A data-driven Fourier transform like method

Mamadou Mboup

Université de Reims Champagne Ardenne (URCA)
CReSTIC - EiSiNe
BP 1039, Moulin de la Housse, 51687 Reims cedex 2, France
Email: Mamadou.Mboup@univ-reims.fr

Signal decomposition: Fixed universal set of atoms

$x(\cdot):$ Time domain $\longrightarrow \widehat{x}(\cdot):$ Transform domain

$$
\widehat{x}(\boldsymbol{\alpha})=\left\{\begin{array}{l}
\int x(t) \Phi(t, \boldsymbol{\alpha}) d t \\
\sum_{n} x(n) \Phi(n, \boldsymbol{\alpha})
\end{array}\right.
$$

$\Phi(n, \alpha):$

$$
\begin{array}{lll}
e^{i \omega t} & \alpha=\omega & \text { Fourier } \\
g(t-u) e^{i \omega t} & \alpha=(\omega, u) & \text { Gabor } \\
\psi\left(\frac{t-u}{s}\right) & \alpha=(s, u) & \text { Wavelet }
\end{array}
$$

universal atoms

Pros:

- $\Phi(\cdot, \alpha)$: physical meaning
- $\left\{\Phi\left(\cdot, \boldsymbol{\alpha}_{j}\right)\right\}$: well understood mathematical properties
\Rightarrow nice interpretation of the decomposition
Cons: $\left\{\Phi\left(\cdot, \boldsymbol{\alpha}_{j}\right)\right\}$ not always adapted to the signal x.
- Fourier analysis: smooth and stationary signals
- Time-Frequency analysis:
- atoms are localized in time and frequency
- Heisenberg-Gabor uncertainty principle

Signals with different high energy structures are problematic (S. Mallat)

Data-driven decomposition

Several decompositions:

- PCA
- Koopman operator (Approximation of its eigenmodes)
- Dynamic Mode Decomposition [P. Schmid, 08]
- Moment method for Spectrum estimation [M. Korda, 18]
- etc
- Empirical Mode Decomposition [N. E. Huang et al., 98]

Data-driven decomposition

Empirical Mode Decomposition (EMD):

(1) Input: $x(t)$
(2) Identify all extrema of $x(t)$
(3) Interpolate between minima (resp.
[N. E. Huang et al., 98]
[G. Rilling et al., 03] maxima), to obtain the lower (resp. upper) envelope $\ell(t)$ (resp. $u(t)$)
(0) Compute the mean
$m(t)=(\ell(t)+u(t)) / 2$
(0) Extract the detail $v(t)=x(t)-m(t)$

- Iterate 2-5 on $v(t)$ until
$\int v(t) d t=0$
(0) Extract the $i^{\text {th }}$ Intrinsic Mode Function $f_{i}(t)=v(t)$
(3) Iterate on the residual $m(t)$

Signal decomposition: data-driven atoms

Objectives:

- Let y be a given signal: the ad-hoc model
- Decompose x on a set of atoms constructed from y
$x(\cdot):$ Time domain $\xrightarrow{\mathrm{y}} \widehat{x}_{y}(\cdot):$ Transform domain

$$
\widehat{x}_{y}(\boldsymbol{\alpha})=\left\{\begin{array}{l}
\int x(t) \Phi_{y}(t, \boldsymbol{\alpha}) d t \\
\sum_{n} x(n) \Phi_{y}(n, \boldsymbol{\alpha})
\end{array}\right.
$$

For $y=x, \Phi_{x}$ is intrinsically adapted to x.

- self-adaptability of the EMD
- mathematical formalism of the traditional signal decomposition methods

Data-driven Fourier-like decomposition

Program:

(1) To a given signal y, associate a (Reproducing Kernel) Hilbert space \mathcal{H}_{y}. The space \mathcal{H}_{y} will represent the ad-hoc model.
(2) Then identify \mathcal{H}_{y} as the image of $L_{2}(\mathbb{R}, d \sigma)$ (for some σ), by a linear integral tranform.
(3) Define \hat{x}_{y} by the corresponding image of $x \in L_{2}(\mathbb{R}, d \sigma)$

Items 2 and 3 were already in the de Branges's program in the early 60s.

So the only missing step is the Hilbert space-valued map $y \mapsto \mathcal{H}_{y}$

De Branges spaces

Let $\mathfrak{m}(t)=\left(\begin{array}{cc}\alpha(t) & \beta(t) \\ \beta(t) & \gamma(t)\end{array}\right), \quad \alpha(t), \beta(t), \gamma(t)$ a.c. and $\mathfrak{m}^{\prime}(t)>0$ a.e. $t>0$.
Define $X(t, z)=\left[\begin{array}{l}A(t, z) \\ B(t, z)\end{array}\right] z \in \mathbb{C}$, by $\left\{\begin{array}{l}\frac{d}{d X} X(t, z)=z J m^{\prime}(t) X(t, z) \\ A(0, z)=1, B(0, z)=0\end{array}\right.$ where $J=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$
Also define $\mathcal{E}(t, z)=A(t, z)-\frac{i}{\sqrt{\alpha^{\prime}(t) \gamma^{\prime}(t)-\beta^{\prime}(t)^{2}}}\left(\beta^{\prime}(t) A(t, z)+\gamma^{\prime}(t) B(t, z)\right) \quad$ for $t>0$ and $\mathcal{E}(-t, z) \triangleq \overline{\mathcal{E}(t, \bar{z})}$

Theorem (De Branges spaces)
Let $\sigma(t)=\alpha^{\prime}(t)-\frac{\beta^{\prime}(t)^{2}}{\gamma^{\prime}(t)}$ and $\sigma(-t) \triangleq \sigma(t), t>0$. Then:
(3) For each fixed $\tau>0$ the set $\mathcal{H}\{\mathcal{E}(\tau, z)\}$ of functions

$$
\begin{equation*}
\widehat{f}_{\tau}(z)=\frac{1}{2 \pi} \int_{-\tau}^{\tau} f(t) \mathcal{E}(t, z) \sigma(t) d t \tag{2}
\end{equation*}
$$

where $f \in L_{2}([-\tau, \tau], \sigma(t) d t)$, is a RKHS of entire functions
(3) $\omega \in \mathbb{R}, \widehat{f}(\omega)=\lim _{\tau \rightarrow \infty} \widehat{f}_{\tau}(\omega) \in L_{2}(d \mu)$ for some μ and $\mathcal{H}\{\mathcal{E}(a, z)\} \subset L_{2}(d \mu)$.

