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Abstract

3D point cloud acquisition has become a common practice in the AEC Industry (Architecture, Engineering and Construction). With the emer-
gence of BIM (Building Information Modeling), more and more industrials are interested in creating an ”as-built” CAD model of their facilities.
The transition from point cloud to a digital model is currently an extremely tedious task due to the large volume of data and the uniqueness of each
scanned environment. Many researches are directed towards an automatic extraction of structural and piping elements of increasing complexity.
The result however, is a geometry devoid of meaning, or a semantic classification of specific objects in very limited number.

In this article, we highlight the context and industrial needs for a generic object reconstruction method and we present the state-of-the art
of manual and automatic methods. We then propose a semi-automatic reconstruction method combining semantization with 3D digitization of
objects.

We review the most recent methods for each operation. Finally, we identify and discuss the technological gaps that need to be addressed in our
future research.

c© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019.
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1. Introduction

3D surveys are accurate, almost exhaustive, and done in a
limited time. Most of the time, they are generated using a ter-
restrial laser scanner(TLS) that rotates to capture the elements
in the scene at a rate of several hundred thousand points per
second. Point cloud is an excellent information carrier and as
a visualization aid, it provides the possibility to examine a lo-
cation remotely from multiple viewpoints. The points can be
manipulated, hidden, colorized, removed - pushing the limits
of human perception. Point clouds allows distance and surface
flatness measurement [2] even on humanly inaccessible areas -
allowing companies to carry out prefabrication operations. Es-
pecially in the industrial sector, a lot of ressources are wasted
when technicians have to go on site to perform control mea-
surements [3].
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Still the true potential of 3D surveys is on the information
enrichment and the recognition of objects to 3D computer-aided
design (CAD) model of the scene [1]. Indeed for the last decade,
point clouds acquisition have significantly aided the expansion
and democratization of BIM (Building Information Modelling)
among professionals of architecture and civil engineering.

1.1. ”As-Built” BIM

The BIM is a process based on information transactions and
requires collaborative workflows. It works with a digital rep-
resentation for physical and functional characteristics of build-
ings. [13] describes ”As-Built” BIM as a BIM representation
of a building at the moment of the 3D survey. One could use
the terms ”As-Existing” or ”As-Is” instead of ”As-built”, as a
building could suffer from deformations in its life cycle and in-
deed be different from the time it has been built.

As-built spatial modelling for facilities is the process of cap-
turing the infrastructure spatial data and transforming it into
a structured, object-oriented representation. [7] describes this
transformation with 3 major steps :

• Geometrical modelling of building elements.
• Integrating semantic information with each element.2212-8271 c© 2019 The Authors. Published by Elsevier B.V.
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• Establishing relationships between elements.

This representation is suitable for generating useful informa-
tion valuable to architects, engineers, constructors, owners, in-
spectors and maintainers. A project’s stakeholders can use spa-
tial modelling in order to solve complex problems such as
identifying deviations from design, quantity take-off, real-time
monitoring of construction progress, project management, and
3D/4D simulation, maintenance, during different phases of a fa-
cility’s life cycle.

1.2. Problem statement

1.2.1. Business Issues
Building owners or industries usually appoint scanning ser-

vice providers to scan their facilities and register clouds to
form a coherent representation. As the process of conversion
to an ”As-Built” CAD model is an laborious and manual task
[7][15], service providers often call on modelling campanies in
an abroad country with cheaper labor cost. This 2-stages course
of action often results in lost of communication, errors and
overmodelling. Bringing modellisation to building stakehold-
ers would grant them flexibility for small and medium-sized
project where current ”scan to BIM” processes often disregard
them [5]. ”Scan to BIM” is a term given to the survey process
of capture to model. [4] describes this concept as wrongly for-
mulated because the end result is not BIM but a 3D parametric
model that assists the BIM process at its current level of devel-
opment.

1.2.2. Technical Issues
In this paper, we qualify as point cloud, data delivered by

terrestrial laser scanner (TLS), not handheld laser scanner nor
aerial LiDAR nor CMM oriented laser scanner.

