the phase transition. Such evidence has been given for
the first time in [48]. However, the model of [48] is based on analogy with the Vicsek IBM,
not on an actual derivation from it. In [48], the techniques used to show the emergence of
a phase transition are rather complex: they are based on stability analysis in the linear
case and renormalization group theory in the nonlinear case. In the present work, the
model we investigate is derived from a simple IBM of collective motion combining a noisy
Cucker-Smale consensus force and self-propulsion. The phase transition appears simply
when analyzing the behavior of the model in the limit of a large self-propulsion force. It
manifests itself as a change in the type of limit model at the crossing of a critical noise
intensity. Above the critical noise, the limit model is of diffusion type, while below the
critical noise, it is of hyperbolic type. To the best of our knowledge, the present work
is the first instance where phase transitions in particle swarms have been evidenced in
this way from a hydrodynamic model. A similar approach, but at the level of the kinetic
model, can be found in [24, 34].

The second goal of this work is to discuss the relative merits of the Cucker-Smale and
the Vicsek models for the derivation of hydrodynamic models of particle swarms. As men-
tioned above, the Vicsek kinetic model imposes that kinetic velocities be of constant norm,
while no such constraint exists in the Cucker-Smale model. Instead, a self-propulsion force
is imposed to force the particle speed to stay close to a ‘comfort’ velocity. In [10], it is
shown that the Cucker-Smale model relaxes to the Vicsek model when the intensity of
the self-propulsion force tends to infinity. The derivation of hydrodynamic models from
the Vicsek kinetic model is considerably complexified by the velocity norm constraint.
Indeed, momentum conservation is lost and the use of conserved quantities (or collision
invariants), which is the cornerstone of the derivation of hydrodynamic models, cannot
be implemented. In [26], this problem has been overcome by the introduction of a new
concept of ‘Generalized Collision Invariant’. But if the hydrodynamic limit could be per-
formed equivalently on the Cucker-Smale model, these unpleasant technicalities would be
proven unnecessary.

Unfortunately, performing the hydrodynamic limit on the Cucker-Smale model and
then letting the self-propulsion force tend to infinity is not equivalent to performing the
hydrodynamic limit on the Vicsek model. This is the second main result of the present
work. Indeed, the type of the resulting model is the same, but the coefficients of the model
are not the same. Specifically, the limit model has the form of a system of isothermal
compressible Euler equations for the swarm density ρ and the mean velocity direction ω
(also referred to as the polarization field, see e.g. [43]). The velocity direction ω is a vector
of norm one. To maintain this constraint, the model includes some non-conservative terms.
Additionally, the convective derivatives involved in the mass and momentum transport
are not the same, a signature of a loss of Galilean invariance (see e.g. [52]). This
model has been referred to in [25] as the ‘Self-Organized Hydrodynamic (SOH)’ model.
In the present work, we show that the SOH model derived from the Cucker-Smale kinetic
equation necessarily involves the same convective derivatives in the density and in the
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velocity equations. Therefore, with the Cucker-Smale model, we cannot access the whole
range of possible hydrodynamic limits that we can access with the Vicsek model. With
the Cucker-Smale model, we only get a sub-class of these models, which limits its practical
applications: having different convective derivatives for ρ and ω increases the likelihood of
correctly reproducing emergent phenomena in swarms, such as cluster formation, waves,
etc.

This restriction, which is a significant disadvantage of the Cucker-Smale approach,
can be weakened, at least partially. Indeed, in the last part of the present work, we
include small diffusive corrections to the hydrodynamic limit of the Cucker-Smale model,
by means of a Chapman-Enskog method (see e.g. [23] for a review). If the self-propulsion
is taken to infinity in the resulting compressible Navier-Stokes system, then a more general
SOH model, in particular with possibly different convective derivatives for ρ and ω, can
be derived. This approach is limited by the necessity to keep the diffusive corrections
small; this limits the range of the coefficients of the SOH model which can be obtained.
This paper shows that most SOH models can be realized in a fairly general context as
hydrodynamic limits of either Cucker-Smale or Vicsek kinetic models. For these reasons,
we conclude that the two approaches are somehow equivalent in the amount of technical
work: while the Vicsek model made use of generalized collision invariants, starting from
the Cucker-Smale model necessitates dealing with the complex diffusion terms.

The paper is organized as follows. The problem is set up in Section 2. Then, some
functional properties of the operators are recalled in Section 3. The hydrodynamic and
large self-propulsion limits are derived in Section 4. The diffusive corrections are dealt
with in Section 5. Finally, a conclusion and some perspectives are drawn in Section 6.
Three appendices collect some of the more technical proofs.

2 Setting of the problem

2.1 Velocity consensus in self-propelled agent systems

We consider a system of agents with positions xi(t) ∈ R
d and velocity vi(t) ∈ R

d, where d
is the system dimension (in practice equal to 2 or 3), t ≥ 0 is the time and i ∈ {1, . . . , N}
is the agent’s label. These agents are subject to a self-propulsion force which tends to
restore a comfort velocity a > 0, and to a social force which drives them to the average
velocity of the neighboring agents. Addtionally, they are subject to random velocity
fluctuations which account for potential misperceptions and their propensity to leave the
swarm and explore a new environment. The equations of motion are given by

ẋi = vi, dvi = Fi dt+ τ−1
(

1− |vi|2
a2

)

vi dt+
√
2DdBi

t, (2.1)

with

Fi = σ−1(v̄i − vi), v̄i =

∑N
j=1K(|xj − xi|)vj

∑N
j=1K(|xj − xi|)

. (2.2)
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The social force Fi is written in (2.2) as a relaxation force towards the average velocity
v̄i in the neighborhood of particle i. The relaxation rate is σ−1 (in other words, σ is the
typical time needed for agent i to align with the velocity of his neighbors). The kernel
K, supposed spherically symmetric for the sake of simplicity, describes how the various
partner velocities vj are combined according to the distance of j to i. For instance, if K
is the indicator function of the ball of radius R, it means that the agents adopt the mean
velocity of the other agents within a distance R. The second term in the expression of
dvi in (2.1) is the self-propulsion force. It takes the form of a relaxation term driving |vi|
towards a at rate τ−1. In other words, it takes a time τ for the velocity |vi| to relax to
the comfort speed a. Finally, the last term is the velocity fluctuation term, where Bi

t are
independent normalized Brownian processes and D > 0 is the diffusion coefficient. The
force Fi has been previously proposed by Cucker and Smale [22] as a model for consensus
formation in particle swarms. A noisy version of the Cucker-Smale model is proposed in
[21].

In the large particle limit N → ∞, by adapting the arguments in [11], the empirical
measure of the system

µN
t (x, v) =

1

N

N
∑

i=1

δ(xi(t),vi(t))(x, v),

where δ(xi(t),vi(t))(x, v) is the Dirac delta at (xi(t), vi(t)), can be approximated by a con-
tinuous distribution function f(x, v, t). It solves the following Fokker-Planck equation:

∂tf +∇x · (vf) = −∇v ·
[

Fff + τ−1
(

1− |v|2
a2

)

vf

]

+D∆vf, (2.3)

with

Ff = σ−1(v̄f − v), v̄f =

∫

K(|x− y|)ωf(y, ω, t) dy dω
∫

K(|x− y|)f(y, ω, t) dy dω . (2.4)

The left-hand side expresses particle displacement at velocity v. The right-hand side
consists of three terms. The first one is the consensus force. The second term is the
self-propulsion force. The last term takes into account the random velocity fluctuations.

2.2 Scaling

In order to understand the roles of the various terms, it is useful to introduce dimensionless
quantities. We set x0 and t0 to be space and time units and deduce units of velocity
v0 = x0/t0 and force F0 = x0/t

2
0. We assume that the range of the interaction kernel K is

R, meaning that we can write K(|x|) = K̃(|x|/R) with K̃ having second moment of order
1 (i.e.

∫

K̃(|x̃|)|x̃|2 dx̃ = O(1); we assume that K̃ is normalized to 1, i.e.
∫

K̃(|x̃|) dx̃ = 1).
We now introduce dimensionless variables x̃ = x/x0, t̃ = t/t0, ṽ = v/v0 and the change
of variables f̃(x̃, ṽ, t̃) = xd0 v

d
0 f(x0x̃, v0ṽ, t0t̃). Finally, we introduce the dimensionless

parameters:

R̂ =
R

x0
, σ̂ =

σ

t0
, â =

a

v0
, τ̂ =

τ

t0
, D̂ =

t0
v20
D. (2.5)
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In this new system of coordinates, the system is written:

∂tf +∇x · (vf) = −∇v ·
[

Fff + τ̂−1
(

1− |v|2
â2

)

vf

]

+ D̂∆vf, (2.6)

Ff = σ̂−1(v̄f − v), v̄f =

∫

K
( |x−y|

R̂

)

ω f(y, ω, t) dy dω
∫

K
(

|x−y|

R̂

)

f(y, ω, t) dy dω
, (2.7)

where we have dropped the tildes for the sake of clarity. Now, by fixing the relations
between the five dimensionless parameters (2.5), we define the regime we are interested
in. We suppose that the diffusion and social forces are simultaneously large, while the
range of the social force tends to zero. The parameters of the self-propulsion are kept
of order 1. More specifically, we let ε ≪ 1 be a small parameter and we assume that
D̂ = O(1/ε) (large diffusion), σ̂−1 = O(1/ε) (large social force), R̂ = O(ε) (small range
of social interaction), while τ̂−1 = O(1) and â = O(1) (parameters of the social force are
order unity). In order to highlight these scaling assumptions, we define constants D♯, σ♯,
R♯, which are all O(1) and such that

D̂ =
1

ε
D♯, σ̂ = εσ♯, R̂ = εR♯. (2.8)

Then, with these new notations, and dropping all ‘hats’ and ‘sharps’, we get the following
scaled system:

ε

[

∂tf
ε +∇x · (vf ε) + τ−1∇v ·

(

(

1− |v|2
a2

)

vf ε
)

]

= −∇v ·
(

F ε
fεf ε

)

+D∆vf
ε, (2.9)

F ε
f = σ−1(v̄εf − v), v̄εf =

∫

K( |x−y|
εR

)ωf(y, ω, t) dy dω
∫

K( |x−y|
εR

)f(y, ω, t) dy dω
. (2.10)

We will investigate the limit as ε → 0 of this system, while all other parameters (i.e. τ ,
a, D, σ and R) are kept fixed. Hence, we highlight the dependence of f upon ε.

