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Figure 1: Reconstruction of a 6D light field video (middle) from 2D sensor images (left). Each 2D image contains samples from angular
and spectral dimensions convolved with a random color-coded mask that changes per-frame. The proposed algorithm reconstructs the full
resolution color light field video using a novel sensing model, together with a temporally-aware learned dictionary. On the bottom right, the
magnified image of one angle of the reconstructed frame is shown with the corresponding ground truth on top.

Abstract
This paper presents a novel compressed sensing (CS) algorithm and camera design for light field video capture using a single
sensor consumer camera module. Unlike microlens light field cameras which sacrifice spatial resolution to obtain angular
information, our CS approach is designed for capturing light field videos with high angular, spatial, and temporal resolution.
The compressive measurements required by CS are obtained using a random color-coded mask placed between the sensor and
aperture planes. The convolution of the incoming light rays from different angles with the mask results in a single image on
the sensor; hence, achieving a significant reduction on the required bandwidth for capturing light field videos. We propose to
change the random pattern on the spectral mask between each consecutive frame in a video sequence and extracting spatio-
angular-spectral-temporal 6D patches. Our CS reconstruction algorithm for light field videos recovers each frame while taking
into account the neighboring frames to achieve significantly higher reconstruction quality with reduced temporal incoherencies,
as compared with previous methods. Moreover, a thorough analysis of various sensing models for compressive light field video
acquisition is conducted to highlight the advantages of our method. The results show a clear advantage of our method for
monochrome sensors, as well as sensors with color filter arrays.

CCS Concepts
• Computer graphics → Computational photography; Image compression;

1. Introduction

Light field imaging is a rapidly emerging technology in computa-
tional photography. By capturing both the spatial and angular vari-
ations of the light rays incident onto the sensor(s), light fields open
up for a range of novel applications ranging from computer vision
and industrial applications to computer graphics, cinematography,
and everyday photography. As a result, there has been extensive re-

† Corresponding author: email: firstname.lastname@liu.se

search, and development of methods and technology for capturing
light fields [LH96, GGSC96] in the past two decades.

To date, the most common techniques for capturing the angu-
lar variations in the light field have been to use multiple cam-
eras, [WJV∗05], or to place an array of micro-lenses, [NLB∗05],
in front of an ordinary 2D sensor as in the Lytro and Raytrix cam-
eras. However, multi-sensor systems lead to bulky, expensive, and
oftentimes impractical setups, and the micro-lens approach leads to
a reduced spatial resolution since a large portion of the budget of
available pixels on the sensor needs to be sacrificed to sample the
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angular domain. Another challenge is to efficiently handle the high
bandwidth data streams and very large memory footprints inherent
to high-resolution light field imaging.

This paper presents a novel compressed sensing (CS) framework
and evaluates a camera design for single sensor light field video
capture and reconstruction. Compressed sensing theory, [CRT06a,
Don06], postulates that if a signal is compressible (or sparse) in
some basis, then it can be reconstructed from a very small num-
ber of samples (well below the Nyquist rate). Similar to Marwah
et al. [MWBR13] and Miandji et al. [MUG18], we use a coded
aperture design to optically construct a sensing matrix by placing
an attenuation mask with random transmittance in front of the sen-
sor. However, in contrast to [MWBR13] and [MUG18] who only
considered static light fields, we extend the compressed sensing
into the temporal domain and enable light field video capture. By
changing the random pattern on the color mask between each con-
secutive frame, our CS algorithm can reconstruct a full 4D light
field for each frame from the 2D compressive measurements (im-
ages) on the camera sensor. At each pixel on the camera sensor, the
random color-coded mask acts as a convolution filter, convolving
the angular and spectral information of the incident light field into
a single pixel.

The main contribution of this paper is a new sensing model,
where, in contrast to previous work, temporal information is taken
into account for CS reconstruction. Our model addresses several
key requirements that exist for achieving high-quality reconstruc-
tions. First, the dictionary used for sparse coding of the light field
is trained on a small set of consecutive frames to utilize the sparsity
in the spatial, angular, as well as temporal domains simultaneously.
Second, the compressive measurements obtained using the random
color-coded mask also include temporal information. The inclusion
of the temporal domain leads to an increased number of incoher-
ent (random) compressive samples, which significantly increases
the reconstruction quality compared to existing methods for light
field photography, see Section 4. Indeed, there exist various sens-
ing models based on the design of the dictionary and the sensing
matrix. We present and analyze such models and propose a new
model that is vastly superior in terms of the quality of the recon-
structed light field videos.

The main contributions of this paper are:

• Compressive light field video camera design with a temporal sig-
nal model.
• High quality reconstruction of full resolution light field videos

from a video sequence captured using a single-sensor consumer-
level camera.
• A study on the effect of monochrome and color sensors in light

field video reconstruction quality.
• A study on various sensing models for compressive light field

video cameras.
• A dictionary learning method enabling increased sparsity and

temporal coherency of light field videos.

The evaluation shows that the algorithm presented in this paper
produces significantly better visual quality as compared to the state-
of-the-art. To the best of the authors’ knowledge, this is the first
CS light field capture and reconstruction algorithm with an explicit
model leveraging from temporal coherence in the data.

d
a

d
m

Figure 2: Light filed camera design with color-coded attenuation
mask. The mask is placed between the aperture and the sensor at
distance dm from the sensor.

2. Related Work

One of the first attempts at capturing high-quality light fields
was with multi-sensor systems, also known as camera arrays
[WJV∗05]. By utilizing camera parameters, the acquired images
are re-projected to construct a light field. The angular and spatial
resolution is limited by the number of cameras and their corre-
sponding resolution. Indeed high-resolution light fields and light
field videos can be captured using this setup; however, the high
cost and the size of these capturing setups limit their usability.
An alternative is to mount a single camera on a mechanical arm
[LH96, UWH∗03]. However, these light field imaging systems can
only be used for static scenes.