Their are several challenges going along 3D Reconstruction
from point clouds such as:

• The high variation of point density [6]
• The inaccuracy of the input data [29] (digital noise from

the scanner or scanned environment) due to the presence
of :

– specular surfaces [9],
– moving objects [11],
– registration errors [8]
– the type of material of scanned surface[10]

• Occlusion and clutters which inherently implies to deal
with partial data [12].
• The diversity of elements present in industrial environ-

ments.
• Distinguishing elements that have similar shape. One can

take the example of a wall and a partition wall, both el-
ements are flat and vertical surfaces with a close texture.
Nevertheless for a building professional making a dis-
tinction between these two elements is paramount.

1.3. Aim and structure

In section 2, a review of the current 3D reconstruction meth-
ods, manual, semi-automatic and automatic, to BIM object is
drawn. Section 3, describes a semi-automatic reconstruction
method combining semantization with 3D digitization of ob-
jects. We sub-divide the process into four steps:

• A semantic enrichment by a Tag from the user.
• Corresponding the semantic entity to a constrained

graphs describing the topological relations of the prim-
itive forms.
• Modelling of geometric primitives.
• Adjustment of the CAD object.

2. Related Work

In this section, we review the different forms of represen-
tation to describe an object. We then assess reconstruction
method per their level of automation, manual, automatic and
semi-automatic.

2.1. Representing the shape of objects

Similar to the work presented in [7] and in [13], in the con-
text of ”As-Built” BIM, shape description of object can be sep-
arated in three aspects: parametric or non-parametric, global or
local, explicit or implicit.

• Parametric vs. non-parametric representation With a
parametric representation, the shape is described with a
small number of parameters. [7] gives as an example,
a cylinder represented non-parametrically with a trian-
gle mesh. In the heritage sector, meshes are used to di-
rectly convert cloud of points to CAD Design [20]. In-
deed ornaments or deterioration over time on a struc-
ture, with sometimes a significant geometric complexity,
makes it hard to model with a parametric representation,
even though HBIM process (Historic Building Informa-
tion Modelling) introduced in [21], proposed a library of
parametric architectural objects.
• Local vs. Global representation

Local representation describes a portion of an ob-
ject which parametric representations are often associ-
ated. Intensive researches has been done on local sur-
face feature based methods for 3D object recognition
[24][26][25][23][27][28]. These methods generally con-
sist of three phases :

– 3D keypoint detection [25] are points of a shape
that are prominent according to a particular defini-
tion to recognize or classify point clouds at different
scales.

– local surface feature description which consist of
encoding geometric information on a point or
within its neighborhood.

2
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– surface matching which contains three steps, i.e,
feature matching, hypothesis generation and veri-
fication [24].

For global representations, the area of interest includes
the object as a whole, this has the consequence of hav-
ing a detection sensitive to occlusions. Generally meth-
ods adopting global descriptors expect to have properly
segmented and complete objects, which is certainly not
the case in a industrial environment.
• Explicit vs. implicit representation

Explicit representation is a direct encoding of the
shape of the object (i.e. polygon mesh, bezier surfaces,
NURBS, B-Rep, CSG).
Implicit representation allows an indirect encoding for
the shape of the object, using an intermediate represen-
tation.

In industrial environments, we assumed that most objects
under consideration can be well represented by a set of prim-
itive shapes(planes, spheres, cylinders, cones and tori). [61]

2.2. Manual Reconstruction Methods

As of today, the digital modelling of building and MEP (Me-
chanical Electrical and Plumbing) is a manual task and consid-
ered a particularly time-consuming, subjective [43], laborious
one requiring skilled operators. [16] [8] It needs importante ex-
pertise for an operator to interprete the scene, as well as enrich-
ing the model with semantic informations. Even with training,
results can differ from 2 operators.

Take for example the modelling of walls, since tracing the
points in a 3D space is difficult, the process consists of drawing
2D sketches, then extruding, using an orthophoto of a trimmed
point cloud as a guide. Usually this work is done using Au-
todesk Revit Architecture.

