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Abstract—Physical fingerprinting is a trending domain in
wireless security. Those methods aim at identifying transmitters
based on the subtle variations existing in their handling of
a communication protocol. They can provide an additional
authentication layer, hard to emulate, to improve the security of
systems. Software Defined Radios (SDR) are a tool of choice for
the fingerprinting, as they virtually enable the analysis of any
wireless communication scheme. However, they require expensive
computations, and are still complex to handle by newcomers.
In this paper, we use low cost SDR to propose a physical-layer
fingerprinting approach, that allows recognition of the model of
a device performing a Bluetooth scan, with more than 99.8%
accuracy in a set of ten devices.

I. INTRODUCTION

More and more connected devices are taking place in
our homes and offices for various reasons. The widespread
deployment of those devices made them a target of choice for
large-scale attacks, as the Mirai malware has demonstrated,
capable of taking control of many similar-designed devices
with weak default configurations [6].

Low-end internet-connected appliances should therefore be
closely monitored, especially when they can provide an internal
network access from an external attacker. Hopefully, these kind
of attacks might be thwarted by existing intrusion detection
systems (IDS), since they can be observed at the Internet
gateway level.

More concerns may arise when those devices are not only
using wired or Wi-Fi Internet access, but also form Wireless
Personal Area Networks (WPAN) based on one of the many IoT-
friendly RF protocols available (e.g. Bluetooth, Zigbee, Z-Wave,
etc.). In these configurations, any of those communication
channels might be targeted by an external attacker or a Trojan
horse to gain some sort of internal network access.

When building an IDS, it is useful to associate a unique
identifier to the source of a transmission. On a wired network
it could be the Medium Access Control (MAC) address.
In wireless networks, collecting the contents of packets is
not always enough to obtain a unique identifier for security
application since they could be easily forged.

On the other hand, physical characteristics of a wireless
device hardware are harder to alter. Thus, using these char-
acteristics to compute a wireless device fingerprint is in
wireless networks. Such a technique may help in preventing
impersonation attacks, to which wireless communications are,
by nature, more exposed.

Wireless device fingerprinting is a trending topic in the
literature on IDS. It aims at recognizing different wireless

transmitters using only the subtle differences in the way
they handle the protocol. The differences might be observed
passively at the physical or MAC layer; or actively in response
to non standard events. Physical layer fingerprints are believed
to be harder to fake for an attacker than digital identifiers,
because their modification often requires firmware or hardware
modifications. For this reason, we believe physical layer
fingerprinting would significantly increase the difficulty for an
attacker to introduce rogue devices in a targeted environment.

Software Defined Radios (SDR) are wireless communication
systems where a significant part of the frequency conversion
and signal processing, are implemented as software. A unique
SDR can handle various arbitrary waveforms for transmission
or reception of data. Therefore, almost any RF communication
scheme can be supported by writing the appropriate software.

The main contribution of this paper is the demonstration
of the use of a low cost SDR to discriminate devices sending
the same payload. The experimentations were carried on the
Bluetooth (BT) inquiry process [12]. To scan for nearby slaves,
a Bluetooth master sends out many inquiry packets on different
channels. In the BT specification, an inquiry packet is always
made of the same bits. After capturing inquiry packets from
different BT masters, we focus on three features : frequency-
error, preamble duration, and hopping clock skew. We show
that these features allow the discrimination of different chip
manufacturers or device implementations.

The paper is organized as follows. Section II introduces the
bluetooth protocol and the fingerprinting techniques. Section
II-D describes the fingerprinting applied to the BT protocol and
the experimentations. Sections IV and V describe the analysis
of the collected data. Section VI describes the effect of the
temperature on the fingerprint process. Finally, section VII
presents the conclusions.

II. BACKGROUND ON BLUETOOTH PROTOCOL AND
FINGERPRINTING

A. Wireless attacks

For obvious reasons, wireless devices are prone to remote
attacks. Different architectures are leading to different expo-
sures. A review revealed several vulnerabilities in Bluetooth
host implementations, in Linux, Android, and Apple Bluetooth
stacks [11]. Those vulnerabilities were located in the higher
layers of the protocols. This is not the worst case to work
with for an intrusion detection scenario, as the vulnerable
code is running on the host, which is convenient to modify,
instrument, or sandbox. The attacks targeting the lower protocol



layers, executed in a dedicated baseband chip containing large
proprietary firmware, are harder to be monitored by a host-
based IDS. In the latest years, more and more researchers
targeted baseband processors, and identified severe flaws
in widely deployed firmwares: cellular baseband [14], or
Broadcom Wi-Fi chips [8]. Baseband research also brings
opportunities when instrumentation of existing firmwares can
allow monitoring and injection of traffic at the lowest layers,
to provide cheap “debug” devices to study and experiment
with security at all layers, the firmwares can be instrumented.
Osmocom-bb is an open-source firmware for early TI chipsets,
and allow full control over all layers of GSM [15]. Seemo-lab
provided the Nexmon framework to instrument Broadcom Wi-
Fi chips [10] and more recently, InternalBlue for Broadcom
Bluetooth baseband. With InternalBlue, they were able to add
BT Device Address filtering in the baseband, to reduce its
attack surface [7].

