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Existence of multi-solitons for the focusing Logarithmic Non-Linear
Schrödinger Equation

GUILLAUME FERRIERE

IMAG, Univ Montpellier, CNRS, Montpellier, France
guillaume.ferriere@umontpellier.fr

Abstract

We consider the logarithmic Schrödinger equation (logNLS) in the focusing regime. For this equation, Gaussian
initial data remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally
stable solution. In this paper, we construct multi-solitons (or multi-Gaussons) for logNLS, with estimates in H1 ∩
F(H1). We also construct solutions to logNLS behaving (in L2) like a sum of N Gaussian solutions with different
speeds (which we call multi-gaussian). In both cases, the convergence (as t → ∞) is faster than exponential. We
also prove a rigidity result on these multi-gaussians and multi-solitons, showing that they are the only ones with
such a convergence.

1. INTRODUCTION

1.1. Setting

We are interested in the Logarithmic Non-Linear Schrödinger Equation

i ∂tu+
1

2
∆u+ λu ln |u|2 = 0, (1.1)

with x ∈ Rd, d ≥ 1, λ ∈ R \ {0}. This equation was introduced as a model of nonlinear wave mechanics and in
nonlinear optics ([5], see also [6, 23, 24, 25, 15]). The case λ < 0 (whose study of the Cauchy problem goes back
to [10, 22]) was recently studied by R. Carles and I. Gallagher who made explicit an unusually faster dispersion with
a universal behaviour of the modulus of the solution (see [7]). The knowledge of this behaviour was very recently
improved with a convergence rate but also extended through the semiclassical limit in [19]. On the other hand, the case
λ > 0 seems to be the more interesting from a physical point of view and has been studied formally and rigorously
(see for instance [14, 24]). In particular, the existence and uniqueness of solutions to the Cauchy problem have been
solved in [10]. Moreover, it has been proved to be the non dispersive case and also that the so called Gausson

Gd(x) := exp
(d

2
− λ|x|2

)

, x ∈ R
d, (1.2)

and its derivates through the invariants of the equation (translation in space, Galilean invariance, multiplication by a
complex constant) are explicit solutions to (1.1) and bound states for the energy functional. Several results address the
orbital stability of the Gausson as well as the existence of other stationary solutions and Gaussian solutions to (1.1);
see e.g. [5, 8, 14, 1]. In this article, we address the question of the existence of multi-solitons (i.e. multi-Gaussons),
but also the existence of multi-gaussians.

Remark 1.1 (Effect of scaling factors). As noticed in [7], unlike what happens in the case of an homogeneous nonlin-
earity (classically of the form |u|pu), replacing u with κu (κ > 0) in (1.1) has only little effect, since we have

i ∂t(κu) +
1

2
∆(κu) + λ(κu) ln |κu|2 − 2λ(lnκ)κu = 0.

The scaling factor thus corresponds to a purely time-dependent gauge transform:

κu(t, x) e−2itλ lnκ

solves (1.1). In particular, the L2-norm of the initial datum does not influence the dynamics of the solution.
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1.2. The Logarithmic Non-Linear Schrödinger Equation

The Logarithmic Non-Linear Schrödinger Equation was introduced by I. Białynicki-Birula and J. Mycielski ([5])
who proved that it is the only nonlinear Schrödinger theory in which the separability of noninteracting systems hold:
for noninteracting subsystems, no correlations are introduced by the nonlinear term. Therefore, for any initial data of
the form uin = u1in ⊗ u2in, i.e.

uin(x) = u1in(x1)u
2
in(x2), ∀x1 ∈ R

d1 ,∀x2 ∈ R
d2 , x = (x1, x2),

the solution u to (1.1) (in dimension d = d1 + d2) with initial data u|t=0
= uin is

u(t) = u1(t)⊗ u2(t)

where uj is the solution to (1.1) in dimension dj with initial data ujin (j = 1, 2).
They also emphasized that the case λ > 0 is probably the most physically relevant. For this case, the Cauchy

problem has already been studied in [10] (see also [9]). We define the energy space

W (Rd) :=
{

v ∈ H1(Rd), |v|2 ln |v|2 ∈ L1(Rd)
}

,

which is a reflexive Banach space when endowed with a Luxembourg type norm (see [8]). We can also define the
mass, the angular momentum and the energy for all v ∈W (Rd):

M(v) := ‖v‖2L2 , J (v) := Im

∫

Rd

v∇v dx, E(v) :=
1

2
‖∇v‖2L2 − λ

∫

Rd

|v|2(ln |v|2 − 1) dx.

Theorem 1.2 ([10, Théorème 2.1], see also [9, Theorem 9.3.4]). For λ > 0, for any initial data uin ∈ W (Rd), there
exists a unique, global solution u ∈ Cb(R,W (Rd)). Moreover the mass M(u(t)), the angular momentum J (u(t))
and the energy E(u(t)) are independent of time.

It is also worth noticing that there is an energy estimate at the level L2:

Lemma 1.3 ([10, Lemme 2.2.1]). For λ > 0, for any solutions u and v to (1.1) given by Theorem 1.2 with initial data
uin, vin ∈W (Rd) respectively, there holds for all t ∈ R

‖u(t)− v(t)‖L2 ≤ e2λ|t| ‖uin − vin‖L2 .

Another surprising feature of (1.1) is that any Gaussian data remains Gaussian ([5]).

Proposition 1.4. Any Gaussian initial data

exp
[d

2
− x⊤Ainx

]

,

with Ain ∈ Sd(C)
Re+ :=

{

M ∈Md(C),M
⊤ =M, ReAin ∈ Sd(R)

++
}

(where ⊤ designates the transposition),

gives rise to a Gaussian solution GA
in

to (1.1) of the form

BAin
(t, x) :=

(

detReA(t)

detReAin

)
1
4

exp
[d

2
− iΦ(t)− 1

2
x⊤A(t)x

]

, (1.3)

where A and φ satisfy

dA

dt
= −iA(t)2 + 2iλReA(t), A(0) = Ain, (1.4)

Φ(t) :=
1

2

∫ t

0
Tr(ReA(s)) ds− λ

2

∫ t

0
ln

(

detReA(s)

detReAin

)

ds− dλt.

Moreover, if λ > 0,
0 < inf

t
σ(ReA(t)) ≤ sup

t
σ(ReA(t)) < +∞.
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In parallel, we define their derivates through the invariants and the scaling effect:

BAin

ω,x0,v,θ
(t, x) := exp

[

i

(

θ + 2λωt− v · x+
|v|2
2
t

)

+ ω

]

BAin
(t, x− x0 − vt), t ∈ R, x ∈ R

d, (1.5)

For such data, the evolution of the solution is given by a single matrix ODE, which can even be simplified in
dimension 1 (see [7, 2, 18]):

Proposition 1.5. For any α ∈ C
+ := {z ∈ C,Re z > 0}, consider the ordinary differential equation

r̈α =
1

r3α
− 2λ

rα
, rα(0) = Reα =: αr, ṙα(0) = Imα =: αi.

It has a unique solution rα ∈ C∞(R) with values in (0,∞). Then, set

uα(t, x) :=

√

αr
rα(t)

exp
[1

2
− iΦ(t)− x2

2rα(t)2
+ i

ṙα(t)

rα(t)

x2

2

]

, t, x ∈ R, (1.6)

where

Φ(t) :=
1

2

∫ t

0

1

rα(s)2
ds+ λ

∫ t

0
ln
rα(s)

αr
ds− λt.

Then uα is solution to (1.1) in dimension d = 1.

Note that whichever the sign of λ, the energy E has no definite sign. The distinction between focusing or defo-
cusing nonlinearity is thus a priori ambiguous. However, in the previous case of Gaussian data in dimension 1, the
behaviour of rα (and then that of uα) has been proven to be sensibly different ([5, 7, 18]).

Proposition 1.6. If λ > 0, then rα is periodic. On the other hand, if λ < 0, then

rα(t) ∼
t→∞

2t
√

|λ| ln t.

For λ > 0, such solutions uα are almost periodic in time (up to a time-depending complex argument), which
motivates to call them (and their derivates through the invariants and the scaling effect) breathers. If those solutions
are in dimension 1, they can be tensorized in order to find other solutions (also called breathers) in higher dimension,
even though they may be not periodic in general (see [18]). However, in higher dimension d ≥ 2, in the general case,
the solutions (1.3) are not periodic (and not "almost" periodic) and cannot be put under the form of a tensorization
of breathers (1.6) in dimension 1 (already noticed in [5]). Therefore, all the functions (1.5) will be called (general)
Gaussian solutions to (1.1) in the rest of the article, even though breathers are obviously a particular case of general
Gaussian solutions.

Moreover, the ambiguity about the focusing or defocusing case has been removed in the general case by [8] (case
λ > 0) and [7] (case λ < 0). Indeed, in the latter, the authors show that all the solutions disperse in an unusually
faster way (in the same way as for the Gaussian case) with a universal dynamic: after rescaling, the modulus of the
solution converges to a universal Gaussian profile. On the other hand, it has been proved that λ > 0 is the focusing
case because there is no dispersion for large times thanks to the following result.

Lemma 1.7 ([8, Lemma 3.3]). Let λ > 0. For any k <∞ such that

Lk :=
{

v ∈W (Rd), ‖v‖L2 = 1, E(v) ≤ k
}

6= ∅,

there holds
inf
v∈Lk

1≤p≤∞

‖v‖Lp > 0.
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This lemma, along with the conservation of the energy and the invariance through scaling factors (with Remark
1.1), indicates that the solution to (1.1) is not dispersive, no matter how small the initial data are. For instance, its L∞

norm is bounded from below: to be more precise, there holds for all t ∈ R (see the proof of the above result)

‖u(t)‖L∞ ≥ exp
[

1− E(u(t))

2λM(u(t))

]

= exp
[

1− E(uin)

2λM(uin)

]

.

Actually, a specific Gaussian function (1.2) called Gausson and its derivates through the invariants of the equation
and the scaling effect,

Gdω,x0,v,θ(t, x) := exp

[

i

(

θ + 2λωt− v · x+
|v|2
2
t

)

+
d

2
+ ω − λ|x− x0 − vt|2

]

, t ∈ R, x ∈ R
d,

for any ω, θ ∈ R, x0, v ∈ R
d, are known to be solutions to (1.1) for λ > 0, as proved in [14] (and already noticed

in [5]). It has also been proved that other radial stationary solutions to (1.1) exist (see [4, 3, 14]), but the Gausson is
clearly special since it is the unique positive C2 stationary solution to (1.1) (also proved in [14, 32]) and also since it
is orbitally stable ([1], following the work of [8]).

Theorem 1.8 ([1, Theorem 1.5]). Let ω ∈ R. For any ε > 0, there exists η > 0 such that for all u0 ∈ W (Rd)
satisfying

inf
θ,x0

∥

∥

∥
u0 − eω+iθGd(.− x0)

∥

∥

∥

W (Rd)
< η,

the solution u(t) of (1.1) with initial data u0 satisfies

sup
t

inf
θ,x0

∥

∥

∥
u(t)− eω+iθGd(.− x0)

∥

∥

∥

W (Rd)
< ε.

Remark 1.9. Remark that
Gdω,x0,v,θ ≡ B2λId

ω,x0,v,θ
,

where Id is the identity matrix in dimension d. Indeed, 2λId is a constant matrix solution to (1.4).

Remark 1.10. In particular, we point out that solitary wave solutions for (1.1) (i.e. Gaussons) exist for ALL frequen-
cies, unlike NLS equations with polynomial-like nonlinearity for which the only possible frequencies are (at least)
non-negative. This is a consequence of the logarithmic nonlinearity, which satisfies

g(s) := −λ ln s −→
y→0

+∞,

unlike polynomial-like nonlinearity.

1.3. Main results

1.3.1. Existence of multi-Gaussons. It was observed and proved for the Korteweg-de Vries equation that, for a large
class of initial data, all solutions are global and eventually decompose into a finite sum of solitons going to the right
and a dispersive part going to the left [17, 31]. This type of behavior is thought to be generic for nonlinear dispersive
PDEs and this leads to the (Soliton) Resolution Conjecture, which (vaguely formulated) states that any global solution
of a nonlinear dispersive PDE will eventually decompose at large time as a combination of non-scattering structures
(e.g. a sum of solitary waves) and a radiative term.

Until recently, such conjecture had only been established for some integrable models, e.g. the Korteweg-de Vries
equation. The breakthrough approach introduced by Duyckaerts, Kenig and Merle allowed to prove this conjecture
for some non-integrable equations such as the energy-critical wave equation [16] or the equivariant wave maps to the
sphere [11]. It remains an open problem for most of the classical nonlinear dispersive equations.

The Soliton Resolution Conjecture motivates the study of multi-soliton solutions for nonlinear dispersive PDE,
i.e. solutions which behave at large time as a sum of solitons. Indeed, investigating the existence and properties of
solutions of dispersive equations made of a combination of non-scattering structures is a first step toward a proof of
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a Decomposition Conjecture, and multi-solitons are one of the simplest examples of a combination of non-scattering
structures.

Several methods are available to obtain multi-solitons. They have been first constructed for NLS in the one
dimensional cubic focusing case by Zakharov and Shabat [35] using the inverse scattering transform method (IST).
The IST is a powerful tool to study nonlinear dispersive equations and to exhibit non-trivial nonlinear dynamics for
these equations. However, the IST application is restricted to equations which are completely integrable, like for
example the Korteweg-de Vries equation and the cubic nonlinear Schrödinger equation in dimension 1. Moreover,
integrability probably does not hold for (1.1).