We can simplify the problem by using Taylor’s expansion. At leading order, we find:

v̄εf = uf +O(ε2), uf =

∫

fω dω
∫

f dω
. (2.11)

Then, we have
F ε

fε = σ−1(ufε − v) +O(ε2),

which leads to:

ε

[

∂tf
ε +∇x · (vf ε) + τ−1∇v ·

(

(

1− |v|2
a2

)

vf ε
)

]

=

= −∇v ·
(

σ−1(ufε − v)f ε
)

+D∆vf
ε +O(ε2). (2.12)
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We will drop the O(ε2) terms, since, as a first step, we consider only the leading and first
order terms. Then, problem (2.12) can be written as

ε

[

∂tf
ε +∇x · (vf ε) + τ−1∇v ·

(

(

1− |v|2
a2

)

vf ε
)

]

= Q(f ε), (2.13)

with the collision operator Q(f):

Q(f) = ∇v ·
[

σ−1(v − uf)f +D∇vf
]

. (2.14)

Some remarks concerning scaling (2.8) can be made. The diffusion and social forces
are supposed of the same order of magnitude and much larger than all other forces.
They counterbalance each other. Indeed, the social force makes the agents adopt the
same velocity while diffusion tends to spread the velocities out. This balance results in a
Maxwellian velocity profile (i.e. Gaussian in velocity space), as shown later on. The choice
which is made here is to assume that the self-propulsion force is weaker. Another choice
would have been to make the self-propulsion force as large as the social force and the
diffusion. In this case, the balance would involve three different effects and would result
in more complicated equilibria. This investigation is in progress [3]. The interaction range
is supposed to tend to zero like the inverse of the interaction rate. It is no surprise that,
at leading order, only spatially local interaction terms remain (which can be seen in (2.14)
by the replacement of the non-local average velocity v̄εf by the local mean velocity uf).
Again, other choices can be made. In [25], in the case of the Vicsek model (which is the
limit of (2.13) when τ → 0), it is shown that the different choice R̂ = O(

√
ε) leads to a

different macroscopic limit when ε → 0. This choice takes better care of the non-local
character of the interaction. It will be investigated in future work.

Our plan is now to investigate the hydrodynamic limit ε → 0 in this model. To this
end, we first examine the properties of the collision operator Q.

3 Properties of Q

When ε → 0 in (2.13), f ε formally converges to an element of the null-space of Q, i.e.
a function f such that Q(f) = 0. In this limit, the dynamics are characterized by the
projection of the left-hand side of (2.13) onto the space orthogonal to the range of Q. This
space is spanned by the so-called ‘collision invariants’. In this section, we successively
determine the null-space of Q and its collision invariants.

3.1 Null-Space

We first define the Maxwellian with mean velocity u ∈ R
d and temperature T = σD > 0

as follows:

Mu(v) :=
1

(2πT )
d
2

exp
(

− |v − u|2
2T

)

. (3.15)
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Note that Mu satisfies
∫

Mu dv = 1 and
∫

Muv dv = u.
To proceed, we need to determine a functional setting. Let u ∈ R

d and define a
weighted L2-space Hu such that

Hu := {φ :

∫

φ2Mudv < +∞}

and a weighted H1-space Vu such that

Vu := {φ ∈ Hu :

∫

|∇vφ|2Mudv < +∞}

with the associated norms:

|φ|2Hu
:=

∫

φ2Mu dv, |φ|2Vu
:=

∫

|∇vφ|2Mu dv, ||φ||2Vu
= |φ|2Hu

+ |φ|2Vu
, (3.16)

and inner products (·, ·)Hu
, (·, ·)Vu

, and ((·, ·))Vu
respectively.

Lemma 3.1. (i)The operator Q given by (2.14) can be reformulated as:

Q(f) = D∇v ·
[

Muf
∇v

( f

Muf

)

]

. (3.17)

(ii) For any function f(v) such that f/Muf
∈ Vuf

and for any function g ∈ Vuf
, we have:

∫

Q(f) g dv = −D
∫

Muf
∇v

( f

Muf

)

· ∇vg dv. (3.18)

In particular, we have:

∫

Q(f)
( f

Muf

)

dv = −D
∫

Muf

∣

∣

∣

∣

∇v

( f

Muf

)

∣

∣

∣

∣

2

dv. (3.19)

(iii) The null-space KerQ = {f(v) | f/Muf
∈ Vuf

and Q(f) = 0} is given by:

Ker Q = {ρMu | ρ ≥ 0, u ∈ R
d}. (3.20)

The proof of this lemma is postponed to Appendix A. An element ρMu of Ker(Q) is called
a local thermodynamic equilibrium with density ρ and mean velocity u.

3.2 Collision invariants

Definition 3.2. A function ψ(v) is said to be a collision invariant (CI) if and only if
∫

Q(f)ψ dv = 0,

for every f such that f/Muf
∈ Vuf

and ψ ∈ Vuf
. The set of CI’s is denoted by C. It is a

vector space.
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We have the:

Proposition 3.3. We have C = Span{1, v1, . . . , vd}. In other words, ψ is a CI if and
only if there exists a ∈ R and b ∈ R

d such that ψ(v) = a+ b · v.

The proof of this proposition is again postponed to Appendix A.

4 Hydrodynamic limit and fast relaxation

The goal of this section is to investigate the formal limit ε → 0 in (2.13) and to examine
some of the properties of the limit system relative to the propulsion force. More precisely,
we exhibit a phase transition when the intensity of the velocity fluctuations crosses a
certain threshold dependent on the magnitude of the propulsion velocity.

4.1 Hydrodynamic limit

The goal of this section is to prove the following formal theorem:

Theorem 4.1. Let f ε be the solution of equation (2.13) associated to an initial datum
fI(x, v). We suppose that fI is independent of ε for simplicity. We assume that solutions
of (2.13) exist on any time interval [0, T ]. Assume that f ε → f 0 as ε → 0 as smoothly
as needed, which means in particular that derivatives of f ε converge to the corresponding
derivatives of f 0. Then, there exist two functions ρ(x, t) > 0 and u(x, t) ∈ R

d such that

f 0(x, v, t) = ρ(x, t)Mu(x,t)(v), ∀(x, v, t) ∈ R
2d × [0, T ]. (4.1)

Furthermore, ρ and u satisfy the following system of isothermal compressible Euler equa-
tions with relaxation:

∂tρ+∇x · (ρu) = 0, (4.2)

∂t(ρu) +∇x · (ρu⊗ u) + T∇xρ = −1

τ
ρu

( |u|2 + (d+ 2)T

a2
− 1

)

, (4.3)

associated with initial data (ρI , uI) such that

ρI =

∫

fI dv, ρIuI =

∫

fI v dv.

Proof. First, we note from (2.13) that Q(f ε) = O(ε). Therefore Q(f 0) = 0, which,
because of (3.20), implies that f 0 is of the form (4.1).

Next, using the CI’s given by Proposition 3.3, we multiply (2.13) successively by 1
and v and use the fact that the right-hand side vanishes upon integration. Then, we get
the following conservation relations, which are valid for any ε:

∂tρ
ε +∇x · jε = 0, (4.4)

∂tj
ε +∇x · Σε = τ−1qε, (4.5)

9



with ρε, jε, Σε, the density, flux and pressure tensor associated to f ε, given by:

ρε =

∫

f ε dv, jε =

∫

f ε v dv, Σε =

∫

f ε (v ⊗ v) dv, (4.6)

and right-hand side qε given by

qε =

∫

f εv(1− |v|2
a2

) dv. (4.7)

Now, letting ε → 0, we can express j = lim jε, Σ = limΣε and q = lim qε as functions
of ρ and u:

j =

∫

ρMu v dv = ρu,

Σ =

∫

ρMu (v ⊗ v) dv = ρ(u⊗ u) + ρT Id,

q =

∫

ρMu v(1−
|v|2
a2

) dv = ρu(
|u|2 + (d+ 2)T

a2
− 1).

Inserting these expressions into the conservation equations leads to (4.2), (4.3). The
statement about the initial conditions is obvious.