B. Bluetooth insights

In this Section, we recall some fundamental prerequisites
about the physical layer of the Bluetooth Basic Rate to give a
better understanding of the next Sections. Because of its early
adoption by mobiles phones, BT has become one of the most
popular protocols for short-range wireless communications. It
is widely used to pair accessories to a mobile phone, to pilot
home automation, or control connected devices.

In its first version (Basic Rate), packets are modulated using
Guaussian Frequency Shift Keying (GFSK), at a baud rate of
1 Mbps. There are 79 BT channels, ranging from 2402 MHz to
2480 MHz. The physical layer uses Frequency Hopping Spread
Spectrum (FHSS) and Time Division Duplexing (TDD). A FHSS
communication system frequently switches its transmission
channel using a pseudorandom sequence known by both ends
of the communication.

In BT, the hopping rate is equal to 1600 hops per seconds (or
can be 3200 during Paging or Inquiry). TDD is used to share
the transmission channel between the master and the slave.
Time is uniformely divided into slots (1/1600s = 625µs).
All transmissions must be aligned on the start of a time
slot. Since BT version 1.2, Adaptive Frequency Hopping
(AFH) can improve the performances, by dynamically updating
the hopping channel map, to avoid channels with too much
interferences.

C. Bluetooth monitoring

Bluetooth is known to be challenging to be listen to by
passive monitoring tools. In 2007, the BlueSniff paper [13]
was the first to provide practical methods to capture Bluetooth
traffic using a SDR receiver built upon the GNU Radio signal
processing framework. It enlightened the most severe issues for
passive monitoring of Bluetooth. First, the full MAC address
of the master must be known to follow the traffic on a piconet.
When the device is set in discoverable mode, this can be
done by performing a scan. However, full passive solutions
would need to rely on tricks presented in BlueSniff. Moreover,
AFH (since BT 1.2) can make the task harder, since a passive

eavesdropper would have to follow the channel map to be able
to synchronize to the piconet. Secondly, the channel hopping
timing requirements are hard to meet by a SDR-based solution.
To the best of our knowledge, this is still the case in 2020.
Haataja [3] presented a good overview of Bluetooth threats
and possible countermeasures. In 2014, Huang et al. proposed
BlueID [5] that can recognize Bluetooth masters based on
the skew of their hopping clock. They used an Ubertooth to
record traffic on one arbitrary chosen Bluetooth channel, which
is enough to capture a representative portion of the traffic,
and estimate clock skew for surrounding Bluetooth piconets.
They showed that the clock skew was distinctive enough to
accurately classify 56 different devices.

D. Wireless devices fingerprinting

Wireless device fingerprinting is a collection of techniques
to identify wireless transmitters, based on subtle differences in
their handling of the communication scheme. Those differences,
called features, are typically undetectable for the upper layers,
as long as they stay within the specification error tolerance, but
can be seen by carefully observing the lower layer behavior.
Fingerprints might be collected at the physical, MAC, or
sometimes application layer [16]. In this study, we exclusively
focus on a physical layer fingerprinting. There are two main
approaches for physical layer fingerprinting: in the waveform
domain, or in the modulation domain. The waveform approach
is focused on the signal itself as a collection of samples over
time. For instance, the magnitude of the turn-up transient is
known to be highly distinctive, even among devices of the
same model [4]. However, as it occurs in a very short lapse
of time, it must be sampled at very high rates to provide
satisfying results. Theoretically, fingerprinting in the waveform
domain can be performed independently of the modulation
scheme, making it easier to adapt to any modulation. However,
it can be improved by taking advantage of the knowledge of
the protocol. Reising et al. performed waveform analysis on
the phase trace of GMSK bursts, in the mid-amble region [9].
Methods in the modulation domain are taking advantage of the
knowledge of the modulation. They work by comparing the
received packet with an ideal simulated packet. They have been
used with a variety of protocol, such as Wi-Fi [1] or GSM [17].
They simplify the collection of relevant features with smaller
dimensionalities, which is known to be more resistant to noise
than waveform based approaches. On the other hand, they
are more complicated to implement as a full demodulator is
needed, and they are less effective to differentiate different
devices of the same model.