Another method to construct multi-soliton solutions of non-integrable equations was introduced by Martel, Merle
and Tsai [28] for generalized Korteweg-de Vries equations and later developed in the case of L2-subcritical nonlinear
Schrödinger equations [27, 29]. This method uses tools usually called energy techniques, in the sense that it relies on
the use of the second variation of the energy as a Lyapunov functional to control the difference of a solution u with the
soliton sum R. It was later fine-tuned to allow the treatment of L2 supercritical equations [13] and of profiles made
with excited states [12].

In this article, we show that this method for the construction of multi-solitons can be extended to a focusing loga-
rithmic nonlinearity, revealing the existence of multi-Gaussons for (1.1). We will denote by F the Fourier Transform
so that

F(H1)(Rd) =
{

v ∈ L2(Rd), ‖|x| v‖L2 <∞
}

is a Hilbert space with its usual scalar product.

Theorem 1.11 (Existence of multi-Gaussons). Consider λ > 0,N ∈ N
∗, d ∈ N

∗ and take (vk)1≤k≤N and (xk)1≤k≤N
two families in R

d, (ωk)1≤k≤N and (θk)1≤k≤N two families of real numbers. Define

v∗ := min
j 6=k

|vj − vk|, Gk := Gdωk,xk,vk,θk
.

If v∗ > 0, then there exist a unique solution u ∈ Cb(R,W (Rd)) ∩ L∞
loc(R,F(H1)(Rd)) to (1.1) and T ∈ R such

that ∀t ≥ 0,
∥

∥

∥
u(T + t)−

N
∑

k=1

Gk(T + t)
∥

∥

∥

H1∩F(H1)
≤ e−

λ(v∗t)
2

4 . (1.7)

In particular, there exists C > 0 (depending on λ, v∗ and T ) such that

∥

∥

∥

∥

∥

u(t)−
N
∑

k=1

Gk(t)

∥

∥

∥

∥

∥

H1∩F(H1)

≤ C e−
λ(v∗t)

2

8 , ∀t ≥ 0.

Several features are new for this case and should be pointed out.
First, for NLS with a nonlinearity of the form g(|u|2)u, the nonlinearity should usually satisfy a flatness property

at 0 for such a result (for example in [12]: g(0) = 0 and lims→0 s g
′(s) = 0). Here, the nonlinearity in (1.1) is not flat

at all at 0: even more, it is not even defined at 0 since we gave here g = −λ ln and

g(s) −→
s→0+

+∞, s g′(s) = λ ∀s > 0.

The convergence rate of the solution to the sum of solitons is also very interesting. The convergence rate for NLS
with polynomial-like nonlinearity is exponential, whereas it is "Gaussian-like" here, which is much faster. Moreover,
it does not depend on the frequencies of the solitons anymore (even though T does), unlike in [12].

Such features may be surprising at first sight. However, they can be explained by the decay at infinity of the
Gaussons. Indeed, in the same way as for the convergence rate, the decay of the solitons at infinity is usually expo-
nential, with a rate depending on its frequency, whereas the solitons for (1.1) are the Gaussons, in particular Gaussian
functions, whose decay at infinity is much faster and independent of their frequencies (up to a multiplicative constant).
Moreover, the nonlinearity is still smooth enough: it is smooth far from the vacuum and, near the vacuum, u ln |u|2
remains almost lipschitz.
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Remark also that the convergence is in H1(Rd) ∩ F(H1(Rd)). Hence the same convergence rate holds in the
energy space W (Rd) since it is known that

H1(Rd) ∩ F(H1(Rd)) ⊂W (Rd).

We can compare this to the case of a subcritical nonlinearity, where the convergence is also proved in the energy space
for such an equation, i.e. "only" H1.

Remark 1.12. Theorem 1.11 does not say that, as soon as we fixed all the parameters, the multi-Gausson is unique.
However, there is a unique multi-Gausson which satisfies the convergence rate property (1.7) (for those parameters).
Indeed, any other multi-Gausson v would satisfy for all t ≥ T1

∥

∥

∥

∥

∥

v(t)−
N
∑

k=1

Gk(t)

∥

∥

∥

∥

∥

L2

≥ C1 e
−2λt.

for some constant C1 > 0 and some time T1 (see Lemma 6.1). Therefore, it is a rigidity property.

1.3.2. Existence of multi-breathers and multi-gaussians. The Gaussons are not the only non-scattering structures that
we are aware of for this equation: we have excited states, but we also have breathers and more generally gaussian
solutions. Thus, the (Soliton) Resolution Conjecture also motivates the study of multi-gaussians. However, those
breathers and gaussian solutions are not bound state for the energy E, and then the same energy techniques cannot be
applied. Nevertheless, the method used to find the L2 estimate for the multi-Gaussons for (1.1) does not involve the
energy: such a method can be tuned in order to fit with these multi-gaussians.

Theorem 1.13 (Existence of multi-gaussians). Consider λ > 0,N ∈ N
∗, d ∈ N

∗ and take (vk)1≤k≤N and (xk)1≤k≤N
two families in R

d, (ωk)1≤k≤N and (θk)1≤k≤N two families of real numbers, and (Ain
k )1≤k≤N a sequence of complex

matrices in Sd(C)Re+. Define Ak(t) the solution to (1.4) with initial data Ain
k and

v∗ := min
j 6=k

|vj − vk|, Bk := B
Ain

k

ωk,xk,vk,θk
, σ− :=

1

2
inf
t,k
σ(ReAk(t)) > 0.

If v∗ > 0, then there exist a unique solution u ∈ Cb(R,W (Rd)) to (1.1) and T ∈ R such that ∀t ≥ 0,

∥

∥

∥
u(T + t)−

N
∑

k=1

Bk(T + t)
∥

∥

∥

L2
≤ e−

σ−(v∗t)
2

4 . (1.8)

In particular, there exists C > 0 (depending on λ, v∗ and T ) such that

∥

∥

∥

∥

∥

u(t)−
N
∑

k=1

Bk(t)

∥

∥

∥

∥

∥

L2

≤ C e−
σ−(v∗t)

2

8 , ∀t ≥ 0.

Remark 1.14. Remark that the convergence is only in L2 norm here, unlike the previous theorem for multi-Gaussons
where the convergence is in H1 ∩ F(H1). However, we do believe that a convergence in H1 ∩ F(H1) should hold,
but the energy techniques for such a proof do not hold, as already pointed out.

Remark 1.15. Again, the "uniqueness" of the multi-gaussians is subjected to the convergence rate property (1.8): any
other solution v would satisfy for all t ≥ T1

∥

∥

∥

∥

∥

v(t)−
N
∑

k=1

Bk(t)

∥

∥

∥

∥

∥

L2

≥ C1e
−2λt.

for some constant C1 > 0 and some time T1 (see Lemma 6.1) in the same way.
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1.4. Scheme of the proof and outline

Our strategy for the proofs of Theorems 1.11 and 1.13 is inspired from the works [27, 30, 13, 12]: we take a
sequence of time Tn → +∞ and a set of final data un(Tn) = B(Tn) where B :=

∑N
k=1Bk (in the case of multi-

Gaussons, Ain
k = 2λId like already pointed out in Remark 1.9). Our goal is to prove that the solutions un to (1.1)

(which approximate a multi-soliton) enjoy uniform H1(Rd) and F(H1(Rd)) (in the case of multi-Gaussons) or only
L2(Rd) (in the more general case) decay estimates on [T, Tn] for some T independent of n. Then, a compactness in
L2 is proved which shows that (un) (up to a subsequence) converges to a multi-soliton solution to (1.1).

For multi-Gaussons, like in [27, 13, 12], the uniform backward H1(Rd)-estimates rely on slow variation of local-
ized conservation laws as well as an H1(Rd) coercivity of the action around G up to an L2(Rd)-norm and is proved
through a bootstrap property. The main new difficulty for (1.1) compared to a subcritical polynomial-like nonlinearity
is that the energy E on which the action is constructed is not of class C2 because of the potential energy. However, a
weaker Taylor expansion holds, and thus the coercivity (in H1(Rd) up to an L2(Rd) norm) can still be proved.

Another new feature of the proof is that the uniform L2(Rd)-estimates can be found thanks to a more direct
computation from [18], inspired from [10, 7], performed in Section 2 (both for the multi-gaussian and the multi-
Gausson cases). Thus, for the Gaussons case, the bootstrap property is needed only for the homogeneous Ḣ1(Rd)-
norm. After proving the uniform H1-estimates property in Section 3, a similar improved computation as that for
the uniform L2(Rd)-estimate is performed for the uniform F(H1(Rd)) estimates in Section 4, which also gives
compactness in L2(Rd).

As for the multi-gaussian case, the compactness property is proved in Section 5 thanks to a virial argument, similar
to that in [27, 13, 12]. Eventually, the rigidity property for both cases is proved in Section 6 thanks to a consequence
of the L2 energy estimate (Lemma 1.3).

Notation

From now on, C will denote a positive constant which does not depend on anything and C0 a positive constant
which is independent of the time and of n (but may depend on other parameters). They also may change from line to
line. Moreover, all the functional spaces in space are in R

d, which will be implicit. For instance, we will denote by
L2, H1, F(H1) and W instead of L2(Rd), H1(Rd), F(H1(Rd)) and W (Rd). Furthermore, all the integrals will be
in R

d and all the sums will be from 1 to N , except if indicated.

2. UNIFORM L
2-ESTIMATES

2.1. Approximate solutions and convergence toward a multi-soliton

As already said, the proof follow the general scheme laid down by Martel, Merle and Tsai [28] for the Korteweg-de
Vries equation and adapted by Martel and Merle [27] in the case of nonlinear Schrödinger equation (we can also cite
for instance the works [30, 13, 12]). We choose an increasing sequence of times (Tn)n∈N with Tn → ∞ as n → ∞
and we define solutions un to (1.1) with final data un(Tn) = B(Tn) where B :=

∑

Bk with Bk := B
Ain

k

ωk,xk,vk,θk
. In

the Gaussons case, we take Ain
k = 2λId so that B

Ain
k

ωk,xk,vk,θk
= Gdωk,xk,vk,θk

for all k (see Remark 1.9), and we may
also say Gk instead of Bk and G instead of B. Thanks to Theorem 1.2, we know that all un are well-defined and
global since B(Tn) is obviously in W , so un ∈ Cb(R,W ).

Our goal is to prove that un (called approximate multi-gaussian, resp. approximate multi-soliton in the Gausson
case) converges (up to a subsequence) to u, a multi-gaussian (resp. multi-soliton) solution to (1.1) which satisfies the
estimates of Theorem 1.13 (resp. 1.11). For this, we prove that the uns satisfy the same kind of decay estimate as in
(1.8) (resp. (1.7)) but only up to Tn.

2.1.1. Multi-gaussian case. As in [27, 12], Theorem 1.13 relies on two important propositions:

Proposition 2.1 (Uniform Estimates). There exists T ∈ R such that for all n ∈ N such that Tn > T and for any
t ∈ [0, Tn − T ],

‖un(T + t)−B(T + t)‖L2 ≤ e−
σ−(v∗t)

2

4 . (2.1)
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Proposition 2.2 (Compactness). There exists uin ∈W such that (up to a subsequence)

lim
n→∞

‖un(T )− uin‖L2 = 0.

Theorem 1.13 can then be easily proved thanks to Propositions 2.1 and 2.2.

Proof of Theorem 1.13. Let uin given by Corollary 2.2. Take the subsequence of (un) (still denoted (un)) such that
(un(T )) converges to uin in L2 as n → ∞ and let u ∈ Cb(R,W ) be the solution to (1.1) with initial data u(T ) =
uin ∈W given by Theorem 1.2. Then, thanks to Lemma 1.3, µn := u− un satisfies for all t ≥ 0 and n ∈ N,

‖µn(T + t)‖L2 ≤ ‖µn(T )‖L2 e
2λt.

By definition of µn and u, µn(T ) = un(T ) − uin → 0 in L2 as n → ∞. Therefore, for all t ≥ 0, the previous
inequality shows that un(T + t) → u(T + t) in L2 as n → ∞. Then, using Proposition 2.1 and taking the limit
n→ ∞ for any t ≥ 0, we get:

‖u(T + t)−B(T + t)‖L2 ≤ lim
n→∞

‖un(T + t)−B(T + t)‖L2 ≤ e−
σ−(v∗t)

2

4 .

The Uniform Estimates property 2.1 will be proved in Subsection 2.2, while Section 5 will be devoted to the proof
of the Compactness property 2.2. However, before that, we also look at the multi-soliton case.

2.1.2. Multi-soliton case. For the multi-soliton case, the same kind of properties will be proved, but the uniform
estimates are in H1 ∩ F(H1) norm, not only L2.

Proposition 2.3 (Uniform Estimates). There exists T ∈ R such that for all n ∈ N such that Tn > T and for any
t ∈ [0, Tn − T ],

‖un(T + t)−G(T + t)‖H1∩F(H1) ≤ e−
λ(v∗t)

2

4 . (2.2)

Like for the multi-gaussian case, we also need a compactness property. However, it obviously results from the
uniform estimates:

Corollary 2.4 (Compactness). There exists uin ∈ H1 ∩ F(H1) such that (up to a subsequence)

lim
n→∞

‖un(T )− uin‖L2 = 0.

