A data-driven Fourier transform like method

Mamadou Mboup

Université de Reims Champagne Ardenne (URCA)

CReSTIC - EiSiNe

BP 1039, Moulin de la Housse, 51687 Reims cedex 2, France

Email: Mamadou.Mboup@univ-reims.fr

Signal decomposition: Fixed universal set of atoms

 $x(\cdot)$: Time domain $\longrightarrow \widehat{x}(\cdot)$: Transform domain

$$\widehat{x}(\alpha) = \begin{cases} \int x(t)\Phi(t,\alpha)dt \\ \sum_{n} x(n)\Phi(n,\alpha) \end{cases}$$

$$\begin{array}{cccc} \Phi(n,\pmb{\alpha}): & & & & & \\ & e^{i\omega t} & & \pmb{\alpha} = \omega & \text{Fourier} \\ & g(t-u)e^{i\omega t} & \pmb{\alpha} = (\omega,u) & \text{Gabor} \\ & \psi\left(\frac{t-u}{s}\right) & \pmb{\alpha} = (s,u) & \text{Wavelet} \end{array}$$

universal atoms

Pros:

- $\Phi(\cdot, \alpha)$: physical meaning
- ullet $\{\Phi(\cdot, \pmb{\alpha}_j)\}$: well understood mathematical properties
- ⇒ nice interpretation of the decomposition

Cons: $\{\Phi(\cdot, \alpha_i)\}$ not always adapted to the signal x.

- Fourier analysis: smooth and stationary signals
- Time-Frequency analysis:
 - atoms are localized in time and frequency
 - Heisenberg-Gabor uncertainty principle

Signals with different high energy structures are problematic (S. Mallat)

Data-driven decomposition

Several decompositions:

- PCA
- Koopman operator (Approximation of its eigenmodes)
 - Dynamic Mode Decomposition [P. Schmid, 08]
 - Moment method for Spectrum estimation [M. Korda, 18]
 - etc
- Empirical Mode Decomposition [N. E. Huang et al., 98]

... Data-driven decomposition

Empirical Mode Decomposition (EMD):

- Input: x(t)
- ② Identify all extrema of x(t)
- Interpolate between minima (resp. maxima), to obtain the lower (resp. upper) envelope $\ell(t)$ (resp. u(t))
- Compute the mean $m(t) = (\ell(t) + u(t))/2$
- **5** Extract the detail v(t) = x(t) m(t)
- Iterate 2-5 on v(t) until $\int v(t)dt = 0$
- ② Extract the i^{th} Intrinsic Mode Function $f_i(t) = v(t)$
- 3 Iterate on the residual m(t)

[N. E. Huang et al., 98] [G. Rilling et al., 03]

Signal decomposition: data-driven atoms

Objectives:

- Let y be a given signal: the ad-hoc model
- ullet Decompose x on a set of atoms constructed from y

 $x(\cdot): \mathsf{Time\ domain} \xrightarrow{y} \widehat{x}_y(\cdot): \mathsf{Transform\ domain}$

$$\widehat{x}_{y}(\alpha) = \begin{cases} \int x(t)\Phi_{y}(t,\alpha)dt \\ \sum_{n} x(n)\Phi_{y}(n,\alpha) \end{cases}$$

For y = x, Φ_x is intrinsically adapted to x.

- self-adaptability of the EMD
- mathematical formalism of the traditional signal decomposition methods

Data-driven Fourier-like decomposition

Program:

- To a given signal y, associate a (Reproducing Kernel) Hilbert space \mathcal{H}_y . The space \mathcal{H}_y will represent the ad-hoc model.
- ② Then identify \mathcal{H}_y as the image of $L_2(\mathbb{R}, d\sigma)$ (for some σ), by a linear integral tranform.
- **②** Define \widehat{x}_y by the corresponding image of $x \in L_2(\mathbb{R}, d\sigma)$

Items 2 and 3 were already in the de Branges's program in the early 60s.

So the only missing step is the Hilbert space-valued map $y\mapsto \mathcal{H}_y$

De Branges spaces

Let
$$\mathfrak{m}(t) = \begin{pmatrix} \alpha(t) & \beta(t) \\ \beta(t) & \gamma(t) \end{pmatrix}$$
, $\alpha(t), \beta(t), \gamma(t)$ a.c. and $\mathfrak{m}'(t) > 0$ a.e. $t > 0$. (1)

Define
$$X(t,z) = \begin{bmatrix} A(t,z) \\ B(t,z) \end{bmatrix} z \in \mathbb{C}$$
, by $\left\{ \begin{array}{l} \frac{d}{dt}X(t,z) = zJm'(t)X(t,z) \\ A(0,z) = 1, \ B(0,z) = 0 \end{array} \right.$ where $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Also define $\mathcal{E}(t,z) = A(t,z) - \frac{i}{\sqrt{\alpha'(t)\gamma'(t) - \beta'(t)^2}} \left(\beta'(t)A(t,z) + \gamma'(t)B(t,z)\right)$ for $t>0$ and $\mathcal{E}(-t,z) \stackrel{\triangle}{=} \overline{\mathcal{E}(t,\overline{z})}$

Theorem (De Branges spaces)