A popular and well-established method for capturing light fields
is through the utilization of micro-lens arrays. This technique
was first introduced by [AW92], and was later implemented by
[NLB∗05]. The design is based on a dense array of small lenses that
are placed in front of a sensor. Therefore, the size of each lenslet,
together with the number of detector elements in the image sensor
determines the angular and spatial resolution of the light field mea-
surement. For instance, if each micro-lens covers an area of 8× 8
pixels, then the spatial resolution of the light field is 1/8th of the
sensor resolution; see [GZC∗06] for a more elaborate description of
the spatio-angular trade-off in plenoptic cameras. Since micro-lens
light field cameras are small in size and relatively cheap, they were
the first to be commercialized. Both multi-sensor array and micro-
lens array designs result in a massive amount of data, especially
for light field videos, and require effective compression techniques
after capturing [MHU19].

Recently, a new sensor technology was introduced [WGM09,
WGM11], which uses an array of angle sensitive pixels (ASP).
Each ASP is tuned to have a predefined angular response by uti-
lizing the Talbot effect. Using computational photography, it is
possible to obtain a light field from an array of ASPs [HSJ∗14].
However, the reconstruction quality of these systems, at the current
state, are not competitive with aforementioned techniques.

Another method for single sensor light field photography is
based on coded aperture [VRA∗07] capturing, where a transpar-
ent non-refractive random mask is placed on the aperture plane.
Hence the sensor integrates randomly modulated light field views.
Using the mask and the image formed on the sensor, one can use
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various deconvolution techniques to obtain a light field. [LLW∗08]
achieved higher reconstruction quality by using a Liquid Crystal
Array (LCA) to change the mask pattern in order to obtain multiple
shots (and hence a higher number of samples from the original light
field). A dual mask light field camera was proposed in [XL12] to
improve the spatial resolution at the cost of reducing the light trans-
mission to the sensor. Babacan et al. [BAL∗12] proposed to place
a randomly generated mask at the aperture of the camera and using
a Bayesian framework, they reconstructed the light fields from the
encoded images.

Deep learning methods have also been used for sparse coding
and reconstruction of light fields [GL10, GJK∗17]. However, the
use of fully connected networks limits their capabilities to small
patch sizes. In some cases, the coded mask is restricted to a fixed
pattern to reduce the size of the parameter space [VCR∗17]. Fur-
thermore, these methods require large amounts of data for training
which is typically not feasible in practice. Chen et al. [CC17] pro-
posed a disparity aware dictionary learning, where first the dispar-
ity of the scene was calculated using sub-aperture scans, making
the method only suitable for static scenes. Nabati et al. [NMG18]
use a pre-defined coded mask and convolutional neural networks
for recovering a light field from coded measurements. However,
it is not clear how this method can be extended to multiple shots;
moreover, it has been shown in [Mia18] that the compressive sens-
ing leads to competitive results for a single shot, while significantly
outperforming [NMG18] with two or more shots. An autoencoder
network was proposed by Inagaki et al. [IKT∗18] for learning a
mask, based on the features of the scene, in order to reconstruct a
light field image from the coded input using coded-aperture photog-
raphy. Wang et al. [WZK∗17] proposed a hybrid light field video
capturing system consisting of a Lytro Illum and a DSLR camera
that enabled high frame rate acquisition. Although their method
achieves a high frame rate, it is still dependent on a two-camera
system and suffers from low spatial resolution.

It has been shown that compressive sensing can be used to
capture static light fields using a single sensor. Marwah et al.
[MWBR13] introduced a compressive light field camera where the
random mask is placed at a predefined small distance from the
sensor. Since the mask is monochrome, each color channel of the
light field is reconstructed independently. Therefore, correlations
between color channels were not utilized. Miandji et al. [MUG18]
proposed to place a color-coded mask in front of the color filter ar-
ray (CFA) to encode the angular light rays. By utilizing multiple
shots and the incoherence introduced by the color mask, signifi-
cantly higher results are reported. Parallel to this work, Nabati et
al. [NMG18] introduce a reconstruction algorithm based on deep
neural networks for compressive light field photography using a
color-coded mask. While the reconstruction quality is competitive
with [MUG18] for a single shot, it is not clear how this method
can be extended to multiple shot reconstruction. Compressive sens-
ing has also been used for video acquisition [WLD∗06] with coded
aperture video representation [MW08] to enhance the resolution
of the digital video. Hitomi et al. [HGG∗11] developed a prototype
imaging system with per-pixel coded aperture control and proposed
to reconstruct the video by learning a sparse representation of the
video frames with an over-complete dictionary. This paper extends

the idea of exploiting temporal coherence in CS and combines this
with a coded aperture to capture and reconstruct light field videos.

3. Compressive Light Field Video Acquisition

Since our method is based on the well-established field of com-
pressed sensing [CRT06a, Don06], we start by a brief introduction
to essential concepts related to compressed sensing in Section 3.1.
This is followed by a review of compressive light field photogra-
phy [MWBR13,MUG18] in Section 3.2, which utilizes compressed
sensing for efficient acquisition of light field images on a single
sensor. Compressed sensing comprises three main components: 1.
a sensing matrix, 2. a dictionary, and 3. a reconstruction algorithm.
Our goal in this paper is to design a sensing matrix and a dictionary
such that we achieve high sparsity and measurement incoherence
for faithful recovery of a light field video from merely the coded
images that are formed on the 2D camera sensor.