Proof of Corollary 2.4. un(T ) is uniformly bounded in H1 ∩ F(H1) by taking t = 0 in (2.2), which yields the
conclusion since the embedding H1 ∩ F(H1) ⊂ L2 is compact.

Remark 2.5. Unlike this case, the compactness property is not as obvious in [27, 12] (or for the multi-gaussian case
above). Indeed, the uniform estimates are only in H1 there (or even in L2 for the multi-gaussian), whereas we also
have F(H1) here. Thus, the authors had to prove in there a uniform equicontinuity of the sequence (un) by using a
virial argument and the uniform estimates in L2. The same kind of proof will be used for Proposition 2.2.

Theorem 1.11 is then a corollary of Proposition 2.3 and Corollary 2.4. Its proof is totally similar to the proof of
Theorem 1.13, using the weakly lower semi-continuity of the H1∩F(H1)-norm. For this case, the uniform estimates
in L2 will also be proved in Subsection 2.2, in the same time as for the multi-gaussian case. As for the H1 and the
F(H1) uniform estimates, they will be proved in Sections 3 and 4 respectively.

2.2. Uniform L2-estimates

In [27, 13, 12], the uniform estimates in H1 for multi-solitons are found thanks to a bootstrap argument. Here,
the uniform estimates in L2 can be found without it, directly with a rough stability estimate thanks to the strong decay
of our solitons at infinity. This method can also be extended to the gaussian case, and we prove both cases in one
property:
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Proposition 2.6 (Uniform estimates in L2). There exists T ′ ∈ R such that for all n ∈ N such that Tn > T ′ and for
any t ∈ [0, Tn − T ′],

∥

∥un(T
′ + t)−B(T ′ + t)

∥

∥

L2 ≤ e−
σ−(v∗t)

2

4 .

Remark 2.7. We recall that the multi-soliton case is a particular case of multi-gaussian where we have taken Ain
k =

2λId, so that Ak(t) = 2λId. Thus, by definition of σ−, we get σ− = λ, which gives exactly the expected convergence
rate for multi-Gausson, at least for the L2 norm.

The computation used for this estimate is almost the same computation as that in [18]. Directly inspired from the
computation for the energy estimate in L2 found in [10], it is the consequence of the following lemma:

Lemma 2.8 ([10, Lemma 1.1.1]). There holds
∣

∣

∣
Im
(

(z2 ln|z2|2 − z1 ln|z1|2)(z2 − z1)
)
∣

∣

∣
≤ 2|z2 − z1|2, ∀z1, z2 ∈ C.

Indeed, for any integer N ≥ 1 and any solutions v, v1, . . . , vN to (1.1), the function w := v − V with V :=
∑

vj
satisfies:

i ∂tw +
1

2
∆w = −λ

(

v ln |v|2 −
∑

vj ln |vj |2
)

.

Therefore, there holds

1

2

d

dt
‖w(t)‖2L2 = −λ Im

∫

(

v ln |v|2 −
∑

vj ln |vj|2
)

(v − V ) dx

= −λ Im
∫

(

v ln |v|2 − V ln |V |2
)

(v − V ) dx− λ Im

∫

(

V ln |V |2 −
∑

vj ln |vj |2
)

(v − V ) dx

1

2

∣

∣

∣

∣

d

dt
‖w(t)‖2L2

∣

∣

∣

∣

≤ 2|λ| ‖w‖2L2 + |λ|
∫

∣

∣

∣
V ln |V |2 −

∑

vj ln |vj |2
∣

∣

∣
|w| dx

≤ 2|λ| ‖w‖2L2 + |λ|
∥

∥

∥
V ln |V |2 −

∑

vj ln |vj |2
∥

∥

∥

L2
‖w‖L2 .

Dividing by ‖w‖L2 , we obtain the inequality:

∣

∣

∣

∣

d

dt
‖w(t)‖L2

∣

∣

∣

∣

≤ 2|λ| ‖w‖L2 + |λ|

∥

∥

∥

∥

∥

∥

V ln |V |2 −
N
∑

j=1

vj ln |vj|2
∥

∥

∥

∥

∥

∥

L2

. (2.3)

The core of the problem is to estimate the last term in order to be able to perform a backward Gronwall lemma.
In the case where vj = Bj , this is an explicit term which can be estimated thanks to [18, Lemma 3.2] that we recall
here.

Lemma 2.9. For any d ∈ N
∗, there exists Cd > 0 such that the following holds. Let N ∈ N

∗ and take xk ∈ R
d,

ωk ∈ R, Λk ∈ Sd(C)
Re+ and θk : Rd → R a real measurable function for k = 1, . . . , N , and define for all x ∈ R

d

gk(x) = exp
[

iθk(x) + ωk − (x− xk)
⊤Λk(x− xk)

]

,

as well as
g(x) =

∑

k=1,...,N

gk(x).

If

ε :=

(

min
k 6=j

|xj − xk|
)−1

< ε0 := min

(

√

λ+

max(
√
δω + 1,

√
lnN)

,

√

λ−
d+ 2

)

where δω := max
j,k

|ωk − ωj|, λ+ = max
k

Re σ(Λk) and λ− = min
k

Re σ(Λk) > 0, then

∥

∥

∥

∥

∥

g ln|g| −
N
∑

k=1

gk ln|gk|
∥

∥

∥

∥

∥

L2

≤ CdN
3
2

λ+

ε
d
2
+1
√

λ−
exp

[

− λ−
4ε2

+max
j
ωj

]

. (2.4)
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To be able to apply Lemma 2.9, we need the gaussians to be "well separated" (which is given by the condition
ε < ε0). But this happens, eventually after some time

Tsep := max
k,j

ε−1
0 + |xk − xj|

v∗
,

where ε0 is defined in Lemma 2.9. Indeed, for all times t ≥ 0, there holds
∣

∣xj + vj(Tsep + t)− (xk + vk(Tsep + t))
∣

∣ ≥ ε−1
0 + v∗t. (2.5)

Then, we will also need to estimate the Gauss error function, which can be done in the usual way.

Lemma 2.10. For any y > 0 and γ > 0, there holds
∫ ∞

y

e−γx
2
dx <

1

2γy
e−γy

2
.

Proof of Lemma 2.10. We easily compute:
∫ ∞

y

e−γx
2
dx <

∫ ∞

y

x

y
e−γx

2
dx =

1

y

[

−e
−γx2

2γ

]∞

y

=
1

2γy
e−γy

2
.

Proof of Proposition 2.6. Thanks to (2.5) and the fact that 0 < σ− = inft,k σ(ReAk(t)) ≤ supt,k σ(ReAk(t)) <
+∞ with Proposition 1.4, we can apply Lemma 2.9 : for all t > 0,
∥

∥

∥

∥

∥

B(Tsep + t) ln
∣

∣B(Tsep + t)
∣

∣−
N
∑

k=1

Bk(Tsep + t) ln
∣

∣Bk(Tsep + t)
∣

∣

∥

∥

∥

∥

∥

L2(R)

≤ C0(ε
−1
0 + v∗t)

d+2
2 exp

[

−σ−(ε
−1
0 + v∗t)

2

4

]

≤ C0 exp

[

−σ−(v∗t)
2

4

]

. (2.6)

Take n large enough so that Tn > Tsep and set wn := un −G. (2.3) gives that for all t > 0,
∣

∣

∣
∂t
∥

∥wn(Tsep + t)
∥

∥

L2

∣

∣

∣
≤ 2λ

∥

∥wn(Tsep + t)
∥

∥

L2 + C0 exp

[

−σ−(v∗t)
2

4

]

.

The Gronwall lemma (backward in time) between t and Tn−Tsep for 0 ≤ t ≤ Tn−Tsep and the fact that wn(Tn) = 0
yields

∥

∥wn(Tsep + t)
∥

∥

L2 ≤ C0

∫ Tn

t

exp

[

−σ−(v∗s)
2

4
+ 2λ(s − t)

]

ds

≤ C0 e
−2λt

∫ ∞

t

exp

[

−σ−(v∗s)
2

4
+ 2λs

]

ds.

Then, we estimate the integral.
∫ ∞

t

exp

[

−σ−(v∗s)
2

4
+ 2λs

]

ds =

∫ ∞

t

exp

[

−σ−
(

v∗s

2
− 2λ

σ−v∗

)2

+
4λ2

σ−v2∗

]

ds

=
2

v∗

∫ ∞

t̃

exp

[

−σ−r2 +
4λ2

σ−v2∗

]

dr,

where t̃ := v∗t
2 − 2λ

σ−v∗
. Using Lemma 2.10, we get for all t such that t̃ = v∗t

2 − 2λ
σ−v∗

> 0

∫ ∞

t

exp

[

−σ−(v∗s)
2

4
+ 2λs

]

ds ≤ C0

t̃
exp

[

−σ−t̃2 +
4λ2

σ−v2∗

]

=
C0

t̃
exp

[

−σ−(v∗t)
2

4
+ 2λt

]

Hence, setting t1 := 4
v2∗

, we have for all n large enough and for all t ∈ [t1, Tn − Tsep]

∥

∥wn(Tsep + t)
∥

∥

L2 ≤ C0

t− t1
exp

[

−σ−(v∗t)
2

4

]

,

which leads to the result by taking T ′ > Tsep + t1 large enough.
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3. UNIFORM H
1-ESTIMATES

This section (and so is Section 4) is completely devoted to the multi-soliton case, i.e. Proposition 2.3, so that here
Bj = Gj are all Gaussons. However, since the Gausson is a particular case of gaussian solutions, the previous section
holds. Moreover, for Gaussons, we have Aj(t) = 2λId, thus σ− = λ here. Therefore, Proposition 2.6 gives here:

Proposition 3.1 (Uniform estimates in L2, multi-Gausson case). There exists T ′ ∈ R such that for all n ∈ N such
that Tn > T ′ and for any t ∈ [0, Tn − T ′],

∥

∥un(T
′ + t)−G(T ′ + t)

∥

∥

L2 ≤ e−
λ(v∗t)

2

4 .

The second step in order to prove Proposition 2.3 is to get the uniform estimates in H1. Since we already have it
for L2 (and we fix T ′ provided by Proposition 3.1), we need to prove it only for Ḣ1.

Proposition 3.2. There exists T > T ′ such that for all n ∈ N such that Tn > T and for any t ∈ [0, Tn − T ],

‖un(T + t, .)−G(T + t, .)‖Ḣ1 ≤ e−
λ(v∗t)

2

4 . (3.1)

The proof relies on a bootstrap argument. Indeed, from the definition of the final data un(Tn) and continuity of
un in time with values in H1, it follows that (3.1) holds on an interval [t†, Tn] for t† close enough to Tn. Then the
following Proposition 3.3 shows that we can actually improve it to a better estimate, hence leaving enough room to
extend the interval on which the original estimate holds.

Proposition 3.3 (Bootstrap Property). There exists T ′′ > T ′ and t∗ > 0 such that for all n ∈ R such that Tn > T ′′+t∗
and for all t† ∈ [t∗, Tn − T ′′], the following holds. If for all t ∈ [t†, Tn − T ′′] we have

∥

∥un(T
′′ + t)−G(T ′′ + t)

∥

∥

Ḣ1 ≤ e−
λ(v∗t)

2

4 , (3.2)

then for all t ∈ [t†, Tn − T ′′] there holds

∥

∥un(T
′′ + t)−G(T ′′ + t)

∥

∥

Ḣ1 ≤ 1

2
e−

λ(v∗t)
2

4 .

Remark 3.4. To be more precise, what we prove is the following: for all t† ∈ [0, Tn − T ′′], if for all t ∈ [t†, Tn − T ′′]
we have (3.2), then for all t ∈ [t†, Tn − T ′′] there holds

∥

∥un(T
′′ + t)−G(T ′′ + t)

∥

∥

2

Ḣ1 ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Therefore, we need some t∗ > 0 so that C0
t
≤ 1

4 for all t ≥ t∗ in order to have a true bootstrap argument.

In [27, 13, 12], the bootstrap argument to get the uniform estimates in H1 uses a modified action defined with
localized quantities (localization of the conserved quantities around each member/soliton). It is known that each
soliton gives only at most few negative L2 "bad directions" in the Hessian of the action and has an exponential decay
at infinity. Therefore the Hessian of this modified action is "almost coercive", up to an exponentially decreasing
function of time, and to some bad directions in L2 which are controlled either by modulation ([27] for instance) or
by controlling the L2-growth without the help of the Hessian ([12] for instance). Therefore one gets a slightly better
estimate in H1 than provided by the assumption.

Here, such an argument cannot be used directly: the energy is not C2 because of the appearance of a ln|v| term
from the potential energy, which is ill-posed in L(L2), and therefore we cannot have a Taylor expansion relation
between the modified action and its linearized. However, a weaker expansion of the potential energy (coming from
Lemma 3.17) can still be used, giving enough room to get an H1-coercivity up to an (almost) L2 norm, as shown in
Lemma 3.7.