III. BLUETOOTH ID PACKETS FINGERPRINTING

In this Section, we evaluate indicators to differentiate
between different Bluetooth-enabled devices, based on the
individual properties of their physical layer.

A. Experimental setup

We chose the Bluetooth Inquiry procedure to evaluate the
collection of physical layer fingerprints. During an Inquiry



procedure, the scanning (master1) device sends many ID
packets with the predefined General Inquiry Access Code
(GIAC) while hopping on different channels. The Access Code
is the only variable field in an ID packet. Thus, all ID packets
sent as parts of an inquiry are made of the same bits. This makes
a good test case for physical layer fingerprinting, where all
the payloads are the same, and the only observable differences
can come from the physical layer.

We collect Bluetooth packets using a LimeSDR mini, with
a sample rate of 28 MHz, to collect a significant portion of the
Bluetooth channels (channels 5 to 32 = 28/79 BT channels).
The center frequency was set to 2420 MHz to avoid nearby
WiFi channels and cover only the BT spectrum.

The tested devices were placed at four meters from the
receiver antenna. An inquiry procedure has been triggered
fo each device (by exerting the Bluetooth scan functionality),
while collecting samples. We performed three different captures
for each device.

During a BT inquiry procedure, a master sends the same
inquiry packet at a constant rate. Instead of analyzing single
packets, we can use series of such packets to assess the features
with more accuracy. To analyze series of packets, we must first
ensure that they were all emitted by the same device. It is not
a trivial matter as it relates to the problem we are trying to
address in the first place.

Fortunately this can be achieved quite easily during a normal
inquiry procedure. Firstly, packets sent over a Bluetooth piconet
can easily be clustered together as they are all synchronized
to the master clock. Secondly, the inquiry procedure is a
particularly ideal situation for clustering: only two devices
can talk. The master sending packets with the GIAC Access
Code, and eventually a slave replying with its own Lower
Address Part (LAP). After the connection is established, all
subsequent packets will be prefixed with the current connection
master LAP. Therefore we can consider that all packets received
on a single piconet, and containing a GIAC are sent by the
same transmitter.

B. Features description

1) Preamble duration: A synchronization preamble is usu-
ally a sequence of alternated bits preceding a packet to perform
the clock synchronization at the receiver side. Many wireless
protocols are requiring the presence of such preambles, and
Bluetooth makes no exception. The number of synchronization
bits is fixed to four in the BT specification2. However, we
observe that the exact number of bits transmitted varies across
different devices manufacturers. A small delay exists between
the start of transmission, denoted by the amplitude rising, and
the actual sending of the modulated data3.

We observe that the Bluetooth devices we tested exhibits
different behaviors during the preamble. The number and
quality of synchronization bits is not always the same. The

1By convention we call master the device performing an inquiry
2Bluetooth Core v5, Vol 2, Part B, 6.3.2: Preamble
3This small period itself is extensively studied in the transient fingerprinting

literature

delay between the amplitude rise and the first synchronization
bit also varies. To take into account for both the start-up period,
and synchronization bits count, we call preamble duration, the
interval of time between the amplitude rise denoting the start
of a packet (Start peak on Figure 1), and the actual position of
the access code in the demodulated trace (AC pos on Figure 1).

Fig. 1. Averaged amplitude and frequency traces of 1464 inquiry packets
(Asus BT-400)

Fig. 2. Another scan with 1734 packets (same Asus BT-400)

Fig. 3. Averaged amplitude and frequency traces of 1082 inquiry packets
(Unbranded dongle)

Figures 1 and 3 clearly exhibit that preamble duration is
different for different devices. On contrary, similar preambles
can be shown on Figures 1 and 2. The preamble duration is a
good candidate for fingerprinting.

2) Hopping clock skew (HCS): Bluetooth transmissions are
following a hopping scheme based on the master clock. All



transmissions are supposed to begin on a time slot boundary.
The hopping frequency can be 1600 or 3200 hops per seconds.
As in [5], we measured the hopping clock skew, comparing
the arrival time of two consecutive ID packets. To refine
the measurements, we use the access code time (AC pos in
Figure 1), which is obtained from the demodulated trace, and is
more noise resistant than the peak detection. All packets must
be aligned on the duration of a time slot, Hdur = 1

3200 . Tcur
and Tprev are the time of arrival of the current and previous
packets. The expected delay Texp in the interval rounded to
the nearest time slot boundary (Hdur) is equal to:

Texp = Hdur ×
⌊Tcur − Tprev

Hdur

⌉
.