Another process of manual reviewed in [14], consist in an
operator stitching 3D surface with some algorithm help follow-
ing with identifying the object which is fitted after a proper
search in a database of standardized object. Then, as-built at-
tributes can be assigned manually.

2.3. Automated Reconstruction Methods

The focus of academic research has mainly been oriented
on algorithms aiming at automatic segmentation, modelling of
geometry and labeling of 3D LiDAR point clouds. Due to the
large size of collected point clouds, automatic algorithms is said
to be preferable to reduce the necessity of expensive and slow
human processing.

Their is a division of research between geometry detection,
which primarily focus on point cloud segmentation, and under-
standing, which primarily focus on object detection then lead-
ing on to model construction [4]. Researches are still on going
to join those two approaches into a multistage method for ge-
ometry reconstruction.

2.3.1. Indoor Modelling
Work reported from the literature can be classified into two

broad categories. One focus on the modeling of spaces [62] and
the other on the modelling of elements composing the building
[31] , i.e, walls and slabs [32]. [33], [17] and [58] use Condi-
tional Random Field (CRF) model that exploit contextual in-
formation to classify extracted planar patches to reconstruct a
semantic 3D models of indoor environements. Their approach
differs from other that rely on hard-coded rules represented by a
semantic network, such as strict orthogonal constraints between
walls and floors [44].

[59] developped an automatic indoor reconstruction method-
ology focusing on common rooms in modern construction.
With successive operations of ground plan detection, occlu-
sion labelling, opening detection and classification, the output
of the developed method consists of a set of labelled planar
patches (walls, ceiling, and floor), their connections with ad-
jacency maps and a set of openings detected within each planar
surfaces.

2.3.2. MEP Modelling
There has been a growing demand for the 3D reconstruction

of MEP (Mechanical Electrical Plumbing) elements, with his-
torically a focus on pipes and elbows.

The 3D reconstruction process of as-built pipelines has been
on manual interaction and interpretation which is difficult, re-
quiring skilled personnel with an high level of knowledge to
identify each pieces of pipeline only with their appearance in
the unstructured 3D point clouds (e.g., valves, pumps, heaters,
exchangers)[35].

There have been efforts over the last decade to automate this
process, [39] gives a review of automated as-built modeling
methods

2.4. Semi-automatic reconstruction

Work on interactive tools for point cloud focus on segmen-
tation and labeling. [55] proposes an approach where the user
can correct a segmentation performed by an automatic algo-
rithm using strokes. After the segmentation is completed, each
region is used to retrieve a matching 3D model from a database.

[54] presents a semi-automated method for shape detection
with a user-controlled segmentation. The lasso interaction is
improved by performing selection on points that suits a detected
shape.

[60] proposes a system allowing users to quickly and interac-
tively label the environment using a RGB-D camera in real-time
and through voice commands. Then a volumetric fusion algo-
rithm reconstructs the scene in 3D with additional color data.

3. Our contribution

In 2.3, we reported that current 3D ”As-built” reconstruc-
tion of building elements or MEP often lean towards automa-
tion with little or even no user intervention. In softwares, like
EdgeWise (Trimble), that offers automatic geometry retrieval,

3
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Fig. 1. Our method of an interactive semantic enrichment process

it goes as far as condemning skilled operators to an important
and dull backchecking task of errors commited by the machine.
The goal is ultimately to transform a point cloud directly to a
BIM-ready semantically-enriched CAD model.

However, due to the high complexity of industrial scenes and
the limitation of 3D scanners, manual intervention cannot be
avoided [56]. [52] adresses this problem as an interface prob-
lem, stating ”if a machine cannot meet the required accuracy
and needs continuous guidance and interaction with the user, as
valuable as it is to continue improving the learning component
of the system, it is important to make the existing algorithms ef-
ficiently interact with the currently inevitable human presence
in the loop”.