Two sensing matrix designs are proposed in Section 3.3 for ac-
quiring a light field video by modulating consecutive frames onto
the sensor using a color-coded mask. These designs take into ac-
count the presence of a CFA on the sensor. In Section 3.4, we de-
scribe our dictionary training approach for light field videos. Fi-
nally, three sensing models based on three different sensing matrix
configurations are presented in Section 3.5, together with their cor-
responding dictionary. These sensing models, called SM1, SM2,
and SM3, are essentially three different approaches for reconstruct-
ing a light field video from compressive measurements. Our results
in Section 4 show that SM3, where the temporal information is uti-
lized in both the sensing matrix and the dictionary, performs the
best.

3.1. Compressed Sensing

Let x ∈ Rn be a deterministic vector representing a bandlimited
continuous-time signal. Our goal is to sample x with minimal
number of samples while admitting the exact recovery of x. Let
Φ∈Rs×n, s < n, be a sampling operator that takes s linear samples
from x, i.e. y = Φx. The sampling operator is often referred to as
a measurement or sensing matrix in the field of compressed sens-
ing. It is clear that recovering x from the measurements y requires
solving a linear system of equations

argmin
x

‖y−Φx‖2
2. (1)

However, equation (1) has infinitely many solutions since s < n.
Therefore, we need to limit the space of solutions by considering a
prior on the signal x. One such prior is sparsity. Assume that x is
sparse in a suitable dictionary D ∈ Rn×k, i.e. we can write x = Dθ

such that ‖θ‖0 ≤ τ; in other words, we require that the vector θ to
have at most τ nonzero elements. Using this assumption, equation
(1) becomes:

argmin
θ

‖θ‖0 s.t. ‖y−ΦDθ‖2
2 ≤ ε, (2)

where ε is a small constant often related to the noise power. There
exists a large number of algorithms for solving (2) and its `1 vari-
ant [NT09, DTDS12, SZ11, YZ11, LSQQ13, YZ11], as well as a
large body of research on required conditions for obtaining the ex-
act recovery of x [MEUA17, GN03, DE03, CRT06b, Tro04].
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Compressed sensing is based on two main principles: sparsity
and incoherence. Sparsity is the most important parameter in defin-
ing the required number of samples for faithful recovery of a sig-
nal and incoherence requires that if x is sparse in D, it should be
dense in Φ. Incoherence is closely related to the uncertainty prin-
ciple [DH01]. Since D is deterministic, a common approach in im-
proving incoherency is to define Φ as random matrices, e.g. with in-
dependent and identically distributed Gaussian entries. Moreover,
when using random sensing matrices, another important factor for
improving incoherency is the number of samples, s. One of the key
contributions of this paper is to take multiple random samples along
the time domain to improve the incoherency of the measurements.

3.2. Compressive Light Field Acquisition

A Light field can be described by the two-plane parameterization
as L(s, t,u,v,λ) [LH96, GGSC96], where (s, t) and (u,v) denote
the spatial and angular coordinates, respectively, and λ parameter-
izes the spectral domain. By adding the time domain, f , we obtain
a light field video, which is a 6D function L(s, t,u,v,λ, f ). A 2D
image using a conventional photograph is captured by integrating
light rays over the angular domain of the light field projected onto
the camera sensor

y(s, t,λ) =
∫

u,v
L(s, t,u,v,λ)cos4

αdudv, (3)

where α is the angle between the ray and the sensor and cos4
α

represents the vignetting effect [Ray02], which we omit in order to
simplify our design methodology. Marwah et al. [MWBR13] sug-
gested to place a monochrome coded attenuation mask Φ at a dis-
tance dm from the sensor to optically modulate the light field and
project it onto the sensor as shown in figure 2. Using this model,
equation (3) can be written as

y(s, t,λ) =
∫

u,v
L(s, t,u,v,λ)a(s+σ(u− s), t +σ(v− t))dudv, (4)

where the function a(.) defines the attenuation mask and σ= dm/da
defines the shear of the mask pattern. In discrete form, equation (4)
can be written as matrix-vector multiplication as follows

y =
[
Φ

1
Φ

2 . . . Φ
ν
]


x1

x2

...
xν

 , (5)

where ν = |u||v| is the angular resolution, Φ
i ∈ Rω×ω are diagonal

matrices representing the mask model in (4), ω = |s||t| is spatial
resolution, and xi ∈ Rω contains the vectorized light field view im-
ages. With a monochrome mask, the sensing matrix Φ is applied to
each color channel independently, hence increasing the coherence
of the measurements, which in turn reduces the quality of recon-
struction, as shown in [MUG18].

3.3. Sensing Matrix Design for Light Field Videos

In this section, we describe our approach for designing a sensing
matrix corresponding to a compressive light field video camera. To
this end, we consider two sensing matrix designs. First, we describe

the configuration of a sensing matrix corresponding to a sensor
with a Color Filter Array (CFA), together with a color-coded mask
placed in front of the sensor at a predefined distance. The model
assumes the color measurements recorded after the CFA to be pre-
demosaiced such that each measurement has three color compo-
nents. Second, a sensing matrix design is presented that assumes a
monochrome sensor, together with a color-coded mask at a prede-
fined distance from the sensor.

