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Abstract—The recycling of lithium ion batteries has been 

mentioned as one of the near-future waste management 

necessities. In order for recycling to be economically viable, 

straightforward and cost effective techniques need to be 

developed to separate the individual materials in a composite 

electrode. Ultrasonic separation might be such a technique, 

provided that lithium ion battery microparticles respond 

predictably to a sound field. Lithium ion battery cathodes 

contain hydrophobic carbon. Owing to the incompressibility of 

a solid, the thin gaseous layer surrounding these hydrophobic 

particles must oscillate asymmetrically, when subjected to 

ultrasound. Consequently, the harmonic content of the 

ultrasound signal radiated from hydrophobic microparticles 

must be higher than that from hydrophilic microparticles with 

the same size. The question of whether the harmonic signal 

response generated by physical hydrophobic microparticles 

present in lithium ion battery cathodes is higher than the 

harmonic response of other component materials in the cathode 

is the focus of this paper. The scattering response of cathode 

materials subjected to 1-MHz ultrasound was measured and 

compared. The cathode materials C65, PVDF, and NMC 

respond differently to 1-MHz ultrasound. The superharmonic 

response of C65 has been attributed to asymmetric oscillations 

owing to its hydrophobicity. In addition, C65 hydrophobic 

microparticles might be suitable candidates for harmonic 

imaging. 

Keywords—lithium ion battery recycling, cathode material 

identification, cathode separation, harmonic imaging, ultrasonic 

particle manipulation.  

I. INTRODUCTION  

There are world-wide efforts aimed at achieving energy 
transition into more environmentally sustainable technologies 
that have minimal or no carbon footprint. In the electricity 
sector and ancillary technologies such as those driving the 4th 
Industrial Revolution, the efficiency of energy storage 
batteries is critical. Consequently, there have been concerted 
efforts towards continuous improvement of battery 
technologies. As an example, in the motor vehicle industry, 

electrical vehicles largely use lithium ion batteries instead of 
the traditional Lead-acid batteries. 

In the context of sustainability, recycling of batteries 
becomes a standard requirement. However, while Lead-acid 
batteries are widely recycled, the same cannot be said about 
lithium ion batteries. Recycling of lithium ion batteries is 
more challenging due to the wider variety of materials in each 
cell [1]. Furthermore, the materials are not discrete as in Lead-
acid batteries. Despite the challenges, there is ongoing search 
for viable methods of recycling lithium ion batteries [1]. 
Various alternatives of recycling lithium ion batteries have 
been attempted, such as the pyrometallurgical process, the 
hydrometallurgical process and the direct physical recycling 
process [2]. In order for recycling to be economically viable, 
straightforward and cost-effective techniques need to be 
developed to identify and separate the individual materials in 
a composite electrode. 

Typically, the cathode in a lithium ion battery consists of 
three components, namely the active material lithium 
transition metal oxide, conductive carbon particles, and a 
polymer binder. For construction of the battery electrodes, the 
three materials are mixed intimately in industrial binders so as 
to obtain a homogeneous composite cathode material. This 
cathode material composite is then used for the fabrication of 
batteries. In order to effectively recycle the materials, the three 
components need to be individually segregated so that the 
different materials can be separately processed chemically 
[3,4].  

Ultrasonic separation might be a suitable segregation 
technique, provided that lithium ion battery microparticles 
respond predictably to a sound field. The forcing of 
microparticles by means of ultrasonic manipulation has been 
studied extensively in the medical field [5,6]. 

Lithium ion battery cathodes contain hydrophobic carbon, 
which is used as an additive for enhancing the electrical 
conductivity of the electrode through a conductive network 
[7,8]. Owing to the incompressibility of a solid, the thin 



gaseous layer surrounding these hydrophobic particles must 
oscillate asymmetrically, i.e., the radial excursion amplitude 
of the outer gaseous surface is greater during expansion than 
during contraction, when subjected to ultrasound [9]. 
Consequently, the harmonic content of the ultrasound signal 
radiated from hydrophobic microparticles must be higher than 
that from hydrophilic microparticles of the same size. 
Therefore, such microparticles might be suitable agents for 
harmonic imaging. Examples of numerical simulations of the 
acoustic response from incompressible droplets surrounded by 
gaseous shells have been presented in [10], indicating a 
significant higher harmonic content of these so-called 
antibubbles compared to conventional bubbles without a 
droplet core. 