Remark 4.1. Dividing (4.3) by ρ and using (4.2), the momentum conservation equation
can be written in non-conservative form:

(∂t + u · ∇x)u+ T
∇xρ

ρ
= − 1

τa2
u
(

|u|2 − (a2 − (d+ 2)T )
)

. (4.8)

This model is nothing but the Euler system of isothermal compressible gas dynamics with
a forcing term. The mass conservation equation (4.2) (also known as the continuity equa-
tion) has a standard form. The momentum balance equation (4.3) involves an isothermal
pressure Tρ on the left-hand side and a self-propulsion force on the right-hand side. The
temperature T = σD is proportional to the ratio of the intensities of the velocity fluc-
tuations D and of the social force σ−1. The self-propulsion force takes the form of a
relaxation of the fluid velocity to a comfort fluid velocity

√

a2 − (d+ 2)T . In comparison
to the force acting on individual particles, the force acting on the fluid involves a term
depending on the temperature. The temperature being a truly macroscopic quantity,
this term cannot have any counterpart at the particle level. Here, at the fluid level, the
comfort fluid velocity becomes a pure imaginary number when T is larger than a critical
temperature Tc = a2/(d + 2). When the temperature crosses Tc, a phase transition oc-
curs. This phase transition is studied in the next section when the intensity τ−1 of the
self-propulsion force is taken to infinity, a limit which we refer to as the ‘fast relaxation
limit’.
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4.2 Fast relaxation limit in the hydrodynamic model

We recall that, according to our notation, τ is the ratio of the physical relaxation time
to the time unit t0 (see Section 2.2) and is a dimensionless parameter. The goal of this
section is to investigate the limit τ → 0 in the hydrodynamic model (4.2), (4.3). We
denote by (ρτ , uτ) the solution for finite τ and assume that its limit (ρ, u) as τ → 0 exists
and is as smooth as needed. We will use the non-conservative form of the model, which
we recall here for the sake of convenience:

∂tρ
τ +∇x · (ρτuτ) = 0, (4.9)

(∂t + uτ · ∇x)u
τ + T∇x ln ρ

τ = −1

τ
uτ (

|uτ |2 + (d+ 2)T

a2
− 1). (4.10)

Letting τ → 0 formally in (4.10) leads to |u|2 + (d + 2)T − a2 = 0. Therefore, there are
two cases according to whether the quantity (d + 2)T − a2 is positive or negative, i.e.
according to the position of T with respect to the critical temperature Tc defined by

Tc =
a2

d+ 2
. (4.11)

4.2.1 Case T > Tc (large noise)

We let (d + 2)T − a2 = (d + 2)(T − Tc) := s2 > 0. The constant s only depends on the
problem data and not on the solution. In this case, equation (4.10) becomes

(∂t + uτ · ∇x)u
τ + T∇x ln ρ

τ = − 1

τa2
uτ (|uτ |2 + s2). (4.12)

To examine the limit τ → 0, we need to find the equilibria of the right-hand side of (4.12),
i.e. the solutions u of u(|u|2+s2) = 0. Obviously, the only solution is u = 0. Additionally,
at least in the spatially homogeneous setting, this is a stable solution. Indeed, the unique
solution of

du

dt
= −u(|u|2 + s2), u(0) = u0,

satisfies u(t) → 0 as t→ ∞. So, in the spatially non-homogeneous case, we formally have
uτ → 0 as τ → 0. Therefore, the formal limit of (4.2), (4.3) gives

∂tρ = 0, u = 0.

In order to get a more precise description of the limit τ → 0, we need to rescale time and
velocity.

With this aim, we let t′ = τt and uτ (x, t) = τ ũτ (x, t′), ρτ (x, t) = ρ̃τ (x, t′). Inserting
this into (4.2), (4.3), we find (dropping the tildes):

∂tρ
τ +∇x · (ρτuτ ) = 0, (4.13)

τ 2(∂t + uτ · ∇x)u
τ + T∇x ln ρ

τ = − 1

a2
uτ (τ 2|uτ |2 + s2). (4.14)

The behavior of this system when τ → 0 is that of a diffusion. More precisely, we state:
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Proposition 4.2. Assume that the solution (ρτ , uτ) of system (4.13), (4.14) is smooth
and converges smoothly towards a pair (ρ, u) as τ → 0. Then, ρ satisfies the following
diffusion equation:

∂tρ−Ddiff∆xρ = 0, Ddiff =
TTc
T − Tc

. (4.15)

and u = −Ddiff∇x ln ρ.

Proof. Taking τ → 0 in equation (4.14), we get u = −a2T
s2

∇x ln ρ = − TTc

T−Tc
∇x ln ρ. The

limit model therefore follows from the continuity equation (4.13) and is given by (4.15).

Remark 4.2. We note that Ddiff → ∞ when T
>→ Tc. Therefore, the time variation of

ρ is faster as T − Tc gets smaller. We can rescale time to a faster time-scale by setting
t′ = Ddiff t =

TTc

T−Tc
t. Then, in the rescaled variables, the diffusion equation (4.15) becomes

independent of T − Tc and gives the standard heat equation ∂tρ − ∆xρ = 0 (omitting
the primes for simplicity).

4.2.2 Case T < Tc (small noise)

Let us now consider the dynamics of the system in the case of smaller noise. In this
section, we aim to prove the following:

Proposition 4.3. Let T < Tc and define c2 = a2−(d+2)T = (d+2)(Tc−T ) > 0. Assume
that the solution (ρτ , uτ) of system (4.9), (4.10) is smooth and converges smoothly towards
a pair (ρ, u) as τ → 0. Assume additionally that (ρτ , uτ) is not identically equal to (ρ0, 0)
where ρ0 is constant in both space and time. Then, u = cω, where ω ∈ S

d−1 and the pair
(ρ, ω) satisfies the following system:

∂tρ+∇x · (cρω) = 0, (4.16)

(∂t + cω · ∇x)ω +
T

c
P (∇x ln ρ) = 0, (4.17)

where P = Id− ω ⊗ ω is the orthogonal projection onto the hyperplane orthogonal to ω.

Remark 4.3. We easily see, taking the scalar product of (4.17) with ω, that

(∂t + cω · ∇x)|ω|2 = 0.

This implies that |ω(x, t)| ≡ 1 for all time provided that |ω(x, 0)| = 1 initially.

Proof. Equation (4.10) is now written as:

(∂t + uτ · ∇x)u
τ + T∇x ln ρ

τ =
1

τa2
uτ

(

c2 − |uτ |2
)

. (4.18)

We now look for the equilibria of the right-hand side of (4.18), namely the solutions of

u
(

c2 − |u|2
)

= 0.

12



There are two sets of equilibria. The first set reduces to the single point u = 0. The second
set is the sphere |u|2 = c2. We now show that in the spatially homogeneous setting, the
first equilibrium is unstable, while the second class of equilibria is orbitally stable. Indeed,
let us consider the solution u(t) of the differential equation

du

dt
= u(c2 − |u|2), u(0) = u0.

Its solution can be analytically given by

|u(t)|2 = |u0|2c2
(c2 − |u0|2)e−2c2t + |u0|2

,

and is such that |u(t)| → c for all initial data u0 except u0 = 0. This shows that u0 = 0
is an unstable equilibrium. On the other hand, if one perturbs an equilibrium |u0|2 = c2

by a small amount, the solution will relax to an element of the circle |u|2 = c2 (where u
may be different from u0).

Now, we let τ → 0 in the non spatially homogeneous system (4.16), (4.18). Unless uτ

is identically zero, which can only occur for a uniform density ρ0, u
τ converges (at least

formally) towards one of the stable equilibria. Therefore, we have uτ → u = cω with
|ω| = 1. In order to find the equation satisfied by ω, we introduce a polar decomposition
of the solution uτ . We write uτ = cτωτ , with cτ = |uτ | and ωτ = uτ/cτ . Let P τ the
orthogonal projection of Rd onto the hyperplane orthogonal to ωτ . The projection P τ can
be written tensorwise as P τ = Id − ωτ ⊗ ωτ . Inserting the polar decomposition of uτ in
(4.18) leads to:

ωτ(∂t + uτ · ∇x)c
τ + cτ (∂t + uτ · ∇x)ω

τ + T∇x ln ρ
τ =

1

τa2
ωτ

(

c2 − (cτ )2
)

. (4.19)

We note that, because |ωτ | = 1 and the operator ∂t + uτ · ∇x is a derivative, the vector
(∂t+uτ ·∇x)ω

τ is orthogonal to ωτ . Furthermore, the first term of the left-hand side and
the right-hand side are parallel to ωτ . Therefore, applying P τ to the second term of the
left-hand side leaves it unchanged, while it cancels the first term of the left-hand side and
the right-hand side. Consequently, applying P τ to (4.19) leads to:

cτ (∂t + uτ · ∇x)ω
τ + TP τ(∇x ln ρ

τ ) = 0. (4.20)

Now, taking the limit τ → 0 formally leads to (4.17).

System (4.16), (4.17) has been referred to in the literature as the Self-Organized Hydrody-
namic (SOH) system [24, 25]. It has the form of a compressible gas dynamics system with
isothermal equation-of-state and geometric constraint |ω| = 1. The projection operator
P which multiplies the pressure term ∇x ln ρ maintains the constraint over the course of
time (see Remark 4.3). It results in a non-conservative term (since P depends on ω).
This type of system has been derived for the first time in [26] and has been shown to be
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hyperbolic. Beyond this result, the mathematical study of such systems is in its infancy.
A local existence result is given in [25] and some special solutions are given in [44].

When T
<→ Tc, we have c → 0 and therefore, ρ becomes constant. To find a non-

trivial dynamics, we must rescale time to a slower time-scale. By the time rescaling
t′ = ct, system (4.16), (4.17) can be written (dropping the primes):

∂tρ+∇x · (ρω) = 0,

(∂t + ω · ∇x)ω +
T

(d+ 2)(Tc − T )
P (∇x ln ρ) = 0,

The parameter (Tc − T )/T plays the role of the squared Mach-number in the standard
compressible Euler system. Therefore, the limit T → Tc, is similar to a small Mach-

number limit. When T
<→ Tc, we formally get ρ → ρ0 where ρ0 is a constant in space.