3.3.1. CFA-equipped Sensor with Color Mask

Miandji et al. [MUG18] proposed a random color mask placed at a
small distance to the aperture of a sensor equipped with color fil-
ter array (CFA); see Figure 3(a) for an example of a sensor image
captured using this setup. Acquiring multiple shots from the scene
further increases the incoherence in the measured light field, which
leads to higher quality reconstruction. However, in the light field
video, capturing multiple shots is not possible due to movements
in the scene. In a compressive light field video camera based on
the design of [MUG18], for each frame, a single 2D image yi is
formed on the sensor using a unique mask pattern. The mask pat-
tern changes by moving the mask or the sensor using a piezo mo-
tor. The question is: How should we design Φ based on the moving
mask such that we make use of the temporal coherence between
frames? Indeed, since the capturing frame rate is limited by the
capabilities of the camera (which exceeds hundreds of frames even
on modern smartphones), we can expect significant correlations be-
tween the consecutive frames that can be utilized in the reconstruc-
tion.

Without loss of generality we assume three colors as RGB to
simplify the notations. Let us define the sensing matrix for frame
j ∈ {1, . . . ,N}, where N is the total number of frames, using a color
mask and sensor CFA as follows

Ψ
j =

Φ
1,R, j . . .Φν,R, j 0 0

0 Φ
1,G, j . . .Φν,G, j 0

0 0 Φ
1,B, j . . .Φν,B, j


(6)

This definition of the sensing matrix Ψ
j coincides with that of

[MUG18]. We propose to utilize β consecutive frames and stack
their corresponding measurement matrices Ψ

j, i ∈ {1, . . . ,β}, ver-
tically as follows

Φ(I) =


Ψ

1

...
Ψ

β

 ∈ Rβωλ×ωνλ. (7)

Alternatively, stacking β sensing matrices horizontally would result
in the sensing matrix

Φ(II) =
[
Ψ

1 . . .Ψβ

]
∈ Rωλ×βωνλ, (8)

hence performing a linear combination of the input frames with a
convolution filter over their angular domain into y ∈ Rωλ. A clear
advantage of (7) over (8) is that the former contains β-times more
uncorrelated samples. Note that the number of samples is defined
by the number of rows in Φ. Indeed if the consecutive frames are
sufficiently similar to each other, the compressive random mea-
surements obtained from β frames are highly incoherent (due to
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(a) Sensor with CFA (b) Monochrome Sensor

Figure 3: Raw images with a color-coded mask placed in front of
(a) Sensor with CFA and (b) Monochrome Sensor.

the movement of the mask at each frame), and hence producing a
higher reconstruction quality. This difference in the sensing model
will be described in Section 3.5, and the superiority of (7) over (8)
will be confirmed using our simulation results in Section 4.

3.3.2. Monochrome Sensor with Color Mask

Similar to [NMG18, Mia18], we also consider a camera design
with a color mask placed in front of a monochrome sensor; see
Figure 3(b) for an example of a sensor image captured using this
setup. This setup leads to the compression of the angular domain
as well as the spectral domain. Although the number of random
measurements, and hence the incoherency, is reduced compared to
the model using CFA, this setup is more practical in reality. This
is because the light efficiency is higher when one mask is used in-
stead of two, and the mask can be placed in a desired distance to
the sensor. Another benefit of this design is the high compression
ratio which can be used for fast transmission of the captured data,
as well as reduced in-camera processing time due to the removal
of the debayering and color correction processes, which leads to
higher frame rates.

We formulate the sensing matrix for a single frame without a
CFA as follows

Λ
j =
[
Φ

1,R, j . . .Φν,R, j
Φ

1,G, j . . .Φν,G, j
Φ

1,B, j . . .Φν,B, j] (9)

Similar to sensing design with a CFA, here we can also construct
two sensing matrices:

Φ(III) =


Λ

1

...
Λ

β

 ∈ Rβω×ωνλ. (10)

Φ(IV) =
[
Λ

1 . . .Λβ

]
∈ Rω×βωνλ, (11)

Note that the sensing matrices in (7), (8), (10), and (11) do not re-
quire custom hardware implementations. Indeed we have assumed
that the only data that is available as input to our method is the
image formed on the sensor, as well as the mask values for the
corresponding frame. Furthermore, the reconstruction method, see
Section 3.5, works with both monochrome and CFA-equipped sen-
sors with a color-coded mask. In Section 4, we compare the recon-
struction quality of various data sets for both designs and discuss
their advantages and disadvantages.

3.4. Dictionary Training for Light Field Videos

In this section, we describe our approach for training a dictionary
that admits sparse representation of light field videos. Indeed the
utilization of the temporal domain is of importance since it in-
creases the sparsity due the correlation between a set of neighbor-
ing frames. The theory of compressed sensing states that a sparse
signal with at most τ nonzero values can be reconstructed using
Gaussian or Bernoulli random sensing matrices if s ≥ Cτln(n/τ),
where C is a constant, n is the signal length, and s is the number of
samples. Therefore, if we increase the sparsity, i.e. a smaller τ, it is
expected that the required number of samples will decrease.

We use the online dictionary learning algorithm [MBPS10] on a
training set Z = {z1 . . .zt} consisting of t light field video frames
by solving

min
D

1
t

t

∑
i=1

min
hi

1
2

∥∥∥zi−Dhi
∥∥∥2

2
+λ

∥∥∥hi
∥∥∥

0
. (12)

The aim of the dictionary learning algorithm is to find a dictionary
D such that each training data zi has a latent sparse representation
hi. The non-negative coefficient λ in (12) defines a trade-off be-
tween reconstruction error and sparsity.