From this proposition, the proof of Proposition 3.2 is then completely similar to those in [27, 12], and we refer to
them for more precision.
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3.1. The Bootstrap Property

The idea of the proof of the Bootstrap Property 3.3 is similar to that of [12], which is reminiscent of the technique
used to prove stability for a single soliton in the subcritical case (see e.g. [33, 34, 20, 21, 26]). Indeed, it is known
that the solitons Gj are critical points and even ground states respectively for the action functionals

Sj(v) := E(v) +
(

2λωj +
|vj |2
2

)

M(v)− vj · J (v).

In the previous articles, the Hessian of these functionals is coercive on a subspace of H1 of finite co-dimension in L2.
At large time, the components of the multi-soliton are well-separated and thus the analysis can be localized around
each soliton to gain anH1-local control, up to a space of finite dimension in L2, for the linearized. Thus the sum of the
localized functionals is (locally around G) H1-coercive up to some negligible terms and few directions in L2, which
can be controlled either by modulation of the invariants (for ground states) or by a better control of the L2-norm.

However, the fact of having few bad L2 directions is not necessary, in particular since we already have an L2-
estimate thanks to Proposition 3.1: the constructed functional Sloc, which is time-dependent and "slowly varies" for
all un (in a sense explained later), only need to satisfy the fact that there exists some K1 > 0 and K2 ∈ R such that
for all t large enough and for all v ∈W (possibly near G(t))

S(t, v)−
∑

j

Sj(Gj) ≥ K1‖w‖2H1 −K2‖w‖2L2 ,

with w := v −G(t).
This functional Sloc is constructed in a similar way as in the above articles. It requires the use of an action-

like functional, defined with quantities localized around each Gausson. For this, we need a localization procedure.
However, unlike in [27, 12] for example, we will not localize only in one dimension by taking a particular direction
in which all the speed components are well ordered. Indeed, such a tactics would lead to a slower convergence rate,
since the minimal relative speed in this direction would be smaller.

Take some T ′′ > T ′ and t∗ > 0 to be fixed later and take any n ∈ N such that Tn > T ′′ + t∗. Set again
wn := un −G. Let t† ∈ [t∗, Tn − T ′′] and assume that for all t ∈ [t†, Tn − T ′′] there holds

∥

∥∇wn(t′)
∥

∥

L2 ≤ e−
λ(v∗t)

2

4 , (3.3)

with the notation t′ := T ′′ + t. By Proposition 3.1, we know that there also holds

∥

∥wn(t
′)
∥

∥

L2 ≤ e−
λ(v∗(t+τ))2

4 , (3.4)

where τ := T ′′ − T ′.
Take φ : R → R a C∞ function such that φ(s) = 1 for all s ≤ −1, φ(s) = 0 for all s ≥ 1 and φ(s) ∈ [0, 1] and

−1 ≤ φ′(s) ≤ 0 for all s ∈ R. Therefore we define:

• the center of each Gausson
x∗j (t

′) := xj + t′ vj,

• functions ψj (1 ≤ j ≤ N ) with the j-th member weighted around the j-th Gausson:

ψj(t
′, x) := φ

(

∣

∣x− x∗j (t
′)
∣

∣− v∗t

2
− 2
)

for j = 1, . . . , N.

• A last function ψ0 completing the previous family so that (ψj)0≤j≤N is a partition of unity:

ψ0 := 1−
N
∑

j=1

ψj.
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×

×

×

ψ1 ≡ 1

ψ2 ≡ 1

ψ3 ≡ 1

×

×

×

x1(t)

x2(t)

x3(t)

v1

v2

v3

suppψ1

suppψ2

suppψ3

Figure 1: Schematic representation for the partition of unity (ψj) (in dimension 2). The support of ψ0 is given by the
horizontal lines.

With this definition, (ψj(t′))j is a (time-dependent) smooth partition of unity in space for t ≥ 0 as soon as T ′′ is
large enough (see Figure 1 for a schematic representation). We can now define localized quantities which will turn
out to be almost conserved: for j = 0, . . . , N and t ≥ 0, set

Mj(t
′, v) :=

∫

|v|2 ψj(t′) dx, Jj(t′, v) := Im

∫

∇v v ψj(t′) dx,

Ej(t
′, v) :=

1

2

∫

|∇v|2 ψj(t′) dx− λ

∫

|v|2(ln|v|2 − 1)ψj(t
′) dx.

We know that each Gj is well fitted for the action (for j = 0, take G0 = Gd, ω0 = 0 and v0 = 0)

Sj(v) := E(v) +
(

2λωj +
|vj |2
2

)

M(v)− vj · J (v).

Then, we also define as well localized actions (for j = 0, . . . , N ) by:

Sloc
j (t′, v) := Ej(t

′, v) +
(

2λωj +
|vj|2
2

)

Mj(t
′, v) − vj · Jj(t′, v).

Finally, we define a localized action-like functional for multi-solitons:

Sloc(t′, v) :=
∑

j

Sloc
j (t′, v) = E(v) +

∑

j≥1

(

2λωj +
|vj|2
2

)

Mj(t
′, v) − vj · Jj(t′, v).
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Our aim is to prove that Sloc(t′, v) is almost coercive around G(t′), but also that Sloc(t′, un(t
′)) slowly varies. To

be more precise, we will prove the two following propositions.

Proposition 3.5 (Almost-coercivity). If t∗ is large enough, then for all t ∈ [t†, Tn − T ′′],

Sloc(t′, un(t
′))−

∑

j≥1

Sj(Gj) ≥
1

2

∥

∥wn(t
′)
∥

∥

2

Ḣ1 + C0 t
−1e−

λ(v∗t)
2

2 .

Proposition 3.6 (Slow variations). For all t ∈ [t†, Tn − T ′′], there holds

Sloc(t′, un(t
′))−

∑

j≥1

Sj(Gj) ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Before proving these two propositions, we show how they lead to the Bootstrap Property 3.3.

Proof of Proposition 3.3. By (3.4) and Proposition 3.5, for all t ∈ [t†, Tn − T ′′]

∥

∥wn(t
′)
∥

∥

2

Ḣ1 ≤ 2
(

Sloc(t′, un(t
′))−

∑

j

Sj(Gj)
)

+ C0 t
−1e−

λ(v∗t)
2

2 .

Moreover, Proposition 3.6 yields

Sloc(t′, un(t
′))−

∑

j

Sj(Gj) ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Thus, combining this with the previous inequality, we get as soon as t∗ is large enough:

∥

∥wn(t
′)
∥

∥

2

H1 ≤ 1

2
e−

λ(v∗t)
2

2 , ∀t ∈ [t†, Tn − T ′′],

which gives the conclusion.

3.2. Almost-coercivity of the functional

We now prove Proposition 3.5, which requires to linearize the functional Sloc in terms of wn and G. However,
E is not C2 because of its potential energy, and we cannot linearize exactly like in [27, 12] for example. However, a
weaker expansion still holds in this sense:

Lemma 3.7. For all t ≥ 0, n ∈ N and j ∈ {1, . . . , N}, there holds

Sloc
j (t′, un(t

′)) ≥ Sloc
j (t′, Gj(t

′)) +Hj(t
′, wjn(t

′))−
∫

Re
(

∇Gj(t′)wjn(t′)
)

· ∇ψj(t′) dx

+ vj · Im
∫

Gj(t′)w
j
n(t

′)∇ψj(t′) dx, (3.5)

where wjn := un −Gj and

Hj(t
′, w) :=

1

2

∫

|∇w|2 ψj(t′) dx− 2λ

∫

|w|2
(

ln
(

1 + |w|
)

+ C0

)

ψj(t
′) dx

+
(

2λωj +
|vj|2
2

)

Mj(t
′, w) − vj · Jj(t′, w). (3.6)

This Lemma is a corollary of a kind of weak expansion of the function F1(z) = |z| ln |z|2 (see Lemma 3.17). The
second term in (3.6) is not what one would expect in order to be able to reproduce the proof of [27], since it is not
the linearized potential energy. However, since we have already obtained the L2 uniform estimates for wn, it is still
enough in order to prove Proposition 3.5. Before proving this lemma, we show how it is used to prove Proposition
3.5.
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3.2.1. Proof of Proposition 3.5. First of all, we will need some results about the computation of some quantities about
Gj outside its "physical support".

Lemma 3.8. For all j ∈ {1, . . . , N} and k ∈ {0, . . . , N}, there holds when t→ ∞
∥

∥Gj(t
′)
∥

∥

L2((1−ψj (t′)) dx)
+
∥

∥Gj(t
′)
∥

∥

L2(‖D3
xxxψk(t′)‖dx)

+
∥

∥Gj(t
′)
∥

∥

L2(|∇ψk(t′)|dx)
= o

(

t−3e−
λ(v∗t)

2

4

)

,

∥

∥∇Gj(t′)
∥

∥

L2((1−ψj (t′)) dx)
+
∥

∥

∣

∣∇ψk(t′)
∣

∣∇Gj(t′)
∥

∥

L2 = o

(

t−1e−
λ(v∗t)

2

4

)

,

∥

∥Gj(t
′)
∥

∥

L
2+ 1

d ((1−ψj (t′)) dx)
= o

(

t−3e−
λ(v∗t)

2

4

)

,

∥

∥

∥
Gj(t

′)
∣

∣x− x∗j(t
′)
∣

∣

2
∥

∥

∥

L2((1−ψj (t′)) dx)
+
∥

∥

∥
Gj(t

′)
∣

∣x− x∗j (t
′)
∣

∣

3
∥

∥

∥

L2((1−ψj (t′)) dx)
= o

(

t−1e−
λ(v∗t)

2

4

)

.

The lemma follows from the support properties of ψk and the Gaussian decay of Gj . We postpone its proof to
Appendix A. In particular, since 0 ≤ ψk ≤ 1− ψj for all k 6= j, this gives a simple corollary:

Corollary 3.9. For all k ≥ 0, j ≥ 1 such that k 6= j, there holds when t→ ∞
∥

∥Gj(t
′)
∥

∥

L2(ψk(t′) dx)
+
∥

∥Gj(t
′)
∥

∥

L
2+ 1

d (ψk(t′) dx)
= o

(

t−3e−
λ(v∗t)

2

4

)

,

∥

∥ψk(t
′)∇Gj(t′)

∥

∥

L2 +
∥

∥∇Gj(t′)
∥

∥

L2(ψk(t′) dx)
= o

(

t−1e−
λ(v∗t)

2

4

)

,

∥

∥

∥
Gj(t

′)
∣

∣x− x∗j (t
′)
∣

∣

3
∥

∥

∥

L2(ψk(t′) dx)
= o

(

t−1e−
λ(v∗t)

2

4

)

.

Moreover, we also know that ln |Gj(t′)|2 = 2ωj + d − 2λ|x − x∗j(t
′)|2, so we can also derive the same decay

estimate for Gj(t′) ln |Gj(t′)|2:

Corollary 3.10. For all k ≥ 0, j ≥ 1 such that k 6= j, there holds when t→ ∞
∥

∥

∥
Gj(t

′) ln
∣

∣Gj(t
′)
∣

∣

2
∥

∥

∥

L2((1−ψj (t′)) dx)
= o

(

t−1e−
λ(v∗t)

2

4

)

,

∥

∥

∥
Gj(t

′) ln
∣

∣Gj(t
′)
∣

∣

2
∥

∥

∥

L2(ψk(t′) dx)
= o

(

t−1e−
λ(v∗t)

2

4

)

.

Since the Gaussons get away from each other and with their Gaussian decay, we also show that they are almost
orthogonal:

Lemma 3.11. For all j 6= k ∈ {1, . . . , N} and ℓ ≥ 1, there holds

∫

∣

∣Gj(t
′)
∣

∣

∣

∣Gk(t
′)
∣

∣(1 +
∣

∣x− x∗ℓ(t
′)
∣

∣

2
) dx+

∫

∣

∣∇Gj(t′)
∣

∣

∣

∣Gk(t
′)
∣

∣ dx

+

∫

∣

∣∇Gj(t′)
∣

∣

∣

∣∇Gk(t′)
∣

∣ dx = o

(

t−1e−
λ(v∗t)

2

2

)

.

Proof. For the third term, we have
∫

∣

∣∇Gj(t′)
∣

∣

∣

∣∇Gk(t′)
∣

∣ dx =

∫

∣

∣ivj − 2λ(x− x∗j(t
′))
∣

∣

∣

∣ivk − 2λ(x− x∗k(t
′))
∣

∣

∣

∣Gj(t
′, x)

∣

∣

∣

∣Gk(t
′, x)

∣

∣ dx

= eωj+ωk

∫
∣

∣

∣

∣

ivj − 2λ

(

y +
x∗k(t

′)− x∗j(t
′)

2

)
∣

∣

∣

∣

∣

∣

∣

∣

ivk − 2λ

(

y −
x∗k(t

′)− x∗j(t
′)

2

)
∣

∣

∣

∣

exp
[

−2λ|y|2 − λ
(x∗k(t

′)− x∗j(t
′))2

2

]

dy
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≤ C0 exp
[

−λ
(x∗k(t

′)− x∗j(t
′))2

2

]

∫

(

1 + |y|2 +
∣

∣x∗k(t
′)− x∗j(t

′)
∣

∣

2
)

exp
[

−2λ|y|2
]

dy

≤ C0 exp
[

−λ
∣

∣x∗k(t
′)− x∗j(t

′)
∣

∣

2

2

](

∣

∣x∗k(t
′)− x∗j(t

′)
∣

∣

2
+ 1
)

= o

(

t−1e−
λ(v∗t)

2

2

)

,

since
∣

∣

∣
x∗k(t

′)− x∗j(t
′)
∣

∣

∣
≥ ε−1

0 + v∗(t + τ) for all j < k thanks to (2.5). The same kind of computation can be

performed for the other terms.