In this aspect, we raise the need of a more interactive seman-
tic enrichment process. We present here our semi-automatique
reconstruction method combining semantization with 3D digi-
tization of objects fig.1.

The process starts once a user selects a point in the cloud,
a precision parameter and a safety margin parameter, he can
label it as an object, e.g a wall. The wall is an object defined
in a knowledge database and is symbolized by a topological
graph of two parallel planes. From the selected point, a re-
gion of points is grown from which a model fitting algorithm
determines the best fitting plane. It is then added to a set of
primitives from which we compute a topological graph that is
compare to the knowledge database topological graph. Until a
match is found, we search for new primitives nearby and update
our graph.

We subdivide the process into four steps:

• Step 1 : Preprocessing
• Step 2 : Semantic enrichment by a Tag from the user.
• Step 3 : Multiple primitives reconstruction

– Step 3.1 Point cloud Segmentation.
– Step 3.2 Modelling of geometric primitives.

• Step 4 : From primitives to object using a knowledge
database

3.1. Step 1 : Preprocessing

The preprocessing consists in partitionning the unstruc-
tured cloud using an octree structure [41]. In his work, Wim-
mer presents an algorithm capable of displaying enormous

unprocessed point clouds at interactive rates by making use
of nested octrees and memory optimized sequential point
trees(MOSPT). MOSPT is an improved version of sequential
point trees(SPT)[50] which is a data structure that allows adap-
tive rendering of point clouds completely on the graphics card,
the point tree’s nodes are rearranged into a list, sorted by depth.
It allows access to different level of detail using indices of ar-
ray fig.2, i.e, gradually display points depending on the distance
between camera and the object.

In this octree form, all nodes are recursively split into eight
identical children, resulting in all nodes at the same depth being
the same size. We qualify as voxel, the cubic volume of deepest
nodes in octree. The voxel grid because of its spatial structure
allows rapid and easy searching for adjoining voxels.

Similar to the work of [40], which consists in an octree-
based region growing segmentation, we estimate three features
derived from the point distribution in each voxel, a normal vec-
tor, a barycentre and a residual value. We apply a Principal
Component Analysis to compute those features by first fitting
a plane characterized by its barycentre and its normal vector,
then evaluate the residual. The residual value has been intro-
duced with the work of [42] and is a scalar representation of the
surface curvature thus impacted by the noise data.

3.2. Step 2 : Semantic enrichment by a tag

We define as a tag, an annotation designating an object to
be reconstruct, and linked to a point on the cloud. Each tag is
unique and has hierarchical structure according to a system de-
composition, e.g. a radiator is a component which is part of a
branch which is part of the heat network, that runs through all
the buildings. Similar to the object hierarchy utilized in Revit,
object are decomposed into family, type, instance.

3.3. Step 3 : Multiple primitive reconstruction

For primitive reconstruction, we refer to Ahn’s book [38],
that presents algorithms for least squares orthogonal distance
fitting (ODF) of curves and surfaces. Orthogonal distance is
defined as the shortest geometric distance between the model
feature and the measurement points, it is use as the error mea-
sure to be minimized. Our approach to geometrical primitive
fitting is similar to Ahn’s object recognition procedure called

4
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Fig. 2. Representation of a cylinder with different level of detail with MOSPT ; a) 200 points = 5 per/cent total points ; b) 1000 points = 25 per/cent total points c)
4000 points = 100 per/cent total points

’Click & Clear’. It is an interactive process aiming at building
a parametric model of geometric primitives, by a iterative re-
fining scheme combining segmentation (Step 3.1) and model
fitting (Step 3.2). The model fitting is also preceded by an out-
lier operation and followed by an assessment of its parameters.
The model parameters obtained, define the form and the orien-
tation of the geometric primitives in space. The outlier detection
consist in excluding outliers from model fitting and focus on
calculating orthogonal distance with inliers as this calculation
is the time-consuming step in the procedure. Inliers are deter-
mined by testing if they belong inside a domain volume defined
around the model feature with a safety margin t, e.g, a sphere
has four parameters, position Xc,Yc,Zc of the center c and ra-
dius r of the sphere, the domain volume is defined between two
spheres of center c and radius r − t and r + t fig.3 .