With appropriate boundary conditions we can assume that ρ0 is also independent of time.

Then, the limit system as T
<→ Tc is written as follows:

∇x · ω = 0,

(∂t + ω · ∇x)ω + P∇xπ = 0,

where π is a hydrodystatic pressure defined by

π = lim
T

<
→Tc

(

T

(d+ 2)(Tc − T )
(ln ρ− ln ρ0)

)

.

This system has been already proposed in [27] for modeling gregariousness. It is a system
of incompressible Euler equations subject to the geometric constraint |ω| = 1.

The behavior of the (appropriately rescaled) SOH system (4.16), (4.17) when T
<→ Tc

is very different from the behavior of the (appropriately rescaled) diffusion equation (4.15)

when T
>→ Tc. The former is given by the incompressible Euler equations with geometric

constraint |ω| = 1 while the latter is the standard diffusion equation (see Remark 4.2).
This drastic change of type is the signature of a phase transition further elaborated on in
Section 4.2.3.

4.2.3 Comments

The fast relaxation limit of the compressible Euler system with self-propulsion (4.2), (4.3)
exhibits two different regimes for temperatures below or above the critical temperature
Tc. Above Tc, the behavior of the system is that of a diffusion, while below Tc, the system
obeys a hyperbolic system, the Self-Organized Hydrodynamic (SOH) model (4.16), (4.17).
Even when the temperature is close to the critical temperature, it is not possible to match
the two types of models in a smooth way, as noticed in the previous section. This abrupt
change in the type of the model as the temperature crosses a threshold is a manifestation
of a phase transition. Since Tc depends on a, the phase transition originates from the
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Kinetic model (2.13)
τ→0 [10]−−−−−→ Kinetic model

with norm constraint on v




y

ε→0 (section 4.1)





y

ε→0 [26]

Compressible Euler
with self propulsion

(4.2), (4.3)

τ→0 (section 4.2.2)−−−−−−−−−−−→ Self-Organized Hydrodynamics
(4.16), (4.17)

Figure 1: Two strategies. First strategy: first take the relaxation limit τ → 0 (top hori-
zontal arrow) and then pass to the hydrodynamic limit ε→ 0 in the resulting constrained
kinetic model (right vertical arrow). This is done in [26] and [10]. Second strategy: first
pass to the hydrodynamic limit ε → 0 in the original kinetic model (left vertical arrow)
and then pass to the fast relaxation limit τ → 0 in the resulting Euler system (bottom
horizontal arrow). This is what is done here.

self-propulsion force. Indeed, when a = 0 (i.e. no self-propulsion), Tc = 0 and there is no
phase transition: the system is in the diffusion regime in all circumstances.

Phase transitions in self-propelled particle systems have already been evidenced [53]
and an abundant literature has been devoted to them (see the review [54]). Phase transi-
tion in hydrodynamic models of self-propelled particles have first been studied in [48] (see
also the review [49]). However, the equations proposed in [48] are more complicated than
the ones seen here. They are derived solely on heuristic principles and invariance con-
siderations. Their analysis is based on a combination of linear and nonlinear techniques.
There is no link to the underlying particle models. The link between hydrodynamic and
particle models of self-propeled particle systems has been made in [7, 8], but for binary
interaction mechanisms instead of the mean-field interaction considered here. Here, the
hydrodynamic model is derived from the underlying particle dynamics and is much sim-
pler: it merely consists of the isothermal compressible Euler model complemented with
the self-propulsion force. The phase transition manifests itself in the change of type of
the PDE which describes the system under large self-propulsion.

The SOH model (4.16), (4.17) has previously been derived in [26] from a system of
self-propelled particles which have constant and uniform velocity. In [10], it has been
shown that the kinetic model with the velocity norm constraint of [26] is the the fast
relaxation limit τ → 0 of (2.13). A natural question is then whether the imposition of the
norm constraint at the particle and kinetic levels as in [26] is necessary or useful. Indeed,
there are now two ways of deriving the SOH model from (2.13), which are summarized in
Fig. 1. The first way is to follow the top horizontal and right vertical arrows successively.
This is what is done in [26] and [10]. The second way is to follows the left vertical and
bottom horizontal arrows successively. This is what is done here.

There is however one noticeable difference between the two strategies. In [26], the

15



system is written:

∂tρ+∇x · (c1ρω) = 0, (4.21)

(∂t + c2ω · ∇x)ω + δP (∇x ln ρ) = 0, (4.22)

where the constants c1 and c2 are such that 0 < c2 ≤ c1. In [33], it has even been shown
that taking into account an anisotropic vision, (c1, c2) can be made arbitrary. We would
recover (4.16), (4.17) if we could set c2 = c1 = c and δ = T/c. However, it is not possible
since, in [26], c2 6= c1. Therefore, the diagram in Fig. 1 is not commutative. This shows
how important it is to enforce the norm constraint at the kinetic level, in spite of the
induced difficulties. Indeed, such constrained kinetic models do not exhibit momentum
conservation and lack classical collision invariants such as those derived in Section 3.2.
This makes the derivation of hydrodynamic models considerably more complex. In [26],
new concepts have been developed to bypass these difficulties. The fact that c1 6= c2 is a
direct consequence of these features.

The question whether c1 = c2 or not has important consequences. Indeed, the SOH
system is Galilean invariant if and only if c1 = c2 (which is the case here). However, in
the generic case c1 6= c2, the SOH system is not Galilean invariant. This fact reflects a
key feature of collective motion: the anisotropy of information flow. This is evidenced
in car traffic, where perturbations of velocities (typically moving with speed c2 < c1)
propagate upstream the flow (whose speed is c1). This phenomenon is a consequence
of the fact that information propagates upstream from drivers ahead to drivers behind.
When c1 = c2, this property is lost and information spreads in an isotropic way just
like usual gas dynamics. In such a case, the model is unable to correctly reproduce the
complex emerging patterns (such as congestions and waves in car traffic). We refer to [52]
for a discussion of the loss of Galilean invariance in biological swarms.

The approach of [26] does not lead to phase transitions: whatever the values of the
temperature T or self-propulsion velocity a, the limit system is of hydrodynamic type.
The very large intensity of the self propulsion force which is needed to perform the τ → 0
limit first (top horizontal arrow in diagram 1) prevents any diffusion regime to establish.
However, the emergence of a phase transition is a well-established experimental fact (see
review in [54]). The inability of [26] to produce phase transitions can be seen as a major
drawback. Fortunately, it has been proved in [24] that adding a dependence of the social
force intensity σ−1 upon the flux j restores the phase transition. It also brings density-
dependent phase transition. More precisely, the parameter controling the phase transition
is the ratio T/ρ. A natural question is to explore similar features here. This question will
be investigated in future work.

Here, we choose a different direction: we explore whether the inclusion of diffusion
terms can cure the deficiency of the SOH models derived here (i.e. the fact that c1 = c2).
This is the goal of the next section.
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5 Diffusive corrections to the hydrodynamic model

5.1 Setting of the problem

In this section, we derive O(ε) diffusive corrections to the compressible Euler model with
self propulsion (4.2), (4.3). We show that these diffusive corrections lead to a system of
isothermal compressible Navier-Stokes equations including self-propulsion. In a second
step, we perform the fast relaxation limit τ → 0 in the resulting Navier-Stokes model and
compare it to the SOH model obtained in Proposition 4.3.

We now set up the problem. We define

ρf =

∫

f dv, jf =

∫

f v dv = ρfuf . (5.23)

We assume that the observation kernel K(|ξ|) is such that
∫

K(|ξ|) dξ = 1 and we denote
by k > 0 the second moment of K, i.e.

1

2

∫

K(|ξ|) (ξ ⊗ ξ) dξ = k Id.

For instance, if K is the indicator function of the ball of radius 1, k = |Sd−1|
2d(d+2)

, where

|Sd−1| is the (d − 1)-dimensional measure of Sd−1. In the cases of d = 2 and d = 3, we
respectively get k = π/8 and k = 2π/15.

We first give the expansion of F ε
f up to the fourth order in ε.

Lemma 5.1. We have:

v̄εf = uf + ε2u1f +O(ε4), (5.24)

F ε
f = σ−1(uf − v) + ε2σ−1u1f +O(ε4), (5.25)

where

u1f =
kR
ρ2f

(

ρf∆xjf − jf∆xρf
)

= kR
(

∆xuf + 2(∇x ln ρf · ∇x)uf
)

, (5.26)

and kR = kR2.

We give the proof of this very simple lemma in Appendix B. The O(ε2) correction to the
mean velocity uf takes into account the non-local character of the average (2.10). This
correction involves gradients of the local density and flux. They quantify how information
spreads due to the fact that the agents observe their environment over a certain spatial
extent. Because the observation is supposed isotropic, the correction only involves O(ε2)
terms and second order derivatives. In the case of non-isotropic observation kernels, O(ε)
corrections involving first order gradients would be obtained. The study of this effect is
postponed to future work.
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Now, up to terms of order ε4 (which are dropped), equation (2.9) is written:

ε

[

∂tf
ε +∇x · (vf ε) + τ−1∇v ·

(

(

1− |v|2
a2

)

vf ε
)

]

+ ε2σ−1∇v · (u1fεf ε) = Q(f ε), (5.27)

where again, Q is given by (2.14). Now, we look for a fluid model approximating (5.27)
which includes the O(ε) terms. We will adopt Chapman-Enskog’s method consisting in
writing the O(ε) terms in terms of spatial derivatives only (see e.g. the review in [23]).
The model is introduced and discussed in the next section.