Now, we have all the tools that we need in order to prove Proposition 3.5 from Lemma 3.7. First, we show that
the last two terms in (3.5) are negligible.

Corollary 3.12. For all n ∈ N, t ∈ [t†, Tn − T ′′], j ∈ {1, . . . , N},
∣

∣

∣

∣

∫

Re
(

∇Gj(t′)wjn(t′)
)

∇ψj(t) dx
∣

∣

∣

∣

+

∣

∣

∣

∣

Im

∫

Gj(t′)w
j
n(t

′)∇ψj(t′) dx
∣

∣

∣

∣

≤ C0 t
−1e−

λ(v∗t)
2

2 .

Proof. We recall that
wjn = wn +

∑

k 6=j

Gk,

so that
∣

∣

∣

∣

∫

Re
(

Gj(t
′)wjn(t′)

)

∇ψj(t) dx
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Re
(

Gj(t
′)wn(t′)

)

∇ψj(t) dx
∣

∣

∣

∣

+
∑

k 6=j

∣

∣

∣

∣

∫

Re
(

Gj(t
′)Gk(t′)

)

∇ψj(t) dx
∣

∣

∣

∣

.

By (3.4) and Lemma 3.8, there holds for all t ∈ [t†, Tn − T ′′]
∣

∣

∣

∣

∫

Re
(

Gj(t
′)wn(t′)

)

∇ψj(t) dx
∣

∣

∣

∣

≤
∥

∥wn(t
′)
∥

∥

L2

∥

∥∇ψk(t′)Gj(t′)
∥

∥

L2 ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Moreover, Lemma 3.11 gives
∣

∣

∣

∣

∫

Re
(

Gj(t
′)Gk(t′)

)

∇ψj(t) dx
∣

∣

∣

∣

≤
∫

∣

∣Gj(t
′)
∣

∣

∣

∣Gk(t
′)
∣

∣ dx ≤ C0 t
−1e−

λ(v∗t)
2

2 ,

which gives the conclusion for the first term. A similar computation holds for the second term.

Then, we can also substitute Sloc
j (t′, Gj(t

′)) by Sj(Gj) up to a negligible term.

Corollary 3.13. For all j ∈ {1, . . . , N}, for all t ≥ 0

∣

∣Sloc
j (t′, Gj(t

′))− Sj(Gj)
∣

∣ ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Proof. With a simple computation,

Sj(Gj)− Sloc
j (t′, Gj(t

′)) =
1

2

∫

∣

∣∇Gj(t′)
∣

∣

2
(1− ψj(t

′)) dx− λ

∫

∣

∣Gj(t
′)
∣

∣

2
(ln
∣

∣Gj(t
′)
∣

∣

2 − 1) (1 − ψj(t
′)) dx

+

(

2λωj +
|vj|2
2

)
∫

|Gj |2(1− ψj(t
′)) dx− vj · Im

∫

∇Gj Gj (1− ψj(t
′)) dx.

The conclusion readily follows from Lemma 3.8 and Corollary 3.10.

An important feature of H =
∑

jHj is that it is coercive in H1, up to an L2 norm. Since we already know that
the L2 norm of wn is negligible, its H1 norm is therefore controlled by H . In order to prove this, we have this first
result about some coercivity of Hj:
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Lemma 3.14. For all n ∈ N, t ∈ [t†, Tn − T ′′], j ∈ {1, . . . , N},

Hj(t
′, wjn(t

′)) ≥ 1

2

∫

|∇wn|2 ψj(t′) dx− C0 t
−1e−

λ(v∗t)
2

2 .

Proof. First, we have

Hj(t
′, wjn(t

′)) :=
1

2

∫

∣

∣∇wjn(t′)
∣

∣

2
ψj(t

′) dx− 2λ

∫

∣

∣wjn(t
′)
∣

∣

2
(

ln
(

1 +
∣

∣wjn(t
′)
∣

∣

)

+ C0

)

ψj(t
′) dx

+
(

2λωj +
|vj |2
2

)

Mj(t
′, wjn(t

′))− vj · Jj(t′, wjn(t′)).

We also recall that wjn = wn +
∑

k 6=j Gk.

• For the first term, we have
∫

∣

∣∇wjn(t′)
∣

∣

2
ψj(t

′) dx =

∫

∣

∣∇wn(t′)
∣

∣

2
ψj(t

′) dx+ 2
∑

k 6=j

Re

∫

∇wn(t′)∇Gk(t′)ψj(t′) dx

+

∫

∣

∣

∣

∣

∣

∣

∑

k 6=j

∇Gk(t′)

∣

∣

∣

∣

∣

∣

2

ψj(t
′) dx.

For the second term in the right-hand side, we compute for any k 6= j thanks to (3.3) and Corollary 3.9:
∣

∣

∣

∣

Re

∫

∇wn(t′)∇Gk(t′)ψj(t′) dx
∣

∣

∣

∣

≤
∥

∥∇wn(t′)
∥

∥

L2

∥

∥ψj(t
′)∇Gk(t′)

∥

∥

L2 ≤ C0 t
−1e−

λ(v∗t)
2

2 .

As for the third term, using Corollary 3.9, we compute in the same way:
∥

∥

∥

∥

∥

∥

∑

k 6=j

∇Gk(t′)

∥

∥

∥

∥

∥

∥

L2(ψj(t′) dx)

≤
∑

k 6=j

∥

∥∇Gk(t′)
∥

∥

L2(ψj (t′) dx)
≤ C0 t

−1e−
λ(v∗t)

2

4 .

• For the second term, we use the fact that we have Cd > 0 such that for all z ∈ R+,

z2
(

ln
(

1 + z
)

+ C0

)

≤ Cd(z
2 + z2+

1
d ),

so that
∣

∣

∣

∣

∫

∣

∣wjn(t
′)
∣

∣

2
(

ln
(

1 +
∣

∣wjn(t
′)
∣

∣

)

+ C0

)

ψj(t
′) dx

∣

∣

∣

∣

≤ Cd

(

∥

∥wjn(t
′)
∥

∥

2

L2(ψj(t′) dx)
+
∥

∥wjn(t
′)
∥

∥

2+ 1
d

L
2+ 1

d (ψj(t′) dx)

)

.

Then, using Lemma 3.8 and Corollary 3.9, we have

∥

∥wjn(t
′)
∥

∥

L2(ψj(t′) dx)
≤
∥

∥wn(t
′)
∥

∥

L2 +
∑

k 6=j

∥

∥Gk(t
′)
∥

∥

L2(ψj(t′) dx)
≤ C0 t

−1e−
λ(v∗t)

2

4 ,

and
∥

∥wjn(t
′)
∥

∥

L
2+ 1

d (ψj(t′) dx)
≤
∥

∥wn(t
′)
∥

∥

L
2+ 1

d
+
∑

k 6=j

∥

∥Gk(t
′)
∥

∥

L
2+ 1

d (ψj(t′) dx)

≤ Cd
∥

∥wn(t
′)
∥

∥

H1 + C0 e
−λ(v∗t)

2

4 ≤ C0 e
−λ(v∗t)

2

4 .

Thus,
∣

∣

∣

∣

∫

∣

∣wjn(t
′)
∣

∣

2
(

ln
(

1 +
∣

∣wjn(t
′)
∣

∣

)

+ C0

)

ψj(t
′) dx

∣

∣

∣

∣

≤ C0 t
−1e−

λ(v∗t)
2

2 .
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• The last two terms can be easily estimated in the same way since Mj(t
′, wjn(t′)) =

∥

∥

∥
wjn

∥

∥

∥

2

L2(ψj(t′) dx)
and

∣

∣Jj(t′, wjn(t′))
∣

∣ ≤
∥

∥wjn
∥

∥

L2(ψj(t′) dx)

∥

∥∇wjn
∥

∥

L2(ψj(t′) dx)
.

By putting Corollaries 3.12 and 3.13 and Lemma 3.14 in Lemma 3.7, we easily deduce a nice "coercivity" property
for the localized functionals Sloc

j for j ≥ 1:

Corollary 3.15. For all n ∈ N, t ∈ [t†, Tn − T ′′], j ∈ {1, . . . , N},

Sloc
j (t′, un(t

′))− Sj(Gj) ≥
1

2

∫

|∇wn|2 ψj(t′) dx− C0 t
−1e−

λ(v∗t)
2

2 .

As for the case j = 0, a similar property holds:

Lemma 3.16. For all n ∈ N, t ∈ [t†, Tn − T ′′]

Sloc
0 (t′, un(t

′)) ≥ 1

2

∫

|∇wn|2 ψ0(t
′) dx− C0 t

−1e−
λ(v∗t)

2

2 .

Proof.

Sloc
0 (t′, un(t

′)) =
1

2

∫

∣

∣∇un(t′)
∣

∣

2
ψ0(t

′) dx− λ

∫

∣

∣un(t
′)
∣

∣

2
(ln
∣

∣un(t
′)
∣

∣

2 − 1)ψ0(t
′) dx.

• For the first term:
∫

|∇un|2 ψ0(t
′) dx =

∫

|∇wn|2 ψ0(t
′) dx+ 2

∫

Re∇wn · ∇Gψ0(t
′) dx+

∫

|∇G|2 ψ0(t
′) dx.

The last two terms of the right-hand side can be easily estimated. First:
∣

∣

∣

∣

∫

Re∇wn · ∇Gψ0(t
′) dx

∣

∣

∣

∣

≤ ‖∇wn‖L2

∥

∥ψ0(t
′)∇G(t′)

∥

∥

L2

≤ ‖∇wn‖L2

∑

j≥1

∥

∥ψ0(t
′)∇Gj(t′)

∥

∥

L2 ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Then we use Corollary 3.9 for the last term.

• For the second term, we show it is negligible by using the fact that for all y > e:

y (ln y − 1) ≤ Cd y
1+ 1

2d

for some Cd > 0. Thus,
∫

|un|2(ln|un|2 − 1)ψ0(t) dx ≤
∫

|un|
2>e

|un|2(ln|un|2 − 1)ψ0(t) dx

≤ Cd
∥

∥un(t
′)
∥

∥

2+ 1
d

L
2+ 1

d (ψ0(t′) dx)
.

Then, the conclusion comes from:
∥

∥un(t
′)
∥

∥

L
2+ 1

d (ψ0(t′) dx)
≤
∥

∥wn(t
′)
∥

∥

L
2+ 1

d
+
∑

j≥1

∥

∥Gj(t
′)
∥

∥

L
2+ 1

d (ψ0(t′) dx)

≤ Cd
∥

∥wn(t
′)
∥

∥

H1 + C0 e
−

λ(v∗t)
2

4 ≤ C0 e
−

λ(v∗t)
2

4 .

Proposition 3.5 is then a simple corollary from these results, by summing over j Corollary 3.15 and Lemma 3.16.
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3.2.2. Proof of Lemma 3.7. This lemma mostly relies on an inequality for the potential energy with an expression
near the expected expansion. To prove this, set

F1 : C → R

z 7→ |z|2 (ln|z|2 − 1),

so that the potential energy is −λ
∫

F1(v). Then, the following inequality holds:

Lemma 3.17. For all z1, z2 ∈ C, set ζ := z1 − z2. Then

F1(z1) ≤ F1(z2) + 2Re
(

z2ζ
)

ln|z2|2 + 2 |ζ|2
(

ln
(

max(|z2|, |z1|)
)

+ 1

)

.

Remark 3.18. In the case z2 = 0, the second term of the right-hand side is to be understood as being 0. If furthermore
z1 = 0, then so is the last term of the right-hand side.

Remark 3.19. Like already pointed out, the third term of the right-hand side is not what one would expect in order to
be able to reproduce the proof of [27, 12] for instance. Indeed, the expected formula would be something of the form:

F1(z1) = F1(z2) + 2Re
(

z2ζ
)

ln|z2|2 + |ζ|2 ln |z2|2 + 2
1

|z2|2
(

Re
(

z2ζ
)

)2
+ h(ζ, z2),

where h is (at least) bounded when ζ and z2 are bounded (and presumably of order more than 2 in ζ). However, taking
z1 = 1 and z2 → 0 gives a simple counter-example for such an expansion.

Moreover, if one takes z1 = u(x) for some u ∈W and z2 = e−|x|2 for instance and integrate, it gives:

∫

F1(u(x)) =

∫

F1(e
−|x|2)− 4

∫

Re
(

e−|x|2ζ(x)
)

|x|2 − 2

∫

|ζ(x)|2|x|2 + 2

∫

(

Re (ζ(x))
)2

+

∫

h(ζ(x), e−|x|2),

where one would want the last term to be controlled by the W -norm of ζ(x). With so, every term is bounded expect
the third term of the right-hand side, which could be −∞ if we take u /∈ F(H1) (such a u exists).

Proof. For this proof only, we use the identification C ≈ R
2, and we see F1 as a function from R

2 into R :

F1 : C ≈ R
2 → R

z =

[

zr
zi

]

∈ R
2 7→ |z|2 (ln|z|2 − 1).