HCS is expressed as:

HCSppm = 1M×
( Texp

Tcur − Tprev
− 1

)
.

in parts per million (ppm4),
When operating on offline captures, where samples could

have been lost, a precise time reference is needed. Sometimes,
aberrant HCS between two packets are observed. To eliminate
those packets, a threshold equal to 100 ppm has been set.
Values exceeding this threshold are thrown away . During the
experiments, this problem rarely arises (only 7 measurements
over 47184). This correction is not required when capturing
live samples from a SDR receiver offering proper timestamps.

In our experiments, the Bluetooth packets are resampled at
a 4 Msps rate, to store four samples per symbol as in [13]. For
one packet pair, we obtain one measurement with a resolution
of 250ns. To enhance the accuracy, the data are averaged on
several measurements.

3) Carrier clock skew (CCS): The BT protocol exploits 79
channels, each 1 MHz wide. The offset between the center
frequency of a packet and the expected center of the channel is
computed and converted into ppm to obtain the carrier clock
skew (CCS).

∆F =
4M

2π
× (IF − idealIF ),

CCSppm = 1M× ∆F

ChannelFreq
.

IF are the frequency-demodulated samples in radians per
seconds, and idealIF is the locally-generated frequency trace
of a GIAC.

The CCS take into account for all the samples composing
the access code. The estimation is more precise as we have a
large number of samples to work with in each packet.

We observe that almost all of the device models we tested are
exhibiting a consistent frequency offset, ranging from ±22 KHz
around the expected center frequency. In our experiments, the
measured offset stayed invariant across several measurements
for each device. This consistency has been already reported
in for the HCS in [5]. Section VI exhibits the effect of the
temperature on the measured frequency.

4Clocks drift are usually measured in parts per million or billion

Fig. 4. CCS of Unbranded Dongle over a complete scan

Only one device showed variability in the CCS and HCS
measurements. In experiments on the unbranded low cost
BT USB dongle, we observed that the CCS and HCS are
consistently varying over time (as shown in figures 4 and 5).
For this device the clock variation rate itself is a distinctive
feature. This is not very surprising since we are looking for
imperfections, and the low-end devices are naturally more
prone to it.

Fig. 5. HCS vs CCS on 50 packets sets.

IV. ANALYSIS

In this Section, the observations we made while analyzing
the dataset are discussed. For some devices, HCS and CCS
seem to have the same value. We also show that the preamble
duration allows a discrimination of the device manufacturers.
Finally, the use of a very large number of packets to create
high SNR features is discussed.

A. Clock skews relation

Figure 5 exhibits the Hopping clock skew versus Carrier
clock skew for ten devices. The blue line represents the identity.
We can see that for the majority of devices, the HCS and the
CCS are closely correlated. For the two Samsung devices
we tested (Exynos based), the two clock skews are clearly
unrelated, with a high CCS of around 5 ppm, and a lower HCS
of ±0.5 ppm.

The devices with a HCS close to the blue line have their
BT peripheral governed by a single oscillator. It is involved in
the generation of both the carrier frequency and the hopping



timer. In other designs, the hopping timer can be generated by
the CPU or based on a different oscillator. Further close up
analysises of the device architectures are needed to confirm or
infirm this hypothesis.

B. Preamble duration and manufacturer

Fig. 6. Preamble duration vs CCS on 50 packets sets

Figure 6 represents the preamble duration on the x-axis, and
the CCS on the y-axis. The preamble durations are grouped
within two main clusters: one around 16.5 µs, and one around
18.7 µs. The unbranded dongle is the only one which exhibits
a preamble duration of around 22 µs. We must point out that
all Qualcomm based phones are in the left cluster, while all
phones with a Broadcom device are on the middle cluster.

C. High SNR pictures

Figures 1 to 3 were obtained by averaging traces of all
packets collected during the inquiry procedures performed by
an Asus BT-400 adapter and an unbranded USB dongle. To
compute the amplitude traces, we configured our filtering tool
to output raw samples in addition to the frequency trace.

Averaging over a very large number of packets dramatically
enhances the SNR, and results in highly distinctive features for
individual device model. For instance, we can see in Figure 3
that the unbranded dongle sends a quite idiosyncratic preamble,
and totally drops the trailing bits.

In our classification experiments, we did not use these
massively averaged traces, because they are more expensive
to produce, and provide few examples of high dimensionality,
which would complicate the training process.

Though, this method is helpful when exploiting more
distinctive features. For instance, when looking at the three
high SNR picture of each device, we noticed that the magnitude
vector alone is distinctive of each device model, as shown in
Figures 1 to 3.