5.2 Compressible Navier-Stokes equations with self-propulsion

The compressible Navier-Stokes system with self-propulsion is established in the following:

Theorem 5.2. Let f ε be the solution of (5.27) associated to a given initial condition fI ,
which is supposed independent of ε for simplicity. Let (ρfε , ρfεufε) be the moments of f ε

defined by (5.23). Then, we can formally write (ρfε , ρfεufε) = (ρε, ρεuε)+O(ε2), provided
that (ρε, ρεuε) satisfy the following set of compressible Navier-Stokes-like equations (where
we drop the superscripts ε upon ρε and uε for the sake of clarity):

∂tρ+∇x · (ρu) = 0, (5.28)

∂t(ρu) + λε∇x · (ρu⊗ u) +∇xπ
ε(ρ, |u|) = − 1

τ ε
ρu

( |u|2
a2

− χε
)

+ ε
(

µ∇x · (ρE(u)) +
kR
σ
ρ∆xu

)

+
2εkR
σ

(∇xρ · ∇x)u

+
ελ

2
ρ
[

(∇x · u)u+∇x

( |u|2
2

)

+ (u · ∇x)u
]

, (5.29)

where

λε = 1− ελ, λ =
2σT

τa2
, (5.30)

πε(ρ, |u|) = Tρ− επ(ρ, |u|), π(ρ, |u|) = λ

2
ρ
{

(d+ 2)T − a2 + |u|2
}

, (5.31)

χε =
1− ελ

2
(d+ 2)− (d+ 2) T

a2

(

1− ελ
2
(d+ 4)

)

1− ελ
2
(d+ 8)

, (5.32)

1

τ ε
=

1

τ

(

1− ε
λ

2
(d+ 8)

)

, (5.33)

µ = σT, E(u) = 1

2
(∇xu+ (∇xu)

T ). (5.34)

The proof of this result is fairly technical. It is given in Appendix C. The coefficient µ is
the fluid viscosity, while πε(ρ, u) is a velocity-dependent pressure.
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We compare this Navier-Stokes model to the hydrodynamic model (4.2), (4.3) and
provide a physical interpretation of the O(ε) correction terms. The mass conservation
equation (5.28) is unchanged compared to (4.2), as it should be. Indeed, the particle
density is still a conservative variable transported by the fluid velocity. By contrast, there
is a wealth of new terms in the momentum balance equation (5.29). We can identify the
only term which come from classical fluid viscosity: this is εµ∇x · (ρE(u)). The present
viscous term is different from that appearing in the full Navier-Stokes system, where
the temperature is determined by the energy balance equation. Here, the viscous term
involves the symmetrized velocity gradient tensor E(u) instead of the rate of strain tensor
S(u) = E(u)− 1

d
(∇x ·u)Id. This difference is solely due to the isothermal character of the

model and not to self-propulsion.
Then, there are two terms which come from the non-locality of the interaction and

which are proportional to kR. The first one contributes to adding more viscosity and is
equal to εkR

σ
ρ∆xu. The second one contributes to convecting the velocity in the direction

of the gradient of ρ. It is written 2εkR
σ

(∇xρ · ∇x)u.
All other O(ε) terms originate from self-propulsion. The self-propulsion first con-

tributes to a similar relaxation source term as in (4.3): the term − 1
τε
ρu

( |u|2

a2
− χε

)

. How-
ever, both the relaxation rate 1

τε
and the bulk comfort velocity

√
χεa towards which

this source term is relaxing are different from those of (4.3), respectively equal to 1
τ
and

√

a2 − (d+ 2)T . We notice that the former are O(ε) corrections of the latter, as they
should be. However, there is a second source term, the term

ελ

2
ρ
[

(∇x · u)u+∇x

( |u|2
2

)

+ (u · ∇x)u
]

,

which describes a force comprising three terms. The first term is just a friction propor-
tional to the compressibility ∇x · u. The second term is a force acting in the direction of
the gradient of |u|2. Finally, the last term is a force acting in the direction of (u · ∇x)u.

The self-propulsion force also induces some changes in the convection terms. The first
one is a change in the convection velocity of the momentum, which is not just u but λεu.
The coefficient λε is close to one but not exactly equal to one, the difference being O(ε).
This feature makes the model closer to the generic SOH model (4.21), (4.22), which has
different convection velocities c1 and c2 for the density and velocity. The last contribution
of the self-propulsion is a modification of the pressure. The isothermal pressure ρT is
complemented by an O(ε) pressure correction επ(ρ, |u|) which depends on the norm of
the velocity. This correction is positive or negative according to whether the speed is larger
or smaller than the bulk comfort velocity

√

a2 − (d+ 2)T of the non-viscous model.
We now discuss this model in view of the model proposed in [48, 49], which is consid-

ered as the ‘paradigmatic’ model of hydrodynamic type for flocking. In this model, the
mass conservation equation is the same as (5.28) but the momentum balance equation
takes the following form (in the absence of extrernal force):

∂tu+ (u · ∇x)u = αu− β|u|2u−∇xP +DL∇x(∇x · u)
+D1∆xu+D2(u∇x · u)2u, (5.35)
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where α, β, DL, D1 and D2 are positive coefficients and P = P (ρ) is the pressure,
which depends nonlinearly of ρ. This model has been derived on the basis of invariance
considerations. In order to compare our model with (5.35), we use the mass conservation
equation (5.28) to write the momentum balance equation (5.29) as follows:

∂tu+
(

1− ε
3λ

2

)

(u · ∇x)u− ελ (u · ∇x ln ρ) u− ε
3λ

2
(∇x · u) u− ε

λ

2
∇x

( |u|2
2

)

= − 1

τ ε
ρu

( |u|2
a2

− χε
)

−∇xπ
ε(ρ, |u|) + ε

(

µ+
2kR
σ

)

(∇x ln ρ · ∇x)u

+ε
(

µ+
kR
σ

)

∆xu+ εµ(∇xu)∇x ln ρ+ εµ∇x(∇x · u). (5.36)

There is one term in (5.35) which is missing from (5.36): the anisotropic velocity diffusion
D2(u ·∇x)

2u. By contrast, there are many terms appearing in (5.36) which are not present
in (5.35): the third, fourth and fifth terms of the left-hand side and the third and fifth
terms of the right-hand side. Additionally, among the terms which are common to both
formulas (namely the first and second terms of the left-hand side and the first, second,
fourth and sixth terms of the right-hand side of (5.36)), some of them assume different
forms. Indeed, the second term (the convection term (u · ∇x)u) is multiplied by the
constant

(

1 − ε3λ
2

)

less than one in (5.36), while this coefficient is exactly one in (5.35).
This difference is significant, in view of the previous discussion about mass and momentum
convection velocities in swarming systems. Another difference is in the pressure term
(second term at the right-hand side of (5.36)). In our model, the pressure depends on
both the density and the norm of the velocity, while it depens on the density only in (5.35).
By contrast, the dependence upon the density is linear in our case, while it is nonlinear in
(5.35). This discussion illustrates that phenomenological models can differ significantly
from first principle models when complex phenomena such as swarming behavior are
concerned. The question whether these differences lead to perceivable changes in the
qualitative behavior of the solution has not yet been investigated.

The mathematical properties of this system (such as e.g. the stability of this system
for small perturbations of a homogeneous state) will be studied in future work. In this
work, we investigate the fast relaxation limit τ → 0. This is the goal of the next section.

5.3 The fast relaxation limit in the compressible Navier-Stokes
equations with self-propulsion

In this section, we examine the limit τ → 0 in the Navier-Stokes system (5.28), (5.29).
Since this system was derived under the assumption that ε is small, ε needs to tend to
0 at least as fast as τ tends to 0. Here, we decide to make ε and τ proportional. This
is the borderline case, because, to be consistent, we should have linked ε and τ in this
way already at the kinetic level. However, as pointed out earlier, the analysis of this
scaling limit is more complex and is still under scrutiny [3]. Our conjecture is that the
kind of model we get is the same in both limits. Therefore, investigating it at the level of
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the Navier-Stokes system is a preparation before performing the limit directly from the
kinetic level.

Since λ is proportional to 1/τ , we decide to relate ε and λ in such a way that ελ is a
constant α, i.e.

α = ελ. (5.37)

We need to keep in mind that, strictly speaking, α must be ≪ 1 otherwise the derivation
of the Navier-Stokes model in the previous section loses its valididty. We decide to express
ε as a function of τ . We can write

ε = κατ, κα =
αa2

2σT
. (5.38)

We also define

λα := λ
α
λ = 1− α, (5.39)

πα(ρ, |u|) := π
α
λ (ρ, |u|) = Tρ− α

2
ρ
{

(d+ 2)T − a2 + |u|2
}

, (5.40)

1

τα
=

1

τ
α
λ

=
ξα
τ
, ξα = 1− d+ 8

2
α. (5.41)

We can introduce an α-dependent critical temperature Tc(α) by:

Tc(α) = Tc(0)
1− d+2

2
α

1− d+4
2
α
, (5.42)

where Tc(0) is the critical temperature (4.11). Then, we can write the square of the
comfort velocity in the Navier-Stokes model c1(α) as

c21(α) = a2χ
α
λ = (d+ 2)

1− d+2
2
α

1− d+4
2
α
(Tc(α)− T ). (5.43)

Since α must be small, we can limit its range in such a way that ξα > 0 and that the
relaxation time τα remains positive. Therefore, we have α ∈ [0, 2

d+8
]. In this interval,

Tc(α) is an increasing function of α with values in [Tc(0),
3
2
Tc(0)]. We also assume that

the temperature is below the critical temperature T < Tc(α) in such a way that c21(α) > 0.
We finally denote by (ρτ , uτ) the solution of the Navier-Stokes system (5.28), (5.29).