The question of whether the harmonic signal response 
generated by physical hydrophobic microparticles present in 
lithium ion battery cathodes is higher than the harmonic 
response of other component materials in the cathode is the 
focus of this paper. 

The scattering response of cathode materials subjected to 
1-MHz ultrasound was measured and compared. Differences 
in acoustic response make particles identifiable and therefore 
easier to separate. 

II. MATERIALS AND METHODS  

We prepared four media for this evaluation. 

The first material studied was a 1-ml Otec® R0,9% saline 
(LABORATOIRE AGUETTANT, Lyon, France) emulsion 
containing 20-mg Li(Ni0.33Co0.33Mn0.33)O2 (NMC) cathode 
active material (Targray, Kirkland, QC, Canada). The second 
material studied was a 1-ml saline emulsion containing 11 mg 
Polyvinylidene Fluoride (PVDF) binder (Targray). The third 
material studied was a 1-ml saline emulsion containing 12mg 
TIMCAL SUPER C65 Carbon Black (EQ-Lib-SuperC65) 
conductive additive (MTI Corporation, Richmond, CA, 
USA).  

In addition, a medium consisting of just saline was 
similarly studied. The experiments with saline were 
performed as null experiments. 

For illustration of the microparticle sizes, Fig. 1 presents a 
scanning electron microscope image of a dried mixture of the 
three materials. In preparation of this image, dry samples were 
sprinkled onto carbon disks before observation under a Zeiss 
Ultra plus FEG-SEM scanning electron microscope (Carl 
Zeiss Microscopy GmbH, Jena, Germany). 

The materials to be evaluated were shaken for 60 s in a 
CapMix™ (3M ESPE, Seefeld, Germany). From these 
emulsions, 20 µl was pipetted into a Fisherbrand® FB55143 
macro cuvette (Fisher Scientific SAS, Illkirch, France) 
containing 3 ml saline. The cuvette was then placed centrally 
in a container filled with degassed water. 

 

Fig. 1. Scanning electron microscope image of a dried mixture of C65, 

PVDF, and NMC.  

The experimental setup used was presented in a previous 
study [11]. Briefly, as described in [12], an unfocussed 
transmitting single-element transducer was mounted to one 
side and a receiving single-element transducer was mounted 
perpendicularly to the transmitting transducer, as illustrated in 
Fig. 2. A metal frame was attached to the container so that the 
media under investigation could be positioned precisely. 

Tx: 1 MHz

Rx: 2.25 MHz
 

Fig. 2. Top view of the experimental setup [11]. 

In each experiment, a pulse from a WW5061 50 MS/s 
waveform generator (Tabor Electronics Ltd., Nesher, Israel) 
was triggering a 33220A arbitrary function generator (Agilent 
Technologies, Santa Clara, CA, USA), which generated 20 
cycles of a 1-MHz, 100 mV peak-to-peak signal. The signal 
was attenuated with a 75-A-MFN-03 75-W, 3-dB attenuator 
(Foshan Yixun Co Ltd, Longjiang, PR China) and 
subsequently amplified by an AAP-500-0.2-6-D500-W power 
amplifier (ADECE, Veigne, France). The signal was 
transmitted with an unfocussed custom 1.0-MHz transmitting 
single-element transducer (SOFRANEL, Sartrouville, France) 
with a 13-mm diameter. A custom 2.25-MHz, 60%-bandwidth 
receiving single-element transducer (SOFRANEL, 
Sartrouville, France) with a 51-mm diameter and focussed at 
55 mm was mounted perpendicularly to the transmitting 
transducer. 