Solving (12) on the whole light field is not feasible, and there-
fore, we create smaller patches on the light field data set. The di-
mensionality of the patches affects the quality of the dictionary
and how well it can represent the light field data. Four dimensional
(4D) spatio-angular light field patches have shown to increase an-
gular coherency in the reconstructed light field compared to 2D
patches [MWBR13]. Expanding the patches to 5D to include the
color information in each patch has shown superior results com-
pared to 4D patches [MUG18]. We propose to add temporal infor-
mation to the patches to include the spatial, angular, spectral, and
temporal domain in our patches, which will also increase the di-
mensionality of the dictionary. As mentioned above, including the
temporal domain in the patches would increase sparsity, and im-
prove the reconstruction quality, as well as the temporal coherence
of reconstructed light fields. With a slight abuse of notation, we use
s, t, u, v, λ, and β, utilized in Section 3 for the resolution of a light
field video, to denote the patch size. As a result, the dimensionality
of a light field video patch is n = s× t×u×v×λ×β, correspond-
ing to the spatial, angular, spectral, and temporal resolution of the
patch, respectively.

For training the dictionaries we considered two options: training
a dictionary using 5D patches extracted from each individual frame,
which we call a single-frame dictionary. Each atom of this dictio-
nary is a basis function in spatial, angular and spectral domains.
The other option is to extract 6D patches that spans the spatial,
angular, spectral and temporal dimensions. We train on patches ex-
tracted from β-consecutive frames to train a multi-frame dictionary
that has a structure as following:

D =


D1
D2
...

Dβ

 , (13)

where D∈Rβλνω×ρβλνω and ρ is the over-completeness factor. The
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Boxer Chess
Models SSIM PSNR(dB) SSIM PSNR(dB)
[MUG18] 0.8426 27.31 0.8832 28.75
SM1 0.9023 29.85 0.9201 30.69
SM2 0.8135 25.82 0.8620 27.28
SM3 0.9500 33.18 0.9619 34.49

Table 1: Comparison of proposed sensing models; data sets used
are Boxer and Chess with non-overlapping patches, each with 5
frames. We set β = 3, n = 7× 7× 5× 5× 3× 3, batchSize: 6000,
and we used 10 frames for training (distinct from the testing set).

atoms of the multi-frame dictionary contain temporal information,
which improves the sparsity, and hence the reconstruction quality,
compared to the single-frame dictionary, see Section 3.5.

3.5. Sparse Reconstruction of Light Field Videos

To reconstruct the measured light field video, we need to formu-
late a suitable reconstruction algorithm, according to (2), that takes
into account the sensing matrices described in Section 3 and the
multi-frame dictionary in Section 3.4. In what follows, we explain
three possible sensing models for the reconstruction of light field
video frames. The sensing models explained here are applicable to
both camera designs of Section 3. For simplicity and without loss
of generality, our explanation in this section considers the sensing
matrix for monochrome sensors, as in (9). Moreover, we will oc-
casionally refer to Figure 4 and Table 1 for quality comparison of
different sensing models. Note that the main results and detailed
comparisons are presented in Section 4.

3.5.1. Sensing Model 1 (SM1)

In this model, the sensed 2D RAW image of each frame, yi are ap-
pended vertically into y∈Rβω and its corresponding sensing matrix
Λ

i are stacked vertically into Φ(III) ∈Rβω×ωνλ as explained in Sec-
tion 3, and equation (10). The dictionary that we train for this sens-
ing model is based on a single-frame dictionary learning method
explained in Section 3.4, where the dictionary is D ∈ Rωνλ×ρωνλ.
For β-consecutive incoming light fields {x1, . . . ,xβ}, where xi ∈
Rωνλ, the reconstruction is carried out by solving:

argmin
θ

‖θ‖0 s.t.

∥∥∥∥∥∥∥∥


Λ
1x1

...
Λ

βxβ

−


Λ
1

...
Λ

β

Dθ

∥∥∥∥∥∥∥∥
2

2

≤ ε (14)

As mentioned in Section 3, arranging the per-frame sensing ma-
trices vertically will increase the number of incoherent samples,
hence improving the reconstruction quality. It can be seen in Fig-
ure 4 that SM1 can reconstruct stationary objects in the background
quite well, but due to lack of temporal information in the dictionary,
it has many artifacts along the edges of moving objects where the
foreground and the background meet.

[MUG18] SM1 SM2 SM3 Ground Truth

Figure 4: Comparison of proposed sensing models of the Boxer
data set on a monochrome sensor with color-coded mask.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Frame 1 Window

Frame 2 Window

Frame 3 Window

Figure 5: A window of size β = 3 for reconstruction is chosen so
that the current frame is placed at the center of the window (ex-
cept for corner cases). For each frame of the original light field
video (Frame 2 in this example), we reconstruct three light field se-
quences (three rows shown with dashed lines). Therefore, we can
combine three reconstructed frames (shown with a red box) to ob-
tain a single frame corresponding to frame 2 in the original light
field video.

3.5.2. Sensing Model 2 (SM2)

In this model we use a multi-frame dictionary where the patches
span the time domain, i.e. there is a temporal coherency between
the atoms in the dictionary. The sensing matrix is arranged horizon-
tally as in (11) and lead to the following reconstruction problem:

argmin
θ

‖θ‖0 s.t.

∥∥∥∥∥∥∥∥
[
Λ

1 . . .Λβ

]
x1

...
xβ

− [Λ1 . . .Λβ

]D1
...

Dβ

θ

∥∥∥∥∥∥∥∥
2

2

≤ ε

(15)
Using a multi-frame dictionary trained on β frames with 6D
patches, SM2 can recover each light field frame with significantly
lower temporal artifacts as compared to SM1, as shown in Figure
4 and Table 1. However, arranging the sensing matrix horizontally
will decrease the number of incoherent samples used in solving
the BPDN problem (2). Even though the dictionary encodes multi-
dimensional information, the minimization problem cannot find a
suitable coefficient vector to reconstruct the signal accurately. As
demonstrated in the figure, even the colors are not recovered accu-
rately, and the resulting light field is very blurry.