Let
$$\sigma(t) = \alpha'(t) - \frac{\beta'(t)^2}{\gamma'(t)}$$
 and $\sigma(-t) \stackrel{\triangle}{=} \sigma(t)$, $t > 0$. Then:

• For each fixed $\tau > 0$ the set $\mathcal{H}\{\mathcal{E}(\tau,z)\}$ of functions

$$\widehat{f}_{\tau}(z) = \frac{1}{2\pi} \int_{-\tau}^{\tau} f(t) \mathcal{E}(t, z) \sigma(t) dt, \tag{2}$$

where $f \in L_2([-\tau, \tau], \sigma(t)dt)$, is a RKHS of entire functions

 $② \ \omega \in \mathbb{R}, \widehat{f}(\omega) = \lim_{\tau \to \infty} \widehat{f}_{\tau}(\omega) \in L_2(d\mu) \ \text{for some μ and \mathcal{H}} \{\mathcal{E}(a,z)\} \subset L_2(d\mu).$

De Branges decomposition

De Branges's theory constructs a map:

$$\mathfrak{m}(t) \mapsto \mathcal{H}_{\mathfrak{m}} = \mathcal{H}\{\mathcal{E}\}$$

Next, we give an example of construction of de Branges's matrix $\mathfrak{m}_y(t)$ from a given signal y(t):

$$y \mapsto \mathfrak{m}_y(t) \mapsto \mathcal{H}_y = \mathcal{H}\{\mathcal{E}\}$$

De Branges Chirp-transform

- $\mathfrak{m}(t) = t\mathbf{I} \Rightarrow \mathcal{E}(t,\omega) = e^{-i\omega t}$, $\sigma(t) = 1, t > 0 \leadsto$ classical Fourier analysis.
- $\mathfrak{m}(t) = \psi(t)\mathbf{I} \Rightarrow \mathcal{E}(t,\omega) = e^{-i\omega\psi(t)}, \ \sigma(t) = \psi'(|t|), t > 0.$
- $y(t)=\psi(t)=t^2\mapsto \mathfrak{m}_y(t)=t^2\mathbf{I} \leadsto$ natural decomposition for chirp signals.

$$x(t) = \sum_{n=1}^{N} \alpha_n e^{-i\omega_n \psi_n(t)} + \text{noise}, \ \omega_n \psi_n(t) = \theta_n (t - \lambda_n)^2 + \eta_n$$

Chirp-transform: Spectogram

a) 3D view

b) 2D projection

Data-driven transform: a proof of concept

- Let $y_n = u_n + iv_n$, n = 0, 1, ... be a discrete complex signal (t_n) : sampling instants).
- (For real signals, set $u_n = y_n$ and consider the analytic signal $\widetilde{y}_n = u_n + iv_n$).
- Consider the piecewise constant 2×2 -matrix function $\mathfrak{m}_{y}(t)$ defined s.t.

$$\mathfrak{m}_y'(t) = \frac{d\mathfrak{m}_y(t)}{dt} = \begin{pmatrix} u_n^2 & u_n v_n \\ v_n u_n & v_n^2 \end{pmatrix} \delta(t - t_n), \quad n = 0, 1, 2, \cdots$$

→ finite dimensional De Branges space

This realizes the map $\{y_n\} \mapsto \mathfrak{m}_y(t)$ (or $\{\widetilde{y}_n\} \mapsto \mathfrak{m}_y(t)$)

... Data-driven transform: a proof of concept

Set
$$X_n(z) = X(t_n, z) = \begin{pmatrix} A_n(z) \\ B_n(z) \end{pmatrix}$$
. Then with \mathfrak{m}_y , we have:

$$X_{n+1}(z) = \begin{pmatrix} 1 - zu_nv_n & -zv_n^2 \\ zu_n^2 & 1 + zu_nv_n \end{pmatrix} X_n(z) \quad \text{ with } X_0(z) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Define

$$S_n(z) \stackrel{\triangle}{=} u_n A_n(z) + v_n B_n(z)$$

Theorem (De Branges, Alpay & Dym)

If $u_n \neq 0$ and $v_n \neq 0$, n = 0, 1, ..., N, then $\{S_n(z)\}_{n=0}^N$ is an orthonormal basis of $\mathcal{H}\{\mathcal{E}(t_N, z)\}$.

Data-driven transform: a proof of concept

Given two causal signals $y_n = u_n + iv_n$ and $x_n = p_n + iq_n$, n = 0, 1, ..., N, we define the y-transform of x by

$$\widehat{x}_{y}(z) = \frac{1}{\pi} \sum_{n=0}^{N} (p_n u_n + q_n v_n) S_n(z)$$

Some Remarks:

• For all n, $S_n(0) = u_n$ $(A_n(0) = 1, B_n(0) = 0)$

$$\widehat{x}_y(0) = \frac{1}{\pi} \sum_{n=0}^{N} (p_n u_n^2 + q_n u_n v_n)$$

→ 3rd order cross moments

•
$$\|\widehat{x}_y(z)\|^2 = \frac{1}{\pi} \sum_{n=0}^{N} (p_n u_n + q_n v_n)^2$$

Thank you!