De Branges decomposition

De Branges's theory constructs a map:

$$
\mathfrak{m}(t) \mapsto \mathcal{H}_{\mathfrak{m}}=\mathcal{H}\{\mathcal{E}\}
$$

Next, we give an example of construction of de Branges's matrix $\mathfrak{m}_{y}(t)$ from a given signal $y(t)$:

$$
y \mapsto \mathfrak{m}_{y}(t) \mapsto \mathcal{H}_{y}=\mathcal{H}\{\mathcal{E}\}
$$

De Branges Chirp-transform

- $\mathfrak{m}(t)=t \mathbf{I} \Rightarrow \mathcal{E}(t, \omega)=e^{-i \omega t}, \sigma(t)=1, t>0 \rightsquigarrow$ classical Fourier analysis.
- $\mathfrak{m}(t)=\psi(t) \mathbf{I} \Rightarrow \mathcal{E}(t, \omega)=e^{-i \omega \psi(t)}, \sigma(t)=\psi^{\prime}(|t|), t>0$.
- $y(t)=\psi(t)=t^{2} \mapsto \mathfrak{m}_{y}(t)=t^{2} \mathbf{I} \rightsquigarrow$ natural decomposition for chirp signals.

$$
x(t)=\sum_{n=1}^{N} \alpha_{n} e^{-i \omega_{n} \psi_{n}(t)}+\text { noise, } \omega_{n} \psi_{n}(t)=\theta_{n}\left(t-\lambda_{n}\right)^{2}+\eta_{n}
$$

Chirp-transform: Spectogram

a) 3 D view

b) 2 D projection

Data-driven transform: a proof of concept

- Let $y_{n}=u_{n}+i v_{n}, n=0,1, \ldots$ be a discrete complex signal (t_{n} : sampling instants).
- (For real signals, set $u_{n}=y_{n}$ and consider the analytic signal $\tilde{y}_{n}=u_{n}+i v_{n}$).
- Consider the piecewise constant 2×2-matrix function $\mathfrak{m}_{y}(t)$ defined s.t.

$$
\mathfrak{m}_{y}^{\prime}(t)=\frac{d \mathfrak{m}_{y}(t)}{d t}=\left(\begin{array}{cc}
u_{n}^{2} & u_{n} v_{n} \\
v_{n} u_{n} & v_{n}^{2}
\end{array}\right) \delta\left(t-t_{n}\right), \quad n=0,1,2, \cdots
$$

\rightsquigarrow finite dimensional De Branges space

$$
\text { This realizes the map }\left\{y_{n}\right\} \mapsto \mathfrak{m}_{y}(t) \text { (or }\left\{\widetilde{y}_{n}\right\} \mapsto \mathfrak{m}_{y}(t) \text {) }
$$

Data-driven transform: a proof of concept

Set $X_{n}(z)=X\left(t_{n}, z\right)=\binom{A_{n}(z)}{B_{n}(z)}$. Then with \mathfrak{m}_{y}, we have:

$$
X_{n+1}(z)=\left(\begin{array}{cc}
1-z u_{n} v_{n} & -z v_{n}^{2} \\
z u_{n}^{2} & 1+z u_{n} v_{n}
\end{array}\right) X_{n}(z) \quad \text { with } \quad X_{0}(z)=\binom{1}{0}
$$

Define

$$
S_{n}(z) \triangleq u_{n} A_{n}(z)+v_{n} B_{n}(z)
$$

Theorem (De Branges, Alpay \& Dym)
If $u_{n} \neq 0$ and $v_{n} \neq 0, n=0,1, \ldots, N$, then $\left\{S_{n}(z)\right\}_{n=0}^{N}$ is an orthonormal basis of $\mathcal{H}\left\{\mathcal{E}\left(t_{\mathrm{N}}, z\right)\right\}$.

Data-driven transform: a proof of concept

Given two causal signals $y_{n}=u_{n}+i v_{n}$ and $x_{n}=p_{n}+i q_{n}, n=0,1, \ldots, N$, we define the y-transform of x by

$$
\widehat{x}_{y}(z)=\frac{1}{\pi} \sum_{n=0}^{N}\left(p_{n} u_{n}+q_{n} v_{n}\right) S_{n}(z)
$$

Some Remarks:

- For all $n, S_{n}(0)=u_{n}\left(A_{n}(0)=1, B_{n}(0)=0\right)$

$$
\widehat{x}_{y}(0)=\frac{1}{\pi} \sum_{n=0}^{N}\left(p_{n} u_{n}^{2}+q_{n} u_{n} v_{n}\right)
$$

$\rightsquigarrow 3$ rd order cross moments

- $\left\|\widehat{x}_{y}(z)\right\|^{2}=\frac{1}{\pi} \sum_{n=0}^{N}\left(p_{n} u_{n}+q_{n} v_{n}\right)^{2}$
$\rightsquigarrow 4$ th order cross moments

Thank you!