3.5.3. Sensing Model 3 (SM3)

To maximize the incoherency of the measurements and at the same
time the sparsity, we propose to use the multi-frame dictionary of
SM2 and the sensing matrix of SM1. In this way, we can have β

times more incoherent samples compared to SM2 for the recon-
struction algorithm while benefiting from the temporal correlations
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of the dictionary atoms. The efficiency of SM3 is confirmed in our
results in Figure 4 and Table 1, as well as in Section 4. Since each
frame of the light field video is captured individually using com-
pressed sensing, we can re-arrange the matrix multiplication of the
sensing matrix and the dictionary to obtain the following optimiza-
tion problem for reconstruction

argmin
θ

‖θ‖0 s.t.

∥∥∥∥∥∥∥∥


Λ
1x1

...
Λ

βxβ

−


Λ
1D1
...

Λ
βDβ

θ

∥∥∥∥∥∥∥∥
2

2

≤ ε, (16)

where Di ∈ Rλνω×ρβλνω, i ∈ {1, . . . ,β}, are sub-matrices of the
multi-frame dictionary D ∈ Rβλνω×ρβλνω, defined in (13), corre-
sponding to frame i of the captured light field. Using this sensing
model will result in the recovered 4D light field x̂ ∈ Rβωνλ, mean-
ing that for each frame in the original light field video, we recon-
struct β frames. As shown in Figure 5, we choose our temporal
window for reconstruction such that the current frame is placed at
the center of the window. Since SM3 reconstructs β frames for each
frame in the original light field video, there is a possibility of com-
bining the reconstructed frames to achieve higher quality. To this
end, we use a simple average operation over the β reconstructed 4D
light fields. We expect further improvement in reconstruction qual-
ity with a more sophisticated algorithm for combining the frames;
for instance by considering the image structure and features present
in light field views. The implementation of a more robust interpo-
lation algorithm is left for future work.

The optimal value of β is dependent on the frame rate of the light
field video and the amount of object movements of the scene be-
tween frames. In practice, for fast moving scenes, we set the value
of β to a small value, e.g. β = 3 as used in our experiments in Sec-
tion 4. For relatively stationary scenes, β can be set to a higher
value. Since the choice of β is independent of the hardware design
and only affects the reconstruction algorithm during post process-
ing, one can choose different values for β for distinct portions of
the light field sequence to achieve higher reconstruction quality.
We have left this extension of our method for future work.

To solve the reconstruction problems in (14), (15), and (16), cor-
responding to the sensing models SM1, SM2, and SM3, we use
the Smoothed-`0 (SL0) algorithm [MBZJ09]. Indeed any sparse
recovery algorithm [WNF09, PRK93, NV10, NT09, KXAH15] can
be used for this purpose. However, we found SL0 to have a better
trade-off between reconstruction quality and speed.

4. Results

We present our simulation results using the light field video data set
of [GjLG18]. The data set consists of three light field sequences,
where in two of them the camera is stationary and the objects are
moving, Boxer-Gladiator-Irish and Chess, and one sequence where
the objects are stationary and the camera moves around, which
we call Chess-moving. The data sets are captured using a Raytrix
R8 camera at a frame rate of 30 frames per second, where each
frame consists of 5×5 light field views. For training the dictionary,
we chose frames 490–500 from Boxer-Gladiator-Irish and frames
210–220 from Chess. Note that no frame from Chess-moving was

[MWBR13] [MUG18] Ours (SM3) Reference

Figure 6: Reconstruction results using a monochrome sensor with
a color-coded mask for the Boxer-Gladiator-Irish data set. The top
image is the reconstruction with our method (SM3) including inter-
polation between the reconstructed frames as explained in Section
3.5. For quantitative results see Table 2. Error insets have a 5x in-
tensity scaling to facilitate comparisons.

included in the training set. The reconstruction for our method and
all the methods we compare to was performed on frames 400–404
of Boxer-Gladiator-Irish, frames 15–19 of Chess, and frames 400–
404 of Chess-moving.

The patch size for training and testing was set to s× t = 7× 7
for the spatial domain, u× v = 5×5 for the angular domain, λ = 3
for the spectral domain, and β = 3 for the temporal domain. We
placed the current frame in the center of the window to include
backward and forward temporal movements. The size of the win-
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[MWBR13] [MUG18] Ours (SM3) Reference

Figure 7: Reconstruction results using a CFA-equipped sensor with
a color-coded mask for the Chess data set. The top image is the
reconstruction with our method (SM3) including the averaging of
the reconstructed frames as explained in Section 3.5. For quantita-
tive results see Table 2. Error insets have a 5x intensity scaling to
facilitate comparisons.

dow can be adapted based on the movements in the scene. For light
field sequences with rapid scene or camera movements, one should
choose a smaller value for β, and vice versa. We found that β = 3
is sufficient for our data sets. The batch size for dictionary training
was set to 6000 and we performed 40 iterations. Additionally, the
training sparsity value was set to τ = 10. We used the SPAMS li-
brary [MBPS10] to perform the training with OMP [PRK93] as the
sparse coding method.

The camera is simulated with two sensor designs, as explained
in Section 3, where a color-coded mask is placed at a distance
from a CFA sensor or a monochrome sensor. The sensed RAW

Monochrome Sensor
Data Set Boxer Chess
Algorithm SSIM PSNR(dB) SSIM PSNR(dB)
[MWBR13] 0.4909 21.18 0.3954 19.87
[MUG18] 0.8426 27.31 0.8832 28.75
Ours (SM3) 0.9500 33.07 0.9619 34.49

CFA Sensor
Data Set Boxer Chess
Algorithm SSIM PSNR(dB) SSIM PSNR(dB)
[MWBR13] 0.9265 30.74 0.9443 32.15
[MUG18] 0.9504 34.29 0.9627 35.76
[IKT∗18] 0.9608 33.08 0.9682 33.53
Ours (SM3) 0.9824 40.29 0.9860 41.23

Table 2: Reconstruction results for 5 frames of Boxer and Chess
data sets using monochorome and CFA-equipped sensors with a
color-coded mask. Non-overlapping patches of size s× t×u× v×
λ×β = 7×7×5×5×3×3 were used.