The safety margin t is set by the user, it is intuitive by users
with a mechanical background. Indeed many segmentation or
model fitting methods employ a large number of parameters,
that are often not clear to the unexperienced user, and it needs
several attempts to find the best set of parameters [42]. Com-
pare to algorithms such as Random Sample Consensus [63] and
its extension(MLESAC, etc...), that are overwhelmingly recog-
nized as one of the fastest reconstruction algorithm, often used
in real time application, Ahn’s procedure has more analytical
and computation difficulties. However, because of its iterative
scheme of fitting parametric model, low-level model feature
(such as plane) are employed for parameter initialization, en-
abling a stable and robust convergence fig. 4. As a result of
this model hierarchy, the primitive reconstruction can be greatly
automated, leaving the seed selection to the user. Detection is
launch without specifically naming the type of primitive to be
fitted.

Ray tracing algorithm [45] is used to estimate which is the
closest point from where a user clicked. From this seed point,
an octree-based K-Nearest Neighbor algorithm [51] is launched
to create a small patch of points. It serves initializing the model
parameters through ODF algorithms, and the searching domain
volume.

In the iterative refining scheme, we exploit the octree spatial
decomposition to apply outlier detection and model fitting to

points inside the seed point voxel and its neighbors. To speed up
the process, we can grow a region of voxels by comparing their
features to the original seed point voxel and testing whether
or not their barycentre is inside the domain volume. When the
region can no longer be grown and the model fitting has been
reassess we reconsider boundary voxels as new seed voxel for
a new step of segmentation.

The number of points is certainly affecting the duration of
every operations of model fitting. In addition, detecting a high
variety of objects with different sizes is very challenging, even
more because of our interactive procedure and expectation of
performance as close to realtime as possible. In this aspect, we
propose to let the user specify the level of detail as a parameter,
i.e, the pourcentage of points for the fitting step by exploiting
MOSPT linear memory structure.

3.4. Step 4 : From primitives to object using a knowledge
database

Our motivation for a generic reconstruction procedure of se-
mantically enriched object relies on a priori geometric infor-
mation embedded in tags. This information characterizes the
geometric knowledge of an object and it’s congregate in an
knowledge database, e.g, I-shaped beam can be decomposed
in a set of planes with topological relationship between those
primitives.

In 2.1, we stated that a local implicit parametric shape rep-
resentation is best suited for our objects. We then derive it to a
topology graph similar to [61] describing the relations between
primitives shapes. For each primitive a vertex is inserted into
the graph, and are connected with an edge. Detection of an ob-
ject is reduced to a graph matching problem. For matching a
tagged object to its analogue in the object collection we try to
match subgraphs. Unlike [61] which defined their graph once
all shapes in the cloud are determined, our approach is interac-
tive, and all possible set of primitives shapes are not necessarily
established, therefore we need to construct our topology graph
in real-time. We need constant interactions between the knowl-
edge database and topology graph to assert matching between
the set of primitives.
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Fig. 3. Representation of a cylinder in a octree structure. purple dot : points black cross : barycenter of each voxels red circle : estimated cylinder model of radius r
blue circles : associated search domains r ± t

Fig. 4. Evolution of model feature from plane to cone or helix [38]

4. Conclusions

The reconstruction of objects by semantic enrichment is still
a developing field of research. As of today, current automatic
methods is used for specific tasks of indoor modelling or classi-
fication with a limited number of distinct objects. It is conceiv-
able that our approach may facilitate futur creation of labeled
datasets hence opening doors for artificial intelligence experts
to improve or create new models.

In this article, we have presented a methodology of object
reconstruction launched by a user annotation on point cloud.
We undeniably try to put forth the user with mechanical and/or
structural and/or piping and/or managerial background in the
center of industrial modelling. We oriented our approach to be
on par with needs of industrials and to overcome challenges
with laser data of their environment.
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