We re-write the system in the new notation:

∂tρ
τ +∇x · (ρτuτ ) = 0, (5.44)

∂t(ρ
τuτ ) + λα∇x · (ρτuτ ⊗ uτ) +∇xπα(ρ

τ , |uτ |) = −1

τ

ξα
a2
ρτuτ

(

|u|2 − c21(α)
)

+ τ
1

κα

{

(

µ∇x · (ρτE(uτ)) +
kR
σ
ρτ∆xu

τ
)

+
2kR
σ

(∇xρ
τ · ∇x)u

τ

}

+
α

2
ρ
[

(∇x · uτ )uτ +∇x

( |uτ |2
2

)

+ (uτ · ∇x)u
τ
]

, (5.45)

Now, we formally let τ → 0 in this system, keeping all other parameters fixed, and in
particular α. We get the following:
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Proposition 5.3. Let α ∈ [0, 2
d+8

] and let T < Tc(α). Assume that the solution (ρτ , uτ)
of system (5.44), (5.45) is smooth and converges smoothly towards a pair (ρ, u) as τ → 0.
Assume additionally that (ρτ , uτ) is not identically equal to (ρ0, 0) where ρ0 is constant in
both space and time. Then, u = c1(α)ω, where ω ∈ S

d−1 and the pair (ρ, ω) satisfies the
following system:

∂tρ+∇x · (c1(α)ρω) = 0, (5.46)

(∂t + c2(α)ω · ∇x)ω + δαP (∇x ln ρ) = 0, (5.47)

where P = Id − ω ⊗ ω is the orthogonal projection onto the hyperplane orthogonal to ω
and

c2(α) =
(

1− 3

2
α
)

c1(α), (5.48)

δα =
Tα
c1(α)

, Tα =
1

1− d+8
2
α

{(

1 +
d− 4

2
α

)

T − 3

2
αa2

}

. (5.49)

Remark 5.1. For small α, up to terms of order α2, we have:

c1(α) = c1(0) + α(d+ 2)(3Tc(0)− 2T ) > c1(0),

c2(α) = c1(0) + α
d+ 2

2
(3Tc(0)− T ) > c2(0).

Therefore, the convection speeds are larger when first order corrections are included. Ad-
ditionally, it is easy to prove that c1(α) is an increasing function of α on its interval of
definition.

Proof. The proof is similar to that of Proposition 5.3 and is only sketched. First,
observe that the second line of the right-hand side of (5.45), which is proportional to τ ,
simply vanishes in the limit. Since all the diffusion terms in the Navier-Stokes system are
contained on this line, there is no diffusion in the limit system. Second, since |uτ | → c1(α),
which is a constant, the second term of the third line of (5.45) also vanishes in the limit.
For the same reason, the pressure πα(ρ

τ , |uτ |) → πα(ρ, c1(α)) = Tαρ. Therefore, we recover
an isothermal pressure equation-of-state in the limit. Then, since (5.49) is obtained by
projecting (5.45) onto the hyperplane normal to uτ , the first term of the third line of
(5.45), which is parallel to uτ , also vanishes in the limit. Finally, the last term of the
third line of (5.45) combines with the second term at the left-hand side of (5.45) and
yields the second term of the left-hand side of (5.47). Indeed, we get

P τ
[

λα∇x · (ρτuτ ⊗ uτ )− α

2
ρ(uτ · ∇x)u

τ
]

→ (λα − α

2
)ρc21(α)(ω · ∇x)ω,

where P τ is defined like in the proof of Proposition 5.3. Therefore, c2(α) = (λα− α
2
)c1(α)

is given by (5.48). The remaining details are left to the reader.
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Now, system (5.46), (5.47) is in the form of the generic SOH model (4.21), (4.22) with
c2 < c1, like in [26]. We conclude that the inclusion of diffusive terms in the hydrodynamic
model before passing to the fast relaxation limit was a successful approach. It has cured
the deficiency of the SOH model derived in Section 4.2.2. In some sense, the purely
hydrodynamic model obtained at Theorem 4.1 is too simple to describe the full complexity
of the system but the inclusion of diffusive terms is enough to restore the adequate level
of complexity.

It is intriguing that the only diffusive corrections that are kept in the fast relaxation
limit are those coming from the self-propulsion force. It would be interesting to compute
the O(τ) corrections to this model. Then, the other diffusive terms (those arising from
viscosity and non-locality of the interaction) would appear. The resulting model would
then have more relevance as an approximation of the original kinetic model. It should
also be compared to the diffusive SOH model obtained in [28], which is quite complex. It
would be instructive to see if the present approach could help get a cleaner model.

6 Conclusion and perspectives

In this work, we have provided evidence of a phase transition from disordered to ordered
motion in a hydrodynamic model of socially interacting agents with self-propulsion. The
model we have investigated has been derived from a particle system combining a noisy
Cucker-Smale consensus force and self-propulsion. We have shown that the phase transi-
tion appears in the limit of a large self-propulsion force and manifests itself as a change
of type of the limit model (from hyperbolic to diffusive) at the crossing of a critical noise
intensity. We have also shown that, in the hyperbolic regime, the resulting SOH (self-
Organized Hydrodynamics) model suffers from unnecessary restrictions on the range of
its coefficients. To remove these restrictions, we have computed diffusive correction to the
model. With these diffusive corrections, the restrictions on the SOH model obtained in
the limit of a large propulsion force disappear.

As pointed out in the core of the work, many points deserve further elucidation. A
first one, currently under scrutiny, consists in performing the combined hydrodynamic and
large self-propulsion force simultaneously at the level of the kinetic model. We anticipate
that similar phase transitions will emerge and will be described by the same limit models,
with possibly different coefficients. Other points would be worth being developed. The
computation of diffusive corrections to the SOH model for instance would be of great
practical use. Further investigations of quantities attached to the social force are also
very promising, such as the role of a possible anisotropy of the observation kernels, or of
a different scaling of its range. Finally, the understanding of the transition between the
two phases and how the two different models can be matched at this transition is also
crucial for applications.
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A Appendix: Properties of the collision operator Q

Proof of Lemma 3.1: Observe:

∇v ·
[

Muf
∇v

( f

Muf

)

]

= ∆vf +∇v ·
[

−∇v

(

lnMuf

)

f
]

= ∆vf +∇v ·
[

v − u

T
f

]

.

Then (3.17) follows. Formula (3.19) is a consequence of Green’s formula. Now, suppose
that f ∈ Ker Q, then:

0 =

∫

Q(f)
f

Muf

dv = D

∫

Muf

∣

∣

∣
∇v

( f

Muf

)

∣

∣

∣

2

dv (A.50)

This implies that there exists a constant C such that f = CMuf
. In particular, f is of

the form CMu for a given vector u ∈ R
d. Reciprocally, let u ∈ R

d and C a constant, and
construct f = CMu. Then

uf =

∫

fv dv
∫

f dv
=

∫

Muv dv
∫

Mu dv
= u.

Then f = CMuf
. So, by (3.17), Q(f) = 0 and thus f ∈ Ker(Q). This ends the proof of

Lemma 3.1.

Proof of Proposition 3.3. We first show that there are d + 1 obvious linearly inde-
pendent CI’s. More precisely, suppose ψ(v) = 1 or ψ(v) = v. Then ψ is a collision
invariant. Indeed, clearly, such ψ satisfies that ψ ∈ Vuf

for all f such that f/Muf
∈ Vuf

.
The statement that ψ(v) = 1 is a CI follows from applying (3.18) with g = 1. Let now
k ∈ {1, . . . , d} and consider ψ(v) = vk. Then

∫

Q(f) vk dv = −D
∫

Muf
∂vk

( f

Muf

)

dv

= −D
∫

(

∂vkf − f∂vk(lnMuf
)
)

dv.

Using Green’s Theorem, the first term disappears, and it follows, from the definition of
uf , that

∫

Q(f) vk dv = −1

σ

∫

f (vk − (uf)k) dv = 0,

which shows that ψ(v) = vk is also a CI. Thus, C contains a (d + 1)-dimensional linear
space, namely Span{1, v1, . . . , vd}. We now prove that C is identically equal to this space.

Let u ∈ R
d. Then, we define the operator R(u; f) as follows:

R(u; f) = D∇v ·
[

Mu∇v

( f

Mu

)

]

, (A.51)
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for all f such that f/Mu ∈ Vu. We notice that for given u ∈ R
d, R(u; f) is a linear

operator with respect to f and that

Q(f) = R(uf ; f).

Then, ψ is a CI of Q if and only if
∫

R(uf ; f)ψ dv = 0, ∀f s.t. f/Muf
∈ Vuf

and ψ ∈ Vuf
,

or equivalently, if and only if:

∀u ∈ R
d we have: ψ ∈ Vu and

∫

R(u; f)ψ dv = 0,

∀f such that f/Mu ∈ Vu and uf = u.

As a first step, we fix u ∈ R
d and find all ψ ∈ Vu which satisfy:

∫

R(u; f)ψ dv = 0, ∀f such that f/Mu ∈ Vu and uf = u. (A.52)

Then, we will make u arbitrary. We note that any constant ψ is a solution of (A.52).
Saying that uf = u is equivalent to saying that

∫

f(v − u)dv = 0. So ψ defined by
(A.52) is such that the following implication holds:

∫

f(vk − uk)dv = 0, ∀k ∈ {1, . . . , d} =⇒
∫

R(u; f)ψ dv = 0. (A.53)

Since both sides of the implication of (A.53) are linear forms of f , by a standard theorem
[13], there exists βu ∈ R

d such that
∫

R(u; f)ψ dv = βu ·
∫

f(v − u)dv.