Chess-moving with CFA Sensor
Method Ours (SM3) [MWBR13] [MUG18] [IKT∗18]
PSNR 39.91dB 35.27dB 38.14dB 37.53dB
SSIM 0.9863 0.9722 0.9817 0.9843

Chess-moving with Monochrome Sensor
Method Ours (SM3) [MWBR13] [MUG18]
PSNR 34.55dB 19.27dB 31.25dB
SSIM 0.9693 0.2421 0.9388

Table 3: Reconstruction results for Chess-moving data set us-
ing monochorome and CFA-equipped sensors with a color-coded
mask. We used non-overlapping patches of size s×t×u×v×λ×β

= 7×7×5×5×3×3.

2D images for each setup is shown in Figure 3. For random en-
tries in the sensing matrix, which are independent and identically
distributed (i.i.d.), we use a Gaussian distribution with zero mean
and a variance of one. A comparison of different distributions and
their effect on the reconstruction quality is presented in [MUG18].
We tested our method on all three data sets, and the results re-
ported here are an average over the PSNR and SSIM [WBSS04] for
all reconstructed frames. We compared the result of our proposed
sensing model SM3 with the previous state-of-the-art methods on
compressive light field camera designs, in particular [MWBR13],
[MUG18], and [IKT∗18].

Table 1 represents the reconstruction result for Boxer-Gladiator-
Irish and Chess data sets for both monochrome and CFA sen-
sors. To have a fair comparison with [MWBR13], which uses a
monochrome mask, we applied both our color sensing matrix (9),
as well as a monochrome sensing matrix applied to each color chan-
nel, as described in [MWBR13]. For comparison with [MUG18],
we used their proposed sensing matrix similar to (6) for CFA sensor
and for monochrome sensor we used sensing matrix of (9). To com-
pare with the deep learning method of Inagaki et al. [IKT∗18], we
trained their proposed network with a spatial patch size of 64×64
on the same training set that was used for training the dictionaries
of our method, [MWBR13], and [MUG18]. We applied all three
methods on each frame of the light field video individually to re-
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Figure 8: Chess-moving data set reconstructed with our proposed
method (SM3) that utilizes a color-coded mask and a CFA-
equipped sensor. For quantitative results see Table 3. Error insets
have a 5x intensity scaling to facilitate comparisons.

construct the sequence. Note that the results reported here take into
account the first and last frames of the video, where our method has
fewer samples available for the reconstruction. Indeed, our results
can be improved if the border frames are ignored, or if we pad the
video with extra frames.

Figure 6 and Table 2 present the qualitative and quantita-
tive results of our reconstruction from the RAW 2D image of a
monochrome sensor in comparison to [MWBR13] and [MUG18].
Note the high accuracy in the reconstruction of details around the
edges and high-frequency regions with reflections using our pro-
posed method. It should be pointed out that the method of Inagaki et

[IKT∗18] [IKT∗18] Ours (SM3) Ours (SM3) Reference

Figure 9: Visual comparison of our method using SM3 versus In-
agaki et al. [IKT∗18] for three data sets: Boxer-Gladiator-Irish,
Chess, and Chess-moving; shown from top to bottom, respectively.
For quantitative results see tables 2 and 3. Error insets have a 5x
intensity scaling to facilitate comparisons.
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Figure 10: The effect of temporal window size, β, on the recon-
struction quality of the Boxer-Gladiator-Irish data set for both de-
signs using a monochrome sensor and a CFA-equipped sensor.

al. [IKT∗18] does not support a monochrome sensor, hence it is not
included in these results. The method of Marwah et al. [MWBR13]
using a monochrome sensors with the color-coded mask cannot re-
cover any color information as their proposed dictionary does not
contain spectral information in its atoms. The method of Miandji et
al. [MUG18] recovers signal reasonably well; however, the results
are blurry and there exists severe color artifacts in high-frequency
regions such as edges where the foreground and background meet.
The PSNR of our method is on average 5.8dB higher than the state-
of-the-art, a highly significant advantage. This is also confirmed
with SSIM.

We also tested our proposed method using a CFA-equipped sen-
sor, see Fig. 7 and Table 2. Our method shows sharper images
without noise-like artifacts when compared to [MWBR13] and
[MUG18]; see the supplementary video for temporal coherency of
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the reconstructed light field videos for each algorithm. In this ex-
ample, our method on average has 5.9dB higher PSNR than the
state-of-the-art, showing the effectiveness of our method regard-
less of the sensor design. Although the reconstruction quality of
the monochrome sensor is much lower than the CFA-equipped sen-
sor, the compression ratio of the former design is much higher,
which can be useful for e.g. fast transmission of the captured data.
In particular, since the color components are convolved into a sin-
gle scalar using a monochrome sensor, capturing a light field using
this design leads to three times less samples than a CFA-equipped
sensor design.

To evaluate the robustness of our algorithm to a fast moving
scene or camera, we use the Chess-moving data set where the ob-
jects are stationary but the camera moves around. As a result, there
are large pixel displacements on light field images, moving from
one frame to the another. Table 3 summarizes the results of our
reconstruction in comparison to the state-of-the-art, and Figure 8
compares the visual quality of the reconstructions. Even though this
data set is very challenging, it can be seen that our method faith-
fully recovers the light field video. Moreover, for both monochrome
and CFA sensors, our PSNR is about 2.0dB to 3.4dB higher than
[MUG18]. See the the supplementary video for the advantages of
our method with respect to temporal coherency of the reconstructed
light field video in comparison to prior work.

