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PERSISTENCE BARCODED VEHICULAR TRAFFIC VIDEOS.
A TOPOLOGY OF DATA APPROACH TO SHAPE TRACKING

A.P.H. DON, J.F. PETERS, AND S. RAMANNA

Dedicated to Enrico Betti and Som Naimpally

Abstract. This paper introduces a computational CW topology of data ap-
proach to tracking the persistence of image object shapes that appear in trian-
gulated video frames. Shapes are cell complexes are viewed in the context of
an Alexandroff-Hopf-Whitehead CW (Closure finite Weak) topological space.
Fermi energy and Betti numbers are used to construct persistence barcodes
derived from nested cycles (optical vortexes) inherent in triangulated video
frame shapes. An application of this approach is given in terms of Ghrist
persistence barcoding of vehicular traffic videos.
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1. Introduction

This paper tackles the problem of tracking the persistence of moving shapes in a
video by reducing each triangulated video frame to a collection of elementary cells.
Each video frame is a finite, bounded region of the Euclidean plane. A cell in the
Euclidean plane is either a 0-cell (vertex) or 1-cell (edge) or 2-cell (filled triangle).
A cell complex is a collection cells attached to each other by edges or by having
one or more common vertices.. A nonvoid collection of cell complexes K has a
Closure finite Weak (CW) topology, provided K is Hausdorff (every pair of distinct
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cells is contained in disjoint neighbourhoods [12, §5.1, p. 94]) and the collection
of cell complexes in K satisfy the Alexandroff-Hopf-Whitehead [2, §III, starting on
page 124], [22, pp. 315-317], [23, §5, p. 223] conditions, namely, containment (the
closure of each cell complex is in K) and intersection (the nonempty intersection
of cell complexes is in K). The focus in this work is on detecting nesting cycles in
optical vortexes on the barycenters of triangles covering video frame shapes.

1.1: Traffic video frame 1.2: Traffic video frame vor-
tex

1.3: Frame binary image

Figure 1. Sample video frame barycentric vortex

A vortex is a collection of nesting, usually non-concentric, path-connected,
barycentric, intersecting cycles. A cycle E (denoted by cycE) contains vertexes so
that each pair of vertexes p, q ∈ cycE in the cycle is path-connected, i.e., there is a
sequences of edges leading from vertex p to vertex q in the cycle. The vertexes in
barycentric cycles are the barycenters (intersection of the median lines) of triangles.
An optical vortex is a vortex constructed from vertexes that are picture elements
(pixels), snapshots of reflected light from surfaces recorded in a video frame (for a
sample optical vortex, see Example 1).

Example 1. A barycentric optical vortex containing a single cycle (in yellow) is
shown in the triangulation of the traffic video frame in Fig. 1.1 is shown in Fig. 1.2.
�

Vortex cycles are examples of nerve structures (called an optical vortex nerve).
A vortex nerve is a collection of nesting, possibly overlapping filled vortexes
attached to each other and have nonempty intersection [1, 19, 16, 15, 14]. A filled
vortex has a boundary that is a simple closed curve and a nonempty interior. Due
to the fact that the optical cycles intersect, i.e., the cycles in such vortexes have
one or more common vertexes (see, e.g., Example 5). Because the paths between
vertexes are on intersecting cycles in an optical vortex are bi-directional, we obtain
the following result.

Theorem 1. [17, §4.13, p. 212] An optical vortex has a free Abelian group repre-
sentation.

Recall that a group is a nonempty set V (for vortex) equipped with a binary
operation (represented here with a + (traverse or move)), so that each vertex p of
V has an inverse −p with p + (−p) = 0 (i.e., no traversal or movement occurs)
and p + q = q + p (Abelian property). That is, traversing the edges from p to
q in the vortex can always be followed by a traversal of the edges from q to p,
which takes us back to where we started. A zero move is the identity element of
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the group. For example, p + 0 reads ’no traversal occurs at p’. In a free Abelian
group representation of a vortex nerve, each vertex in the nerve can be written as a
summation of the generating elements. The number of generators in such a group
is the rank of the group.

2.1: Traffic optical vortex
nerve 1

2.2: Traffic optical vortex
nerve 2

Figure 2. Sample traffic video frame optical vortex nerves

Example 2. Sample traffic video frame optical vortex nerves are shown in Fig. 2.
The vertexes on the edges attached between the inner yellow cycles are the generators
of the free Abelian group representations of these nerves. �

A Ghrist barcode, usually called a persistence barcode, is a topology-of-data
pictograph that represents that appearance and disappearance of consecutive se-
quences of video frames having a particular feature value [8], [9, §5.13, pp. 104-106].
The origin of topology-of-data barcodes can be traced back to H. Edelsbrunner, D.
Letscher and A. Zomorodian [6], [7]. For a complete view of the landscape for a
topology-of-data barcode viewed as a multiset of intervals1, see J.A. Perea [13].