For z = 0, F1(0) = 0. Then, F is differentiable on C and twice differentiable on C \ {0} and we can compute for
z 6= 0:

∇F1(z) =

[

2zr ln|z|2
2zi ln|z|2

]

= 2z ln|z|2.

We also compute ∇F (0) = 0. Then, for all z 6= 0, we can differentiate again:

D2F1(z) = 2





ln|z|2 + 2 z2r
|z|2

2zrzi
|z|2

2zrzi
|z|2

ln|z|2 + 2
z2i
|z|2



 = 2R−1
z L(z)Rz,

where Rz is the rotation which maps z onto the real positive half-line of C and L(z) is defined by:

L(z) =

[

ln|z|2 + 2 0

0 ln|z|2
]

.
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In particular, we see that for all z 6= 0 and all h ∈ R
2, there holds

〈h,D2F1(z)h〉 = 2〈Rzh,L(z)Rzh〉 ≤ 2(ln|z|2 + 2) |Rzh|2 = 4(ln|z|+ 1) |h|2.
Take z1, z2 ∈ C and set ζ := z1 − z2. In the case z1 = z2 = 0, Remark 3.18 makes the inequality trivial to prove.
Otherwise, Taylor’s formula with integral form gives:

F1(z1) = F1(z2) + 〈ζ,∇F1(z2)〉+
∫ 1

0
〈ζ,D2F1(z2 + tζ) ζ〉 (1− t) dt. (3.7)

The second term of the right-hand side is exactly what we expect since:

〈z,∇F1(z2)〉 = 〈z, 2z2 ln|z2|2〉 = 2 〈z, z2〉 ln|z2|2 = 2Re (z2z) ln|z2|2,
and is 0 if z2 = 0. As for the last term of the right-hand side, it can be estimated as previously:

∫ 1

0
〈z,D2F1(z2 + tz) z〉 (1 − t) dt ≤ 4

∫ 1

0
(ln |z2 + tz|+ 1) |z|2 (1− t) dt.

Moreover, there holds for all t ∈ [0, 1]

|z2 + tz| = |(1− t)z2 + tz1| ≤ (1− t)|z2|+ t|z1| ≤ max(|z2|, |z1|)
Therefore, since ln is increasing,

∫ 1

0
〈z,D2F1(z2 + tz) z〉 (1 − t) dt ≤ 4 |z|2

∫ 1

0

(

ln
(

max(|z2|, |z1|)
)

+ 1

)

(1− t) dt

≤ 2 |z|2
(

ln
(

max(|z2|, |z1|)
)

+ 1

)

The conclusion readily follows from putting this inequality into (3.7).

Corollary 3.20. For all x ∈ R, t ≥ 0, n ∈ N and j ∈ {1, . . . , N}, there holds

F1(un(t
′, x)) ≤ F1(Gj(t

′, x)) + 2Re
(

Gj(t
′, x)wjn(t′, x)

)

ln
∣

∣Gj(t
′, x)

∣

∣

2

+ 2
∣

∣wjn(t
′, x)

∣

∣

2
(

ln
(

1 +
∣

∣wjn(t
′, x)

∣

∣

)

+ C0

)

,

where wjn := un −Gj .

Proof. Applying Lemma 3.17 with z1 = un(t
′, x) and z2 = Gj(t

′, x) gives

F1(un(t
′, x)) ≤ F1(Gj(t

′, x)) + 2Re
(

Gj(t
′, x)wjn(t′, x)

)

ln
∣

∣Gj(t
′, x)

∣

∣

2

+
∣

∣wjn(t
′, x)

∣

∣

2
(

ln
(

max(
∣

∣Gj(t
′, x)

∣

∣,
∣

∣un(t
′, x)

∣

∣)
)

+ 1

)

, (3.8)

We know that
∣

∣un(t
′, x)

∣

∣ ≤
∣

∣Gj(t
′, x)

∣

∣+
∣

∣wjn(t
′, x)

∣

∣

and
∥

∥Gj(t
′)
∥

∥

L∞ ≤ C0.

Thus,
max(

∣

∣Gj(t
′, x)

∣

∣,
∣

∣un(t
′, x)

∣

∣) ≤ C0 +
∣

∣wjn(t
′, x)

∣

∣,

which yields

ln
(

max(
∣

∣Gj(t
′, x)

∣

∣,
∣

∣un(t
′, x)

∣

∣)
)

≤ ln (C0 +
∣

∣wjn(t
′, x)

∣

∣) ≤ C0 + ln (1 +
∣

∣wjn(t
′, x)

∣

∣).

The result follows by putting this estimate into (3.8).

The proof of Lemma 3.7 readily follows from expanding Sloc
j (t′, un(t

′)) in terms of wjn(t′), using Corollary 3.20
for the "expansion" of the localized potential energy.
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3.3. Slow variations of the functional

In this subsection, we prove Proposition 3.6. Again, this proposition is similar to that in [27, 12] for example, and
the proof is almost the same. However, some minor changes occur. The first one comes from the fact that we took
a "true" d-dimensional partition of unity, and thus the link between the time and space derivatives of this partition is
less obvious, yet relatively similar:

Lemma 3.21. For all j ≥ 1, t ≥ 0 and x ∈ R, there holds
∣

∣∂tψj(t
′, x)

∣

∣ ≤ C0

∣

∣∇ψj(t′, x)
∣

∣.

Thanks to this link, it is easy to prove that Sloc slowly varies in the same way as in [27, 12]:

Lemma 3.22. For all t ∈ [t†, Tn − T ′′], there holds
∣

∣

∣

∣

d

dt
Sloc(t′, un(t

′))

∣

∣

∣

∣

≤ C0 e
−

λ(v∗t)
2

4 .

Proof. We already know that the energy E(un(t)) is conserved. To estimate the variations of S(t′, un(t′)), we only
have to study the variations of the localized masses Mj(t

′, un(t
′)) and momenta Jj(t′, un(t′)). Thanks to the expres-

sion of the partition of unity, we only need to compute (for j ≥ 1 only since ω0 = 0 and v0 = 0)

d

dt

∫

|un|2 ψj dx =

∫

Im
(

∆unun

)

ψj dx+

∫

|un|2 ∂tψj dx

=

∫

Im
(

∇unun
)

· ∇ψj dx+

∫

|un|2 ∂tψj dx
∣

∣

∣

∣

d

dt

∫

|un|2 ψj dx
∣

∣

∣

∣

≤ C0

∫

(|∇un|2 + |un|2) |∇ψj |dx.

Similarly, we have for Jj(t′, un(t′))

d

dt

∫

Im
(

∇un(t′)un(t′)
)

ψj(t
′) dx =

∫

Re
((

∇un · ∇ψj(t′)
)

∇un
)

dx−
∫

Im
(

∇un(t′)un(t′)
)

∂tψj(t
′) dx

− λ

∫

∣

∣un(t
′)
∣

∣

2 ∇ψj(t′) dx− 1

4

∫

∣

∣un(t
′)
∣

∣

2 ∇ ·D2
xxψj(t

′) dx.

Therefore there holds again
∣

∣

∣

∣

d

dt
Jj(t′, un(t′))

∣

∣

∣

∣

≤ C0

∫

(

∣

∣∇un(t′)
∣

∣

2
+
∣

∣un(t
′)
∣

∣

2
)

∣

∣∇ψj(t′)
∣

∣ dx+C0

∫

∣

∣un(t
′)
∣

∣

2 ∥
∥D3

xxxψj(t
′)
∥

∥ dx.

Now, remark that
∫

(

∣

∣∇un(t′)
∣

∣

2
+
∣

∣un(t
′)
∣

∣

2
)

∣

∣∇ψj(t′)
∣

∣dx ≤ 2

(
∫

(

∣

∣∇G(t′)
∣

∣

2
+
∣

∣G(t′, x)
∣

∣

2
)

∣

∣∇ψj(t′)
∣

∣ dx+ C0

∥

∥wn(t
′)
∥

∥

2

H1(R)

)

and
∫

∣

∣un(t
′, x)

∣

∣

2 ∥
∥D3

xxxψj(t
′)
∥

∥ dx ≤ 2

(
∫

∣

∣G(t′, x)
∣

∣

2 ∥
∥D3

xxxψj(t
′)
∥

∥ dx+ C0

∥

∥wn(t
′)
∥

∥

2

L2(R)

)

.

By assumption, we know that for all t ∈ [t†, Tn − T ′′]

∥

∥wn(t
′)
∥

∥

2

H1(R)
≤ 2e−

λ(v∗t)
2

2 .

Moreover, by Lemma 3.8, we have
∫

(

∣

∣∇G(t′, x)
∣

∣

2
+
∣

∣G(t′, x)
∣

∣

2
)

∣

∣∇ψj(t′)
∣

∣ dx = o

(

e−
λ(v∗t)

2

2

)

,
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∫

∣

∣G(t′, x)
∣

∣

2 ∥
∥D3

xxxψj(t
′)
∥

∥ dx = o

(

e−
λ(v∗t)

2

2

)

.

Consequently,
∣

∣

∣

∣

d

dt

∫

∣

∣un(t
′)
∣

∣

2
ψj(t

′) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

d

dt

∫

Im
(

∇un(t′)un(t′)
)

ψj(t
′) dx

∣

∣

∣

∣

≤ C0 e
−λ(v∗t)

2

2

Plugging this estimate into the expression of Mj and Jj gives for all t ≥ t†

∣

∣

∣

∣

d

dt
Mj(t

′, u(t′))

∣

∣

∣

∣

+

∣

∣

∣

∣

d

dt
Jj(t′, u(t′))

∣

∣

∣

∣

≤ C0 e
−λ(v∗t)

2

2 ,

and the conclusion readily follows.

The fact that the convergence is Gaussian instead of exponential gives a free t−1 factor when integrating, which
is enough to be negligible.

Corollary 3.23. There holds for n large enough and t ∈ [t†, Tn − T ′′] :

∣

∣Sloc(t′, un(t
′))− Sloc(Tn, G(Tn))

∣

∣ ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Proof. Defining S̃n(t) = S(t, un(t)), we can estimate this difference thanks to the previous estimate:

S(t′, un(t
′))− S(Tn, G(Tn)) =

∫ Tn

t′

dS̃n
dt

(s) ds =

∫ Tn−T ′′

t

dS̃n
dt

(T ′′ + s) ds

∣

∣S(t′, un(t
′))− S(Tn, G(Tn))

∣

∣ ≤
∫ Tn−T ′′

t

C0 e
−

λ(v∗s)
2

2 ds

≤ C0 t
−1e−

λ(v∗t)
2

2 ,

thanks to Lemma 2.10.

In the previous result, we have Sloc(Tn, G(Tn)): we would like to have Sj(Gj) instead. Thanks to Corollary 3.13,
we only need Sloc(t′, Gj(t

′)).

Lemma 3.24. There holds for all t ≥ 0 and j ∈ {1, . . . , N},

∣

∣Sloc
j (t′, G(t′))− Sloc

j (t′, Gj(t
′))
∣

∣ ≤ C0 t
−1e−

λ(v∗t)
2

2 ,

∣

∣Sloc
0 (t′, G(t′))

∣

∣ ≤ C0 t
−1e−

λ(v∗t)
2

2 .

Proof. Decomposing Sloc
j (t′, G(t′)), we get

Sloc
j (t′, G(t′))− Sloc

j (Gj(t
′)) =

1

2

(

∫

∣

∣∇G(t′)
∣

∣

2
ψj(t

′) dx−
∫

∣

∣∇Gj(t′)
∣

∣

2
ψj(t

′) dx
)

− λ

(
∫

∣

∣G(t′)
∣

∣

2
ln
∣

∣G(t′)
∣

∣

2
ψj(t

′) dx−
∫

∣

∣Gj(t
′)
∣

∣

2
ln
∣

∣Gj(t
′)
∣

∣

2
ψj(t

′) dx

)

+
(

2λωj + λ+
|vj |2
2

)

(Mj(t
′, G(t′))−Mj(t

′, Gj(t
′)))

− vj · (Jj(t′, G(t′))− Jj(t′, Gj(t′))).

• For the first term, decomposing G =
∑

j Gj ,

∫

∣

∣∇G(t′)
∣

∣

2
ψj(t

′) dx−
∫

∣

∣∇Gj(t′)
∣

∣

2
ψj(t

′) dx
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=
∑

(k,ℓ)6=(j,j)

Re

∫

∇Gℓ(t′) · ∇Gk(t′)ψj(t′) dx

=
∑

k 6=ℓ

Re

∫

∇Gℓ(t′) · ∇Gk(t′)ψj(t′) dx+
∑

k 6=j

∫

∣

∣∇Gk(t′)
∣

∣

2
ψj(t

′) dx,

and the conclusion with Lemma 3.8 and Lemma 3.11.

• For the third and fourth terms, the same kind of decomposition can be used:

Jj(t′, G(t′))−Jj(t′, Gj) =
∑

(k,ℓ)6=(j,j)

Im

∫

∇Gk(t′, x)Gl(t′, x)ψj(t′, x) dx,

Mj(t
′, G(t′))−Mj(t

′, Gj) =
∑

(k,ℓ)6=(j,j)

Re

∫

Gk(t
′, x)Gl(t′, x)ψj(t

′, x) dx.

The conclusion comes in the same way.