Figure 9 illustrates the comparison of our method with the
method of Inagaki et al. [IKT∗18] on all three data sets: Boxer-
Gladiator-Irish, Chess, and Chess-moving, as shown from top to
bottom, respectively. As it can be seen in the figure, specially in the
false-color error insets, the reconstruction results using [IKT∗18]
have blurring artifacts and pixel shifts around sharp edges, e.g.
where foreground and background meet, as well as the areas in the
background with text.

Figure 10 demonstrates the effect of the temporal window pa-
rameter, β, on the reconstruction quality for the Boxer-Gladiator-
Irish data set. We changed the window size to include 2 to 5 con-
secutive frames in the reconstruction of the light field data set. As it
can be seen, the reconstruction quality increases when more frames
of the video are included. However, there is only a slight difference
between the quality of reconstruction for β = 4 when compared to
β = 5. Furthermore, the computational complexity increases when
more frames are used in the reconstruction since the signal dimen-
sionality increases. As a result, the temporal window size provides
a trade-off between the reconstruction quality and the computa-
tional complexity. Note that since β is only used during the recon-
struction, we can change the window size without modifying the
camera design.

With regards to the computational complexity, on average, our
algorithm takes 89 minutes to reconstruct a frame using SM3 in
Eq. (16) when a monochrome sensor is used. For the same setup
but with a CFA-equipped sensor, the reconstruction takes about 143
minutes. Note that since the resolution of the data sets we used is
the same, the computation time for the full reconstruction of each
data set is about the same. The timing results were obtained using
a consumer-level desktop PC with a Ryzen 3600 CPU running at
4.0GHz.

[IKT∗18] [MUG18] [MWBR13] Ours (SM3) Reference

Figure 11: Visual comparison of reconstructed Animated Bunnies
data set using a CFA-equipped sensor.

Method [IKT∗18] [MUG18] [MWBR13] Ours (SM3)
PSNR(dB) 22.95 25.04 23.93 27.07

SSIM 0.8100 0.7655 0.7536 0.8444

Table 4: Reconstruction results of the Animated Bunnies data set
for CFA-equipped sensor.

5. Limitations and Future Work

One of the limitations of compressed sensing methods for mask-
based light field photography is the requirement for a small base-
line between the neighboring views. Indeed, this is not a limi-
tation in practice since the hardware implementation of a light
field camera using a coded mask does not admit a large baseline
[MWBR13]. Regardless, to test the limits of our proposed recon-
struction method, we also use a synthetic data set with a relatively
large baseline, namely the Animated Bunnies data set [WLHR12].
The results are summarized in Figure 11 and Table 11. We see that
our method significantly outperforms previous algorithms. How-
ever, comparing the PSNR of our method in Table 11 with those in
e.g. Table 2, we see that the synthetic data set results in a much
lower image quality. We also associate this with the pixel-wide
sharp edges between the foreground and background, which does
not happen for natural light fields.

Since we vectorize each 6D light field video patch, the size of the
resulting vector is typically large, e.g. n = 7×7×5×5×3×3 =
11025 for the light field videos we used here. If the dictionary
is two times overcomplete, then D ∈ R11025×22050. Such a large
dictionary negatively affects the computational complexity of the
reconstruction algorithm. We propose two solutions to reduce the
computation time, which are left for future work. First, optimized
GPU implementations of the reconstruction algorithm, e.g. SL0 or
similar techniques, can greatly reduce the reconstruction time. Up
to 70x speedup has been reported for a variety of sparse recovery al-
gorithms using a GPU implementation [BT13,FCWH11,BMU19].
Second, one can use a multidimensional dictionary, e.g. [MHU19],
where an orthogonal dictionary is trained for each dimension of the
light field. For instance, according to the example above, we will
have two 7× 7 dictionaries for the spatial domain, two 5× 5 dic-
tionaries for the angular domain, one 3×3 dictionary for the spec-
tral, and a 3× 3 dictionary for the temporal domains. This indeed
greatly reduces the size of the dictionary, and hence the computa-
tional complexity.

Recovering a light field video can be challenging for scenes with
extreme fast movement of the objects or the camera. One solution
would be to estimate the disparity or flow information from the
coded measurements formed on the sensor and use them in the re-
construction. Such information can also help us in deriving an effi-
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cient method for combining the reconstructed frames to form a final
frame of a light field video, as described in Section 3.5. Another di-
rection for future work is to adaptively find the optimal number of
consecutive frames, β, for faithful reconstruction. Since this param-
eter only affects the post-processing, i.e. the reconstruction, there
is no need for changing the camera design based on β.

6. Conclusions

This paper presented a novel method for single-sensor compressive
acquisition of light field video. A random color mask is placed in
front of the sensor and moved randomly using a piezo motor prior
to each frame capture. Given each captured 2D image and the cor-
responding mask, we formulate various sensing models to recover
the full 6D light field video. We demonstrated that the use of tem-
poral information in the dictionary training and the sensing model
greatly improves the reconstruction quality with minimal temporal
artifacts. Moreover, the proposed method was formulated for both
monochrome and CFA-equipped sensors. We confirmed our find-
ings by comparing our algorithm with the state-of-the-art methods
and using various distinct data sets. Finally, since hardware imple-
mentation of mask-based light field photography has been success-
fully realized [MWBR13], and that we use the same input data
as [MWBR13], we believe that our framework can be utilized in
practice for efficient light field video cameras.
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