Using (A.51) and Green’s formula (see (3.18)), and introducing the change of function
g = f/Mu, it follows that ψ is a solution of the following problem:

∫

Mu∇vg∇vψ dv =

∫

gβ ′
u · (v − u)Mu dv, ∀g ∈ Vu, (A.54)

with β ′
u = −βu/D. We will drop the primes in the following.

Let φ = βu · (v−u). Then, problem (A.54) for ψ can be equivalently written according
to the variational formulation:

(ψ, g)Vu
= (φ, g)Hu

, ∀g ∈ Vu. (A.55)

Since any constant ψ is a solution of (A.52), we can subtract
∫

ψMudv from ψ and assume,
without loss of generality, that ψ is such that

∫

ψMu dv = 0. Next, we have:
∫

φMu dv = βu ·
∫

(v − u)Mu dv = 0, (A.56)
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by the definition of Mu. Therefore, if g is a constant, we have both (ψ, g)Vu
= 0 (by

the definition (3.16) of (·, ·)Vu
) and (φ, g)Hu

= 0 (by (A.56)). Therefore, it is possible to
restrict (A.55) to functions g such that (g, 1)Hu

= 0. Consequently, we define the following
space:

V̇u := {φ ∈ Vu :

∫

φMu dv = 0},

and variational formulation (A.55) can be made precise as follows:

Find ψ ∈ V̇u such that (ψ, g)Vu
= (φ, g)Hu

, ∀g ∈ V̇u. (A.57)

The Poincaré inequality for Gaussian measures shows that for all φ ∈ Vu,

|φ|2Vu
+ (φ, 1)2Hu

≥ |φ|2Hu
. (A.58)

Then following from (A.58), the bilinear form (·, ·)Vu
is coercive on V̇u. By the Lax-

Milgram theorem, we deduce that there exists a unique ψ ∈ V̇u such that (A.57) holds.
But on the other hand, obvious calculation shows that ψ(v) = Tβu · (v−u) is a particular
solution. Since it belongs to V̇u, it is the only solution of the variational formulation
(A.57).

Adding any constant, we have just shown that any solution of (A.52) is of the form
ψ(v) = α + β · v, where α ∈ R and β ∈ R

d are arbitrary. Since this form is independent
of u, we deduce that such ψ’s are solutions of (A.52) for all u ∈ R

d and are therefore the
only CI’s. This ends the proof of Proposition 3.3.

B Appendix: Expansion of the force term

Proof of Lemma 5.1. By the change of variables y = x − εR ξ and Taylor’s formula,
we have

∫

K
( |x− y|

εR

)

ω f(y, ω, t) dy dω = εd
∫

K(|ξ|)ω f(x− εξ, ω, t) dξ dω

= (εR)d
∫

K(|ξ|)ω
[

f − εR∇xf · ξ + ε2R2

2
D2

xf : (ξ ⊗ ξ) +O(ε3)

]

(x, ω, t) dξ dω

= (εR)d
(

j(x, t) + ε2R2k∆xj +O(ε4)
)

. (B.59)

We have used the definition of k and the evenness of K with respect to ξ in order to cancel
the odd order terms of the expansion. We have denoted by D2

xf the Hessian matrix of
f with respect to x (i.e. the matrix of the second order derivatives) and the symbol ‘:’
refers to the contracted product of tensors. In a similar way, we have:

∫

K
( |x− y|

εR

)

f(y, ω, t) dy dω = (εR)d
(

ρ(x, t) + ε2R2k∆xρ+O(ε4)
)

. (B.60)

Therefore, by expanding the ratio of (B.59) and (B.60) up to the fourth order and in view
of (2.10), we find (5.24) with (5.26). Formula (5.25) immediately follows from (2.10).
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C Appendix: proof of Theorem 5.2

Multiplying (5.27) by the collision invariants 1 and v, we are led to the conservation
equations (in the same way as in Section 4):

∂tρ
ε +∇x · jε = 0, (C.61)

∂tj
ε +∇x · Σε = τ−1qε + εσ−1rε, (C.62)

with ρε, jε = ρεuε, Σε, qε given by (4.6) and (4.7) and

rε =

∫

u1fεf ε dv = u1fερε, (C.63)

(since u1fε does not depend on v). We also note that we can write

Σε = ρε(uε ⊗ uε) + Sε, Sε =

∫

f ε (v − uε)⊗ (v − uε) dv. (C.64)

The Chapman-Enskog expansion consists in closing the expressions of Sε, qε and
rε by a first order expansion of f ε. To this end, we write the so-called macro-micro
decomposition:

f ε = ρεMuε + εf ε
1 . (C.65)

By the definition of ρε and uε, we have
∫

f ε dv =

∫

ρεMuε dv and

∫

f ε v dv =

∫

ρεMuε v dv.

Consequently
∫

f ε
1 dv = 0,

∫

f ε
1 v dv = 0. (C.66)

The first term at the right-hand side of (C.65) is the macroscopic part, as it is proportional
to a local thermodynamical equilibrium and carries all information about the moments
of the solution. The second term is the microscopic part. It carries no information about
the macroscopic moments but instead carries information about the discrepancy between
f ε and the local thermodynamical equilibrium. From Section 4, we know that, provided
that ρ and u satisfy the Euler equations, the microscopic part is small of order ε. This is
why this microscopic part is multiplied by ε in (C.65). We stress the fact that there is no
approximation involved (at this step) in (C.65): it is a mere definition of f ε

1 .
Inserting (C.65) into the formulas providing the expressions of the quantities involved

in the moment equations (C.61), (C.62) (specifically equations (C.64), (4.7) and (C.63)),
we can write the moment equations as follows:

∂tρ
ε +∇x · (ρεuε) = 0, (C.67)

∂t(ρ
εuε) +∇x · (ρεuε ⊗ uε) + T∇xρ

ε = −1

τ
ρεuε

( |uε|2 + (d+ 2)T

a2
− 1

)

+ ε(Bε
1 + Bε

2 + Bε
3) +O(ε2), (C.68)
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with

Bε
1 = τ−1

∫

(

1− |v|2
a2

)

vf ε
1 dv, (C.69)

Bε
2 = σ−1ρε u1ρεMuε

=
kR
σ
(2(∇xρ

ε · ∇x)u
ε + ρε∆xu

ε), (C.70)

Bε
3 = −∇x ·

(
∫

f ε
1 (v − uε)⊗ (v − uε) dv

)

, (C.71)

where we have used Green’s formula for Bε
1 and (5.26), (C.63) for Bε

2. Now, in order to
compute Bε

1 and Bε
3, we need to evaluate f ε

1 . But since we only look for O(ε) correction
terms, and f ε

1 is multiplied by ε, we may compute f ε
1 up to terms of order O(ε).

Inserting (C.65) into (3.17), the collision operator Q can be written:

Q(f ε) = εD∇v ·
[

Muε∇v

( f ε
1

Muε

)

]

. (C.72)

Inserting it in (5.27), we get:

∂tf
ε +∇x · (vf ε) + τ−1∇v · ((1−

|v|2
a2

)vf ε) + εσ−1∇v · (u1fεf ε) =

= D∇v ·
[

Muε∇v

( f ε
1

Muε

)

]

, (C.73)

But we can neglect all terms of order ε or more in (C.73). Therefore, we are led to the
following equation for f ε

1 :

D∇v ·
[

Muε∇v

( f ε
1

Muε

)

]

= Rǫ +O(ε). (C.74)

where

Rǫ = ∂t(ρ
εMuε) +∇x · (vρεMuε) + τ−1∇v · ((1−

|v|2
a2

)vρεMuε). (C.75)

The inversion of (C.74) will give us f ε
1 . Once f ε

1 is obtained, we insert it into (C.69)-(C.70)
and this leads us to the expressions of the Navier-Stokes terms. We first compute the
right-hand side Rǫ:

Lemma C.1. We have (dropping the superscript ε for the sake of clarity):

R = −ρMu

{

h(v − u) : ∇xu+
1

τa2
[

(d+ 2)Tb(v − u)− a2dc(v − u)

+(d+ 2)e(v − u) : (u⊗ u) + 3T 1/2(d+ 2)g(v − u) · u
]

}

+O(ε), (C.76)
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where b(w), c(w) are scalars, e(w), h(w) are tensors and g(w) is a vector, and are given
by:

h(w) = Id− w ⊗ w

T
, b(w) =

|w|2
T

(

1− |w|2
(d+ 2)T

)

, c(w) = 1− |w|2
dT

, (C.77)

e(w) =
(

1− |w|2
(d+ 2)T

)

Id− 2w ⊗ w

(d+ 2)T
, g(w) =

(

1− |w|2
(d+ 2)T

) w

T 1/2
. (C.78)

By construction, these quantities are dimensionless.

Proof. We use the hydrodynamic equations (C.67), (C.68) (dropping the O(ε) terms),
in order to replace the time derivatives by space derivatives in (C.75). This procedure is
a classical step of any Chapman-Enskog expansion. For simplicity of notation, we omit
the dependencies on ε. Concerning the first two terms of (C.75), we write:

(∂t + v · ∇x)(ρMu) =Mu {(∂t + v · ∇x)ρ+ ρ(∂t + v · ∇x)(lnMu)}

=Mu

{

(∂t + v · ∇x)ρ+ ρ
v − u

T
· (∂t + v · ∇x)u

}

=Mu {∂tρ+ u · ∇xρ+ (v − u) · ∇xρ

+ρ
v − u

T
· (∂tu+ (u · ∇x)u+ ((v − u) · ∇x)u)

}

.