• For the second term, we use a similar computation as in [18, Lemma 3.2]. Precisely, we will use the following
lemma:

Lemma 3.25 ([18, Lemma 3.3]). Set F (z) := z ln |z|. For all z, z̃ ∈ C such that |z| ≤ 1, |z̃| ≤ 1 and z 6= 0, there
holds

|F (z̃)− F (z)| ≤ |z − z̃|
[

3− ln|z|
]

.

Then, by changing Gj and G into G̃j := N−1e−ω Gj and G̃ := N−1e−ωG respectively (with ω := maxk ωk) and
for all j, we get

G̃ =
∑

k

G̃k,
∑

k

∣

∣

∣
G̃k

∣

∣

∣
≤ 1.

Thus, for any j ∈ {1, . . . , N}, all t ≥ T and all x ∈ R, there holds

∣

∣

∣

∣

∣G(t′, x)
∣

∣

2
ln
∣

∣G(t′, x)
∣

∣

2 −
∣

∣Gj(t
′, x)

∣

∣

2
ln
∣

∣Gj(t
′, x)

∣

∣

2
∣

∣

∣

= N2e2ω
∣

∣

∣

∣

∣

∣

∣
G̃(t′, x)

∣

∣

∣

2(

2ω + lnN2 + ln
∣

∣

∣
G̃(t′, x)

∣

∣

∣

2)

−
∣

∣

∣
G̃j(t

′, x)
∣

∣

∣

2(

2ω + lnN2 + ln
∣

∣

∣
G̃j(t

′, x)
∣

∣

∣

2)
∣

∣

∣

∣

≤ N2e2ω
∣

∣

∣

∣

∣

∣

∣
G̃(t′, x)

∣

∣

∣

2
−
∣

∣

∣
G̃j(t

′, x)
∣

∣

∣

2
∣

∣

∣

∣

[

2|ω|+ lnN2 + 3− ln
∣

∣

∣
G̃j(t

′, x)
∣

∣

∣

2]

≤
∣

∣

∣

∣

∣G(t′, x)
∣

∣

2 −
∣

∣Gj(t
′, x)

∣

∣

2
∣

∣

∣

[

2|ω|+ lnN2 + 3− ln
∣

∣

∣
G̃j(t

′, x)
∣

∣

∣

2]

≤ C0

∣

∣G(t′, x)−Gj(t
′, x)

∣

∣

(

∣

∣Gj(t
′, x)

∣

∣+
∑

k

∣

∣Gk(t
′, x)

∣

∣

)[

1 +
∣

∣x− x∗j(t
′)
∣

∣

2
]

≤ C0

∑

ℓ 6=j

∑

k

∣

∣Gℓ(t
′, x)

∣

∣

∣

∣Gk(t
′, x)

∣

∣(1 +
∣

∣x− x∗j(t
′)
∣

∣

2
).

Multiplying by ψj(t′) and integrating over Rd, we get

∣

∣

∣

∣

∣

∣

∫

∣

∣G(t′)
∣

∣

2
ln
∣

∣G(t′)
∣

∣

2
ψj(t

′) dx−
∑

j

∫

∣

∣Gj(t
′)
∣

∣

2
ln
∣

∣Gj(t
′)
∣

∣

2
ψj(t

′) dx

∣

∣

∣

∣

∣

∣

≤ C0

∑

ℓ 6=j

∑

k

∫

∣

∣Gℓ(t
′)
∣

∣

∣

∣Gk(t
′)
∣

∣(1 +
∣

∣x− x∗j(t
′)
∣

∣

2
)ψj(t

′, x) dx.

Thus, Lemma 3.8 and Lemma 3.11 yield the conclusion for this term.
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The conclusion readily follows for the first inequality. As for the second one, the same computations can be done
for Sloc

0 (t′, G(t′))− Sloc
0 (t′, Gk(t

′)) for some k, so that

∣

∣Sloc
0 (t′, G(t′))− Sloc

0 (t′, Gk(t
′))
∣

∣ ≤ C0 t
−1e−

λ(v∗t)
2

2

Moreover, it can easily be proved (thanks to Lemma 3.8) that

∣

∣Sloc
0 (t′, Gk(t

′))
∣

∣ ≤ C0 t
−1e−

λ(v∗t)
2

2 ,

and therefore the conclusion.

We now have all the results we need to prove Proposition 3.6.

Proof of Proposition 3.6. We decompose the left-hand side in order to be able to apply the previous results:

Sloc(t′, un(t
′))−

∑

j

S(Gj) =
(

Sloc(t′, un(t
′))− Sloc(Tn, G(Tn))

)

+ Sloc
0 (Tn, G(Tn)) +

∑

j≥1

(

Sloc
j (Tn, G(Tn))− Sloc

j (Tn, Gj(Tn))
)

+
∑

j≥1

(

Sloc
j (Tn, Gj(Tn))− Sj(Gj)

)

.

Thanks to Corollaries 3.23 (for the first line of the right-hand side) and 3.13 (for the last one) and to Lemma 3.24 (for
the second one) along with the fact that

(Tn − T ′′)−1e−
λ(v∗(Tn−T ′′))2

2 ≤ t−1e−
λ(v∗t)

2

2 , for all 0 < t ≤ Tn − T ′′

as soon as Tn ≥ T ′′, we get

Sloc(t′, un(t
′))−

∑

j

S(Gj) ≤ C0 t
−1e−

λ(v∗t)
2

2 .

4. UNIFORM F(H1)-ESTIMATES

The final step of our proof is the uniform estimates in F(H1). The proof relies on an improvement of the
computation of Section 2, using the uniform estimates in H1 which are now proved.

Proposition 4.1. For all n ∈ N such that Tn ≥ T and for all t ∈ [0, Tn − T ] (with ť := T + t), there holds

∥

∥wn(ť)
∥

∥

F(Ḣ1)
≤ C0 e

−
λ(v∗t)

2

4 .

Proof. We recall that wn = un −G satisfies

i∂twn +
1

2
∆wn = −λ

[

un ln|un|2 −
∑

k

Gk ln|Gk|2
]

, wn(Tn) = 0,

and there now holds for all t ∈ [0, Tn − T ]

∥

∥wn(ť)
∥

∥

L2 ≤ e−
λ(v∗t)

2

4 ,
∥

∥wn(ť)
∥

∥

Ḣ1 ≤ e−
λ(v∗t)

2

4 .

We also recall that we took T large enough so that for all j ∈ {1, . . . , N − 1} and t ≥ 1, we have

∣

∣xj+1 − xj + (vj+1 − vj)ť
∣

∣ ≥ ε−1
0 + v∗(t+ τ),
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as a consequence of (2.5). We compute the variations of this quantity:

d

dt

∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx = −

∫

|x|2 Im
[

∆wn(ť)wn(ť)
]

dx

− 2λ

∫

|x|2 Im
[

[

un(ť) ln
∣

∣un(ť)
∣

∣

2 −
∑

k

Gk(ť) ln
∣

∣Gk(ť)
∣

∣

2
]

wn(ť)
]

dx. (4.1)

• For the first term, performing an integration by parts, there holds

−
∫

|x|2 Im
[

∆wn(ť)wn(ť)
]

dx = 2

∫

x · Im
[

∇wn(ť)wn(ť)
]

dx.

This is easy to estimate with a Cauchy-Schwarz inequality:

∣

∣

∣

∣

∫

x · Im
[

∇wn(ť)wn(ť)
]

dx

∣

∣

∣

∣

≤
(
∫

∣

∣∇wn(ť)
∣

∣

2
dy

)
1
2
(
∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

)
1
2

≤ e−
λ(v∗t)

2

4

(
∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

)
1
2

.

Thus, we have
∣

∣

∣

∣

∫

|x|2 Im
[

∆wn(ť)wn(ť)
]

dx

∣

∣

∣

∣

≤ C0 e
−

λ(v∗t)
2

4

(
∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

)
1
2

. (4.2)

• For the last term, we use again Lemma 2.8 and the fact that wn = un −G, so that
∣

∣

∣

∣

∣

Im

[

[

un ln|un|2 −
∑

k

Gk ln|Gk|2
]

wn

]

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

Im

[

[

un ln|un|2 −G ln|G|2
]

wn

]

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Im

[

[

G ln|G|2 −
∑

k

Gk ln|Gk|2
]

wn

]

∣

∣

∣

∣

∣

≤ 2|wn|2 +
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

|wn|.

Thus, we get
∣

∣

∣

∣

∣

∫

|x|2 Im
[

[

un ln|un|2 −
∑

k

Gk ln|Gk|2
]

wn

]

dx

∣

∣

∣

∣

∣

≤ 2

∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

+

∫

|x|2
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∣

∣wn(ť)
∣

∣ dx

For the second term of the right-hand side, performing a Cauchy-Schwarz inequality leads to

∫

|x|2
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∣

∣wn(ť)
∣

∣ dx

≤
(
∫

|x|2
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

2

dx

)
1
2
(
∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

)
1
2

For the first factor, we use the following result whose proof is postponed to Appendix B.

Proposition 4.2. For all t ≥ 0, there holds
∥

∥

∥

∥

∥

|x|
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

L2

≤ C0 e
−

λ(v∗t)
2

4
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Thus we have
∣

∣

∣

∣

∣

∫

|x|2 Im
[

[

un ln|un|2 −
∑

k

Gk ln|Gk|2
]

wn

]

dx

∣

∣

∣

∣

∣

≤ 2

∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

+C0 e
−

λ(v∗t)
2

4

(
∫

|x|2
∣

∣wn(ť)
∣

∣

2
dx

)
1
2

. (4.3)

Plugging (4.2) and (4.3) into (4.1), and dividing the whole inequality by
∥

∥|x|
∣

∣wn(ť)
∣

∣

∥

∥

L2 , we obtain

∣

∣

∣

∣

d

dt

∥

∥|x|
∣

∣wn(ť)
∣

∣

∥

∥

L2

∣

∣

∣

∣

≤ C0 e
−

λ(v∗t)
2

4 + 2λ
∥

∥|x|
∣

∣wn(ť)
∣

∣

∥

∥

L2 .

Hence, in the same way as in the proof of Proposition 3.1, the Gronwall lemma backward in time between Tn and ť
and the fact that wn(Tn) = 0 yields for all t ∈ [0, Tn − T ] (and still with ť = T + t):

∥

∥wn(ť)
∥

∥

F(H1)
≤ C0 e

−
λ(v∗t)

2

4 .

5. COMPACTNESS FOR THE MULTI-GAUSSIAN

This section is devoted to the proof of the Compactness property 2.2 for the multi-gaussian case. Since we do not
have any bound for the F(H1) norm, the proof is here completely similar to that in [27, 12] for example. However,
not only in order to be able to perform the same proof but also in order to have a limit in W , we need un(T ) to be
uniformly bounded in W .

Lemma 5.1. E(un) is uniformly bounded in n. In particular, un is uniformly bounded in Cb(R,W ).

Proof. Since we know that the energy is independent in time, we only have to prove for the first part that E(B(Tn))
is bounded. First of all, the H1 norm of B(Tn) is obviously bounded since:

‖B(Tn)‖H1 ≤
∑

k

‖Bk(Tn)‖H1 ≤
∑

k

(‖Bk(Tn)‖L2 + ‖∇Bk(Tn)‖L2) .

Moreover, B(Tn) is also bounded in L1:

‖B(Tn)‖L1 ≤
∑

k

‖Bk(Tn)‖L1 ≤ C0

∑

k

∥

∥

∥

∥

exp

[

−1

2
(x− xk − vkTn)

⊤ReA(t)(x− xk − vkTn)

]∥

∥

∥

∥

L1

≤ C0

∥

∥

∥

∥

e−
σ−|x|2

2

∥

∥

∥

∥

L1

≤ C0.

Therefore, we claim that
∫

|B(Tn)|2 ln|B(Tn)|2 is uniformly bounded and so is E(B(Tn)). Indeed, there holds

∫

|B(Tn)|2
∣

∣

∣
ln|B(Tn)|2

∣

∣

∣
≤ C0

(
∫

|B(Tn)|+
∫

|B(Tn)|2+
1
d

)

≤ C0

(

‖B(Tn)‖L1 + ‖B(Tn)‖
2+ 1

d

H1

)

,

thanks to Sobolev embedding. Therefore, E(un) = E(B(Tn)) is uniformly bounded. Thus, we can derive that
∇un(t) is uniformly bounded both in n and t from this and the fact that

E+
n (t) :=

1

2
‖∇un(t)‖2L2 + λ‖un(t)‖2L2 + λ

∫

|un(t)|≤1
|un(t)|2

∣

∣

∣
ln |un(t)|2

∣

∣

∣
dx

satisfies

0 ≤ 1

2
‖∇un(t)‖2L2 ≤ E+

n (t) = E(un) + λ

∫

|un(t)|>1
|un(t)|2

∣

∣

∣
ln |un(t)|2

∣

∣

∣
dx. (5.1)
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Indeed, by Gagliardo-Nirenberg inequality, we have

L+
n (t) =

∫

|un(t)|>1
|un(t)|2

∣

∣

∣
ln |un(t)|2

∣

∣

∣
dx ≤ C0

∫

|un(t)|2+
1
2d dx

≤ C0‖un(t)‖
1+ 1

2d

L2 ‖∇un(t)‖L2

≤ C0 ‖∇un(t)‖L2 ,

since the L2 norm of un is uniformly bounded. Thus, putting this into (5.1) leads to:

1

2
‖∇un(t)‖2L2 ≤ C0(1 + ‖∇un(t)‖L2).