Example 3. An overview of the steps leading to a barcode for a traffic video is
given in Fig. 3. These steps in the construction of an optical vortex nerve begin
with the triangulation of a moving traffic video frame shape. Two measures of shape
structure (Fermi energy and counts of the basic parts of each nerve) are reflected in
varying length horizontal bars in a 2D barcode for each video. From shape energy
and shape part counts, a 3D barcode is constructed for each shape vortex nerve.
�

2. Preliminaries

This section briefly introduces Betti numbers and Fermi energy.

2.1. Betti numbers. There two forms of Betti numbers, an algebraic Betti
number (number of generators of a free Abelian group, denote simply by β),
introduced in J.R. Munkres [11, §1.4, p. 24] and three geometric Betti numbers
that give us the cardinality of geometric structures in a CW complex formed by the
triangulation of a video frame shape, introduced by A.J. Zomorodian [24, §4.3.2, p.
55]. The focus here is on geometric Betti numbers, which are more informative in
characterizing triangulated video frame shapes. The important thing to notice is
that we isolate and triangulate moving vehicle shapes in traffic video frames. That
is, we restrict Betti numbers to triangulated shapes [20] as opposed to triangulation
of an entire video frame.

1Many thanks to Vidit Nanda for pointing this out.
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Image Shape

Shape 
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Barycentric 
Cycle

Fermi Energy

+
2D Barcode

3D Barcode

Figure 3. Barycentric Cycle.

In the context of finite CW complexes found on triangulated finite bounded pla-
nar regions, triangulated video frame shapes are characterized by the geometric
Betti numbers, namely, B0 (cell or CW complex components count), B1 (vortex
nerve cycle count) and B2 (hole or void count). By contrast, from an algebraic per-
spective, the Betti number of a vortex nerve is a count of the number of generating
elements that define a free Abelian group representation of the nerve.

In triangulated traffic video frames, vertexes are the centroids of dark frame
regions. Each frame dark region absorbs sunlight and hence the dark regions are
considered holes with corresponding β2 counts. In that case, β0 counts the number
of centroidal vertexes, edges and filled triangles in a video frame. And β1 is a count
of the number of barycentric cycles on a triangulated video frame.

Example 4. In Fig. 1.2, we have the following Betti numbers:

Geometric views:
β0 = 8 + 40(filled triangle count) + 34vertexes + 34edges = 116.

β1 = 1(cycle count).
β2 = 75(hole count).
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Algebraic view:in Fig. 2.2.
β = 2, i.e., 4 generators, i.e., end vertices on the edges,

connected between the yellow barycentric cycles.
In the binary image for Fig. 1.2 given in Fig. 1.3, there are a total of 150 bounded
regions (75 of the bounded regions are holes). �

In this paper, only geometric Betti numbers are used in tracking persistent struc-
tures in sequences of video frames.

2.2. Fermi energy. The Hummel form of Fermi Energy [10, §6, p. 69, Eqn. (6.11)]
derived from the pixel population of an object shape is used in this paper.

EF =
k

2m0

(
3π2N

V

)2/3

,(1)

where N is the number of pixels in a moving object shape, V , total area of the mov-
ing objects and m0, the average intensity of the object shape pixels (in greyscale).
A scaling factor k was used to scale the values appropriately. This form of Fermi en-
ergy for structures in digital images appears in S. Pradikar, J. Sil and A.D. Das [21,
p. 807].

Algorithm 1: Vortex Energy Barcode
input : bkGray (initial greyscale frame), f video frames
output: A stationary background frame of size w × l.

1 for count← 1 to f do
2 frameDif ← frameGray- bkGray;
3 BW ← Convert the frameDif to binary image.;
4 shNo ← Number of moving objects in BW;
5 for shNo← 1 to f do
6 shapeBW ← Extract shape shNo from BW;
7 shCentroid ← Get the centroid of white blob area;
8 shGray ← frameGray- shapeBW;
9 shPoints ← Find strongest SWIFT points on shGray;

10 seedPoints ← shCentroid + shPoints;
11 triDelaunay ← Perform Delaunay triangulation on seedPoints.;
12 ncNode ← Calculate the nodes associated with shCentroid;
13 matBarycenters ← Calculate barycenters of triangles in triDelaunay;
14 ncBarycenters ← matBarycenters(ncNode);
15 bettyNo = Number of nodes in Barycentric Cycle;
16 matEnergy ← Save bettyNo and Energy associated with shGray;

17 plot(matEnergy);

To isolate moving objects in each video frame, background subtraction was used,
i.e., an initial video frame that displays no moving objects is subtracted from the
remaining fames in the video. In effect, subtracting an initial frame from the
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remaining frames in a video makes it possible to remove all background (dark)
regions in a video. Morphological operations were performed on the binary images
to further isolate the object shapes in the remaining frames. Algorithm 1 gives the
basic pseudo-code to construct optical vortex nerves on triangulated video frame
shapes.

Figure 4. Shape Fermi Energy in traffic Video Frame

Visualization of shape pixel intensities is represented by a 3D projection of iso-
lated frame object shapes.