Now, using (C.67), (C.68) (dropping the O(ε) terms), we have:

∂tρ+ u · ∇xρ = −ρ∇x · u+O(ε),

∂tu+ u · ∇xu = −T∇x ln ρ− τ−1u
( |u|2 + (d+ 2)T

a2
− 1

)

+O(ε).

Inserting these expressions into the previous ones leads to:

(∂t + v · ∇x)(ρMu) =Mu

{

− ρ∇x · u+ (v − u) · ∇xρ

+ρ
v − u

T
·
[

− T∇x ln ρ− τ−1u
( |u|2 + (d+ 2)T

a2
− 1

)

+((v − u) · ∇x)u
]

}

+O(ε)

=Mu

{

− ρ∇x · u+ ρ
v − u

T
·
[

− τ−1u
( |u|2 + (d+ 2)T

a2
− 1

)

+((v − u) · ∇x)u
]

}

+O(ε)

=Mu

{

− ρh(v − u) : ∇xu−
ρ

τT

( |u|2 + (d+ 2)T

a2
− 1

)

(v − u) · u
}

+O(ε)

(C.79)
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For the third term (C.75), we compute

τ−1∇v · ((1−
|v|2
a2

)vρMu) =

−τ−1ρMu

{

(d+ 2)
|v|2
a2

+
(

1− |v|2
a2

)v · (v − u)

T
− d

}

. (C.80)

Collecting the second term at the right-hand side of (C.79) together with (C.80) leads to
an expression S which we can split in the following way:

S = −Mu
ρ

τT

( |u|2 + (d+ 2)T

a2
− 1

)

(v − u) · u+ 1

τ
∇v · ((1−

|v|2
a2

)vρMu)

= − ρ

τa2
Mu

{

(d+ 2)Tb(v − u)− a2dc(v − u)

+(d+ 2)e(v − u) : (u⊗ u) + 3T 1/2(d+ 2)g(v − u) · u
}

, (C.81)

Collecting this expression with the first term at the right-hand side of (C.79) leads to
(C.76).

In order to solve equation (C.74) for f ε
1 , we need to solve equations of the type

Luf := −D∇v ·
[

Mu∇v

( f

Mu

)]

= g, (C.82)

where u is an arbitrary vector of Rd and g is a given function. We refer the reader to
Section 3.2 for the definitions of the spaces Hu, Vu and V̇u. We state the following lemma,
whose proof is identical to that of proposition 3.3 and is left to the reader.

Lemma C.2. Let g be such that g/Mu ∈ Hu. Then, equation (C.82) has a solution if
and only if g satisfies the solvability condition

∫

g dv = 0. (C.83)

Under this condition, problem (C.82) has a unique solution f such that f/Mu ∈ V̇u, or in
other words, such that f/Mu ∈ Vu and satisfies

∫

f dv = 0. (C.84)

This unique solution f is denoted by f = L−1
u g and L−1

u is called the pseudo-inverse of
Lu. The set of solutions to equation (C.82) is given by L−1

u g + Span(Mu). Additionally,
if g is such that

∫

g v dv = 0, (C.85)

then, f = L−1
u g satisfies

∫

f v dv = 0. (C.86)

30



Now, we verify that each of the elementary functions b(v−u)Mu, c(v−u)Mu, e(v−u)Mu,
h(v − u)Mu and g(v − u)Mu satisfy both (C.83) and (C.85) and therefore, that the
corresponding equation (C.82) is invertible. More precisely, we have:

Lemma C.3. The functions h(v − u)Mu, b(v − u)Mu, c(v − u)Mu, e(v − u)Mu and
g(v − u)Mu satisfy (C.83) and (C.85). We introduce H(v − u)Mu = −L−1

u (h(v − u)Mu)
and similarly for B, C, E and G. We have:

H(w) = −σ
2
h(w), B(w) = −σd

4
(c(w) +

1

d
b(w)), (C.87)

C(w) = −σ
2
c(w), E(w) = −σ

2
e(w), G(w) = −σ

3
g(w), (C.88)

and H(v − u)Mu through G(v − u)Mu satisfy (C.84) and (C.86). Then:

f ε
1 = σρMu

{1

2
h(v − u) : ∇xu

+
1

τa2

[(d+ 2)T

4
b(v − u) +

d

2

((d+ 2)T

2
− a2

)

c(v − u)

+
(d+ 2)

2
e(v − u) : (u⊗ u) + T 1/2(d+ 2)g(v − u) · u

]}

+O(ε). (C.89)

Proof. The proof that h(v − u)Mu through g(v − u)Mu satisfy (C.83) and (C.85) eas-
ily follows from classical formulas for moments of the Gaussian, which we leave to the
reader. Then, we apply Lemma C.2, which gives the existence of L−1

u (h(v−u)Mu) through
L−1
u (g(v−u)Mu) and the fact that they satisfy (C.84) and (C.86). Formulas (C.87), (C.88)

follow from explicitly computing the action of L−1
u and using the uniqueness statement

of Lemma C.2. Finally, equation (C.74) for f ε
1 , which can be written (up to order O(ε)

terms) −Luf
ε
1 = R, can be solved by f ε

1 = −L−1
u R since according to the first equation

of (C.66), f ε
1 satisfies (C.84). By the linearity of Lu and the decomposition (C.76) of R,

we can write:

f ε
1 = −ρMu

{

H(v − u) : ∇xu+
1

τa2
[

(d+ 2)TB(v − u)− a2dC(v − u)

+(d+ 2)E(v − u) : (u⊗ u) + 3T 1/2(d+ 2)G(v − u) · u
]

}

+O(ε). (C.90)

Thanks to (C.87), (C.88), equation (C.89) follows.

We are now in a position to calculate B1 and B3 (see (C.69), (C.71)). We state:

Lemma C.4. We have:

B1 =
λ

2
ρ
{

[

(∇x · u)u+∇x

( |u|2
2

)

+ (u · ∇x)u
]

+
d+ 8

τ
u
[ |u|2
a2

− ν
]

}

+O(ε), (C.91)

B3 = µ∇x · (ρE(u)) +∇xπ(ρ, u) + λ∇x · (ρu⊗ u) +O(ε), (C.92)
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with E(u), µ, λ and π(ρ, u) are defined at theorem 5.2 and ν is given by:

ν =
d+ 2

d+ 8

(

1− (d+ 4)
T

a2
)

, (C.93)

Proof. We first consider B1. Splitting v into (v − u) = u and using (C.66), we have

B1 = − 1

τa2

∫

{

|v − u|2(v − u) + |v − u|2u+ 2((v − u)⊗ (v − u))u
}

f ε
1 dv

= J1 + J2 + J3.

J1 involves an integral of an odd power of v − u and only the g term in f ε
1 contributes to

it. J2 and J3 involve integrals of even powers of v−u and therefore, only the h, b, c and e
terms need to be taken into account. The computation of these terms rely on computing
moments of the Gaussian which are left to the reader. We find:

J1 =
2T 2σ(d+ 2)

τ 2a4
ρu+O(ε),

J2 =
Tσ

τa2
(∇x · u)ρu+

dσT

τ 2a2
[(d+ 2)T

a2
− 1

]

ρu+
(d+ 2)σT

τ 2a4
ρ|u|2u+O(ε),

J3 =
Tσ

τa2
ρ((∇xu)u+ (∇xu)

Tu) +
2σT

τ 2a2
[(d+ 2)T

a2
− 1

]

ρu

+
6σT

τ 2a4
ρ|u|2u+O(ε).

Now, adding up these three expressions leads to (C.91).
We now turn our attention to B3. For this purpose, we compute the tensor

U =

∫

f ε
1 (v − uε)⊗ (v − uε) dv.

Since the integral involves an even power of v− u, only the h, b, c and e terms of f ε
1 need

to be taken into account. The computation leads to

U = −σT
2
ρ((∇xu) + (∇xu)

T )− ρ
σT

τ

[(d+ 2)T

a2
− 1

]

Id

− σT

τa2
ρ(|u|2Id + 2u⊗ u) +O(ε).

Inserting this expression into (C.71) leads to (C.92).

Now, by adding the expressions of B1 through B3 found above into (C.68), we find the
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following momentum equation:

∂t(ρu) +∇x · (ρu⊗ u) + T∇xρ = −1

τ
ρu

( |u|2 + (d+ 2)T

a2
− 1

)

+ ε
λ

2
ρ
{

[

(∇x · u)u+∇x

( |u|2
2

)

+ (u · ∇x)u
]

+
d+ 8

τ
u
[ |u|2
a2

− ν
]

}

+ ε
kr
σ
(2(∇xρ · ∇x)u+ ρ∆xu)

+ εµ∇x · (ρE(u)) +∇xπ(ρ, u) + λ∇x · (ρu⊗ u) +O(ε2). (C.94)

Now, the second term at the left-hand side of (5.29) combines the second term at the left-
hand side and the last term of the right-hand side of (C.94); the third term at the left-hand
side of (5.29) combines the third term at the left-hand side and the penultimate term of
the right-hand side of (C.94); the first term at the right-hand side of (5.29) combines the
first term at the right-hand side and the last term of the second line of (C.94); and the
other terms are unchanged but merely re-ordered. This ends the proof of Theorem 5.2.
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