Hence, ‖∇un(t)‖L2 is bounded uniformly in n and t, and so is L+
n (t), therefore so is E+

n (t). This yields that

∫

|un(t)|2
∣

∣

∣
ln |un(t)|2

∣

∣

∣
dx is bounded uniformly in t and n.

Thus, un(t) is bounded in W (Rd) uniformly in t and n.

Proof of Proposition 2.2. We already have a uniform boundedness of un(T ) in H1. In order to get compactness in
L2, we shall prove that un(T ) is compact at infinity. Choose δ > 0. We want to show that there exists rδ such that for
any n we have

∫

|x|>rδ

|un(T, x)|2 dx < δ.

Let Tδ ≥ 1 such that

e−
σ−(v∗Tδ)

2

4 ≤
√

δ

8
,

so that, thanks to Proposition 2.1, there holds for any n ∈ N,

‖un(T + Tδ, .)−B(T + Tδ, .)‖2L2 ≤ δ

8
.

The members of B are Gaussians, so we can find r̄δ such that
∫

|x|>r̄δ

|B(T + Tδ, x)|2 dx <
δ

8
.

Therefore we can infer from the two previous estimates that for all n ∈ N

∫

|x|>r̄δ

|un(T + Tδ, x)|2 dx <
δ

2
.

To transfer this property up to T , we use a virial argument. Take r̂δ > 0 to be fixed later and a C1 cut-off function
χ : R → R such that

χ(s) = 0 for s < 0, χ(s) = 1 for s > 1, χ(s) ∈ [0, 1] for s ∈ R.

Now set

V (t) :=

∫

|un(t)|2 χ
( |x| − r̄δ

r̂δ

)

dx.

Thanks to the previous estimate, we already know that V (T + Tδ) <
δ
2 . Moreover, since un satisfies (1.1), it is easy

to compute

V ′(t) =
2

r̂δ

∫

Im

(

un(t, x)
x

|x| · ∇un(t, x)
)

χ′

( |x| − r̄δ
r̂δ

)

dx.
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Thanks to Lemma 5.1, we know that un(t) is uniformly bounded in H1. Hence, the previous integral is uniformly
bounded and thus we have

∣

∣V ′(t)
∣

∣ ≤ C0

r̂δ
.

We choose now r̂δ such that C0
r̂δ
Tδ <

δ
2 . Hence,

|V (T )− V (T + Tδ)| <
δ

2
,

and therefore
V (T ) < δ.

We infer from the definition of χ and with rδ = r̄δ + r̂δ that for all n ∈ N,
∫

|x|>rδ

|un(Tin, x)|2 dx < δ,

which is the desired conclusion.
Therefore, we get compactness in L2: there exists a uin ∈ H1 such that un(T ) → uin (up to a subsequence) in L2

as n → ∞. Moreover, un(T ) is uniformly bounded in W which is a reflexive Banach space when endowed with a
Luxembourg type norm (see [8]), so uin ∈W .

6. RIGIDITY PROPERTY

In this section, we prove the claims made in Remarks 1.12 and 1.15, which can be summarized as follows:

Lemma 6.1. For any solution v to (1.1), either v = u the multi-gaussian constructed above, either there exists T1 > 0
and C1 > 0 such that there holds for all t ≥ T1

∥

∥

∥
v(t)−

∑

Bk(t)
∥

∥

∥

L2
≥ C1e

−2λt.

This lemma is actually a corollary of a relatively more general result: a rigidity property for any solution to (1.1).

Lemma 6.2. For any solutions v1 and v2 to (1.1), either v1 = v2 or there exists C2 > 0 such that for all t ≥ 0

‖v1(t)− v2(t)‖L2 ≥ C2 e
−2λt.

This lemma is itself an obvious corollary of Lemma 1.3, and we show how it leads to Lemma 6.1.

Proof. Take v solution to (1.1) and suppose v 6= u where u is the multi-gaussian constructed above. Then, Lemma
6.2 gives some C2 > 0 such that

‖v(t)− u(t)‖L2 ≥ C2 e
−2λt.

Thanks to (1.8), we get for all t ≥ 0:
∥

∥

∥
v(T + t)−

∑

Bk(T + t)
∥

∥

∥

L2
≥ ‖v(T + t)− u(T + t)‖L2 −

∥

∥

∥
u(T + t)−

∑

Bk(T + t)
∥

∥

∥

L2

≥ C2 e
−2λT e−2λt − e−

σ−(v∗t)
2

4 ,

and the conclusion readily follows.
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A. PROOF OF LEMMA 3.8

Before proving this lemma, we prove the following results which will be useful for the last estimate:

Lemma A.1. For all n ∈ N, there exists Cn > 0 such that for all γ > 0 and R ≥ γ−
1
2 , there holds

In :=

∫ ∞

R

xne−γx
2
dx ≤ Cn

Rn−1

γ
e−γR

2
.

Proof of Lemma A.1. The case n = 0 is exactly Lemma 2.10. The case n = 1 easily follows from

I1 =
1

2γ
e−γR

2
.

For the case n ≥ 2, we get

In ≤
∫ ∞

R

xn−1 · x e−γ|x|2 dx

≤
[

−x
n−1

2γ
e−γ|x|

2
]∞

R
+ (n− 1)

∫ ∞

R

xn−2

2γ
e−γ|x|

2

dx

≤ Rn−1

2γ
e−γR

2
+

2n− 1

2γ
In−2

≤ Rn−1

2γ
e−γR

2
+

2n− 1

2
R2 In−2,

since 1
γ
≤ R2. The conclusion readily follows from a simple induction.

Lemma A.2. For all n ∈ N and d ∈ N
∗, there exists Cd,n > 0 such that for all γ > 0 and R ≥ γ−

1
2 , there holds

Mn :=

∫

B∁
R

|x|ne−γ|x|2 dx ≤ Cn
Rd+n−2

γ
e−γR

2
,

where BR = BRd(0, R).

Proof. With a radial change of variables, we get

Mn = Cd

∫ ∞

R

rn+d−1e−γr
2
dr.

The conclusion readily follows from Lemma A.1.

Proof of Lemma 3.8. We recall that ψj(t′, x) ≡ 1 for x ∈ Bj(t′) := B(x∗j(t′), v∗t2 + 1), 0 ≤ ψj(t
′) ≤ 1 and

‖∂xψj(t′)‖L∞ ≤ 1 so that the quantities of the first two estimates are all bounded by the H1 norm on R \ Bj(t′) of
Gj(t

′) up to a multiplicative constant C0 (
∥

∥D3
xxxψk(t

′, x)
∥

∥ is uniformly bounded in x ∈ R
d and t ≥ 0). Then, setting

B0(t
′) := B(0, v∗t2 + 1), we easily compute

∫

Rd\Bj(t′)
(
∣

∣Gj(t
′)
∣

∣

2
+
∣

∣∇Gj(t′)
∣

∣

2
) dx = C0

∫

Rd\Bj(t′)

(

1 +
∣

∣ivj − 2λ(x− x∗j(t
′))
∣

∣

2
)

exp
[

−2λ
∣

∣x− x∗j(t
′)
∣

∣

2
]

dx

≤ C0

∫

B0(t′)∁

(

1 + |y|2
)

exp
[

−2λ |y|2
]

dy.

Using Lemma A.2, as soon as ξ(t) = v∗t
2 + 1 ≥ (2λ)−

1
2 , we get

∫

Rd\Bj(t′)
(
∣

∣Gj(t
′)
∣

∣

2
+
∣

∣∇Gj(t′)
∣

∣

2
) dx ≤ C0

(

ξ(t)d−2 + ξ(t)d
)

exp
[

−2λ ξ(t)2
]

= o

(

t−6e−
λ(v∗t)

2

2

)

,
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which leads to the first two estimates of the lemma. The third estimate can also be deduced from a similar computation.
As for the fourth estimate, there also holds in the same way:

∫

Rd\Bj(t′)
(
∣

∣x− x∗j(t
′)
∣

∣

4
+
∣

∣x− x∗j (t
′)
∣

∣

6
)
∣

∣Gj(t
′)
∣

∣

2
dx

≤ C0

∫

Rd\Bj(t′)
(
∣

∣x− x∗j (t
′)
∣

∣

4
+
∣

∣x− x∗j(t
′)
∣

∣

6
) exp

[

−2λ
∣

∣x− x∗j(t
′)
∣

∣

2
]

dx

≤ C0

∫

B0(t′)∁
(|y|4 + |y|6) exp

[

−2λ |y|2
]

dy

≤ C0 (ξ(t)
d+2 + ξ(t)d+4) exp

[

−2λ ξ(t)2
]

= o

(

t−2e−
λ(v∗t)

2

2

)

,

by using again Lemma A.2.

B. PROOF OF PROPOSITION 4.2

To prove this Proposition, we use a result of [18] giving a pointwise estimate for
∣

∣

∣
G ln|G|2 −∑kGk ln|Gk|2

∣

∣

∣
.

We recall it here in a simplified way which fits our case:

Lemma B.1 ([18, Corollary 3.7]). For N ∈ N
∗, λ > 0, xk ∈ R

d, ωk ∈ R and θk : R → R a real measurable function
for k = 1, . . . , N , and gk such that for all x ∈ R

d

gk(x) = exp
[

iθk(x) + ωk − λ|x− xj|2
]

,

set

g(x) =
N
∑

k=1

gk(x).

If

ε :=

(

min
k 6=j

|xj − xk|
)−1

< ε0,

then for any j ∈ {1, . . . , N} and for all x ∈ R

∣

∣

∣

∣

∣

g(x) ln|g(x)|2 −
N
∑

k=1

gk(x) ln|gk(x)|2
∣

∣

∣

∣

∣

≤ 2
∑

k 6=j

|gk(x)|
[

δωj + δωk +3+2 lnN +λ|x− xk|2+λ|x− xj |2
]

, (B.1)

where δωj := maxℓ ωℓ − ωj

Proof of Proposition 4.2. Our Gk satisfy the assumptions of Lemma B.1, so that (B.1) gives here for all t ≥ 0,
j ∈ {0, . . . , N} and x ∈ R:

∣

∣

∣

∣

∣

G(ť, x) ln
∣

∣G(ť, x)
∣

∣

2 −
∑

k

Gk(ť, x) ln
∣

∣Gk(ť, x)
∣

∣

2

∣

∣

∣

∣

∣

≤ C0

∑

k 6=j

∣

∣Gk(ť, x)
∣

∣

[

1 +
∣

∣x− x∗k(ť)
∣

∣

2
+
∣

∣x− x∗j(ť)
∣

∣

2
]

≤ C0

∑

k 6=j

∣

∣Gk(ť, x)
∣

∣

[

1 + t2 +
∣

∣x− x∗k(ť)
∣

∣

2
]

.

Thus, multiplying by |x| and ψj and taking the L2 norm leads to:

∥

∥

∥

∥

∥

ψj(ť)|x|
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

L2
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≤ C0

∥

∥

∥

∥

∥

∥

ψj(ť)|x|
∑

k 6=j

∣

∣Gk(ť)
∣

∣

[

1 + t2 +
∣

∣x− x∗k(ť)
∣

∣

2
]

∥

∥

∥

∥

∥

∥

L2

≤ C0

∥

∥

∥

∥

∥

∥

ψj(ť)
(

∣

∣x− x∗k(ť)
∣

∣+
∣

∣x∗k(ť)
∣

∣

)

∑

k 6=j

∣

∣Gk(ť)
∣

∣

[

1 + t2 +
∣

∣x− x∗k(ť)
∣

∣

2
]

∥

∥

∥

∥

∥

∥

L2

≤ C0

∥

∥

∥

∥

∥

∥

ψj(ť)
(

∣

∣x− x∗k(ť)
∣

∣+ C0 t
)

∑

k 6=j

∣

∣Gk(ť)
∣

∣

[

1 + t2 +
∣

∣x− x∗k(ť)
∣

∣

2
]

∥

∥

∥

∥

∥

∥

L2

≤ C0(1 + t3)
∑

k 6=j

(

∥

∥ψj(ť)
∣

∣Gk(ť)
∣

∣

∥

∥

L2 +
∥

∥

∥
ψj(ť)

∣

∣x− x∗k(ť)
∣

∣

3∣
∣Gk(ť)

∣

∣

∥

∥

∥

L2

)

,

≤ C0(1 + t3)
∑

k 6=j

(

∥

∥Gk(ť)
∥

∥

L2(ψj(ť) dx)
+
∥

∥

∥

∣

∣x− x∗k(ť)
∣

∣

3∣
∣Gk(ť)

∣

∣

∥

∥

∥

L2(ψj(ť) dx)

)

.

Then, using Corollary 3.9 and the last estimate of Lemma 3.8, we get
∥

∥

∥

∥

∥

ψj(ť)|x|
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

L2

≤ C0 e
−

λ(v∗t)
2

4 .

Thus, we get the result by using the fact that
∑

j ψj = 1:

∥

∥

∥

∥

∥

|x|
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

∥

∥

∑

j

ψj(ť)|x|
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

L2

≤
∑

j

∥

∥

∥

∥

∥

ψj(ť)|x|
∣

∣

∣

∣

∣

G ln|G|2 −
∑

k

Gk ln|Gk|2
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

L2

≤ C0 e
−

λ(v∗t)
2

4 .
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