Example 5. Shape Fermi energy in a video frames is shown in Fig. 4 for a traffic
video of Portage Avenue in Winnipeg. From Alg. 1, Fermi energy results from
extracting the number of pixels N in a 3D projection of a 2D vehicle shape. �

2.3. Time Complexity Analysis. Figure 5 shows the results of time complex-
ity analysis for Alg. 1. In estimating the complexity of Alg. 1, both theoretical
and actual time values were calculated. The time taken for the built-in functions
(e.g., video frame extraction, video frame exporting, triangulation) were not con-
sidered, since these functions are optimized. When calculating the theoretical time
complexity addition, subtraction, multiplication and division were considered as 4
different calculations.

The video frame shape triangulation method introduced in this paper has the-
oretical time complexity O

(
mn3

)
, which is computed in terms of m (pixel area of

a moving object) and n (number of moving objects) in a video frame. An experi-
mentally derived scaling factor of k is used to align each theatrical graph with the
actual time graph. The value of k is in the order of 1 × 10−6 and varies slightly
depending on each time curve shown in Fig.5.

It is evident from Fig.5 that the theoretical and the actual time complexity
curves follow each other very closely. This is especially the case as the number of
object shapes and the object shape area increase. There are some deviations from
this observation, when the object area and the number is small, which is to be
expected. This anomaly results from not considering the impact of some functions,
which are at work in the background of the system, which affects the time taken
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Figure 5. Time complexity.

for processing. But when the computation time increases, the influence of the
background functions becomes minimal compared to the overall computation time.

3. Results

Two of the results of this research reflect the influence of increasing shapes in
sequences of video frames (see [3]).
Lemma 1. Let shA, shA′ be object shapes in a pair of adjacent video frames with
shA′ appearing after shA. Also, let N,V,E,N ′, V ′, E′ be the number of shape pixels,
shape area, and Fermi energy in shA, shA′, respectively. Then N ′ > V ′, N ′ > N
and N > V implies E′ > E.
Proof. From Eqn. 2.2, we obtain the desired result. �

Observe that nesting, usually non-concentric cycles covering all or the principal
part of the interior of a video frame shape, form a ribbon. A ribbon is a collection
of such nesting filled cycles, which is an example of a vortex nerve. A vortex nerve
is a collection of nesting cycles that have non-empty intersection. This yields the
following result.
Theorem 2. [18].
A ribbon is a vortex nerve.
Theorem 3. Let shA, shA′ be object shapes covered by nesting, non-concentric
filled cycles in a pair of adjacent video frames with shA′ appearing after shA. Let
β1 be the cycle count Betti number for shA, β

′

1 for shA′. Assume that shape shA′

has N
′

pixels > V
′

area and shA has Npixels > Varea. Then β
′

1 > β1 implies E′ > E.

Proof. From Theorem 2, shA, shA′ are vortex nerves. β
′

1 > β1 indicates that the
number of nesting, non-concentric cycles in shA′ is greater than the number of
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cycles in shA. The outer cycle (call it cycA′) on the interior of shA′ has the
remaining cycles of shA′ nested inside cycA′. Also, from β

′

1 > β1, the number of
pixels N ′ > V ′ in the interior of cycA′ is greater than the number of pixels N > V
in the interior of cycA. Hence, from Lemma 1, E′ > E. �

Barcoding traffic videos provides a concise means of tracking the persistences of
shapes across sequences of video frames. Each occurrence of a frame shape is rep-
resented by a horizontal bar in 2D Ghrist pictographs called barcodes, introduced
by R. Ghrist [8, 9] and others [7, 6, 13, 4] and later extended to 3D persistence
barcodes in [5].

Figure 6. Example 3D Barcode for Traffic Video
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Figure 7. Example Barcode for Traffic Video

The basis for a picture proof of Theorem 3 is given in the 3D pesistence barcode
in Example 6.

Example 6. In the 3D persistence barcode in Fig. 4, the cycles Betti number β1

is also vortex Betti number. Uniformly in Fig. 4, as the cycles Betti number β1

increases, there is a corresponding increase in shape Fermi energy across a sequence
of frames. This tends to corrobarate the observation in Theorem 3. �

A 2D persistence barcode structured in terms of barycentric cycle counts in the
vortex Betti number β1, exhibits which of the β1 vortex cycle counts tend to be
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more persistent over a sequence of vehicular traffic video frames. A barycentric
cycle is a simple, closed curve in which its vertexes are triangle barycenters that
are path-connected.

Example 7. In the 2D persistence barcode given in Fig. 7, the vortex cycles Betti
number β1 ranges from 2 to 16 over a sequence of traffic video frames. The mid-
range β1 counts (from 7 to 9) have frequent extended horizontal bars spanning a
sequence of frames with extended bars ranging over 2 to 7 consecutive frames. In
other words, shapes with mid-range β1 counts tend to be more persistent. �
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