The received signal was amplified by 20 dB using a 
5077PR square wave pulser/receiver (Olympus Corporation, 
Shinjuku, Tokyo, Japan) in receive mode. It was recorded 
using a TDS 3044B digital oscilloscope (Tektronix, 
Beaverton, OR, USA). The recorded signal was transferred to 
a personal computer using a GPIB cable and MATLAB® 
(The MathWorks, Inc., Natick, MA, USA) software. 



The time-delay between transmission and first reception 
was determined manually before the experiments. The time of 
first reception was set as origin in the recordings. In each 
experiment, a response signal with a duration of 100 µs was 
recorded at a sampling rate of 100 MHz. 

Thirty identical experiments were performed for each of 
the three media containing microparticles, i.e., C65, NMC, 
and PVDF. Four hundred and fifty identical experiments were 
performed with saline alone. 

Using the Fast Fourier Transform, frequency spectra of the 
recorded signals were computed in MATLAB®. For each 
medium studied, the response from the thirty experiments was 
averaged. Spectral noise was removed with a five-point 
running smoother. The resulting amplitude spectra were 
normalised by the amplitude spectrum from saline alone 
before being presented on a decibel scale. 

III. RESULTS AND DISCUSSION  

The results from the null experiments with saline are 
presented in Fig 3. 

 

Fig. 3. Fourier spectrum of the acoustic response from saline: amplitude in 

dB as a function of frequency in MHz.  

A wide-band fundamental mode is evident in the response. 
Not only can higher harmonics be appreciated at 2 MHz and 
3 MHz, but also ultraharmonics at 1.5 MHz and 2.5 MHz. This 
response can be attributed to the geometry of the setup, which 
allows for multiple reflections from the cuvette surfaces and 
scattering from its sharp corners. 

The results from the experiments with C65 are presented 
in Fig. 4. The fundamental response around 0 dB indicates that 
the acoustic response from C65 does not significantly differ 
from that of the saline medium. However, wide-band higher 
harmonics at 2 MHz and 3 MHz of more than 20 dB can be 
appreciated. 

The higher harmonics from these hydrophobic 
microparticles has been attributed to the asymmetry between 
expansion and contraction predicted from theory. 

 

Fig. 4. Fourier spectrum of the acoustic response from C65: amplitude in 

dB as a function of frequency in MHz.  

The results from the experiments with PVDF are presented 
in Fig. 5. Here, the fundamental response shows two peaks up 
to 5 dB. Given that the amplitude spectrum has been 
normalised by the spectrum of the null experiments with saline 
alone, this means that the fundamental response from PVDF 
is wide-band. In addition, a narrowband 2-MHz peak is 
evident. 

 

Fig. 5. Fourier spectrum of the acoustic response from PVDF: amplitude in 
dB as a function of frequency in MHz.  

The results from the experiments with NMC are presented 
in Fig. 6. The response from NMC is below 0 dB, indicating 
that it acts solely as an acoustic attenuator under the 
experimental conditions used here. For all experiments, the 
absence of wide-band noise indicates that the microparticles 
have remained intact during the experiments.  

Owing to the difference in response of the emulsions, the 
microparticles might be subjected to continuous sound waves, 
to drive them through liquids at different velocities, causing 
separation. This will be the purpose of a follow-up study. 

These results also indicate the potential of hydrophobic 
microparticles in harmonic imaging. The frequencies used in 
these first experiments were chosen with the knowledge of the 
average size of the microparticles. 



 

Fig. 6. Fourier spectrum of the acoustic response from NMC: amplitude in 

dB as a function of frequency in MHz.  

IV. CONCLUSION  

The cathode materials C65, PVDF, and NMC respond 
differently to 1-MHz ultrasound. The superharmonic response 
of C65 has been attributed to asymmetric oscillations owing 
to its hydrophobicity. In addition, C65 hydrophobic 
microparticles might be suitable candidates for harmonic 
imaging. 

C65 can be identified based on its characteristic, harmonic 
acoustic signature. This may have implications for the 
separation of lithium ion battery components and 
consequently for the affordable recycling of lithium ion 
batteries. 
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