V. CLASSIFICATION

In the previous Section, we have showed that it is possible
to identify the devices by looking at the features. However,
in a real IDS, that task should be automated. We have set
an automatic classification experiment using the scikit-learn
python library [2]. The same dataset, with three captures of

a full Inquiry procedure per device, has been used. A K-
fold cross validation is used with K=5. We tested several
classifiers: logistic regression, multi-layer perceptron (MLP),
random-forests (RF), and support-vector classifier (SVC). At
the end, RF and SVC yield comparable results, outperforming
the other classifiers on our dataset. The configuration achieving
the best result was the SVC with C = 250 and gamma = 0.33.

We measured the SVC performances on the same dataset,
while varying the number of packets used for the feature
estimation. For each run, we randomly select 1500 packets of
a single capture. The packets are divided in evenly sized sets,
and one feature vector is computed for each set. Therefore for
bigger set sizes, we have less examples to train the classifier.

Fig. 7. SVC classifier FPR versus the set size

The classifier delivers a better classification while increasing
the set sizes and achieves a more than 99.8% accuracy for all
the sets containing more than twenty packets. As a full inquiry
procedure typically produces thousands of packets, we are
confident that capturing even a subset of a single scan would
provide enough data to precisely characterize its transmitter
model.

VI. TEMPERATURE EFFECT ON FINGERPRINTING

In the previous classification experiments, we took advantage
of the frequency offsets of the selected devices as discriminating
features. The temperature of a crystal oscillator is known to
influence its actual resonant frequency [5]. We assessed the
effect of temperature on one device of the dataset.

A. Experimental setup

In [5], the room temperature was changed. We chose to
modify only the temperature of the device to get a clear
understanding of the phenomena. A thermal plate has been
used to modify the temperature of the device ; a thermal probe
attached to the back of the device has been used to accurately
measure its temperature. For each measurement, an inquiry
procedure is initiated and all messages containing a GIAC are
recorded. Each dot represents the average HCS of all packets
of a single inquiry.

In the observed range, the frequency linearly decreases with
the temperature increase. This is not surprising since crystal
oscillators have a lowest temperature dependance around the
standard ambient temperature, which is usually 25◦C.



Fig. 8. Temperature effect on the frequency of a Sony phone

B. Lessons learned

We observed that for the selected device (Sony1), the CCS
and the HCS stay the same across all the experiment. Our
hypothesis of a common oscillator to generate both the carrier
frequency and the hopping clock is strengthened.

Regarding the fingerprint process, the temperature has a
strong effect on the measured frequency offsets (around 5 ppm
on a 30◦C range, for an absolute error of 8 ppm at 25◦C).
The measured difference is higher than reported in [5] (around
+0.5 ppm when cooling the room temperature by around 30◦C).
This important difference in the results can be explained by the
different approach we took in our measurements, cooling the
device itself instead of the room temperature. We presume that
in BlueID experiments, the devices temperature was not as low
as the room temperature, possibly because of heat dissipated
by the device itself. According to our results, the frequency
shift measured might be way higher, for instance when turning
on a device that has been kept off in a cold place long enough.

A proper fingerprinting solution should use physical models
to take into account the temperature effect. BlueID proposed to
track the frequency drift across time, and update the model if its
absolute value does not exceed a threshold. This approach could
be improved by checking that the frequency drift is consistent
with the temperature profile of the device under observation.
For instance, an increase in the temperature should cause a
negative frequency drift for the Sony phone in a tempered
environment.

This experiment also shows that frequency based wireless
fingerprinting solutions could be attacked at lower costs
than expected. It is well known that simple radiometric
features could be mimicked by an attacker holding a carefully
programmed SDR. Modifying the temperature of an off-the
shelf transmitter might be a cheaper way to forge a frequency
offset.

VII. CONCLUSION & FUTURE WORKS

In this paper, a low cost software defined radio has been
used to experiment on the Bluetooth Inquiry procedure. The
relevance of the gathered data has been demonstrated, present-
ing a fingerprinting approach that can distinguish the model of
a Bluetooth transmitter with a high accuracy (> 99.8%), using
only three features at the physical layer.

Although accurate, this method needs to be enhanced, and
further tested with a broader set of equipments. We plan to
run a larger measure campaign to validate that the features
presented in this paper are enough to distinguish devices with
a high confidence. We will also experiment our fingerprinting
technique on multiple devices of the same model. We expect
that it will be harder to distinguish several instances of the
same devices and will look for new features that will allow us
to do so.
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