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a-posteriori-steered p-robust multigrid solvers∗

Ani Miraçi†‡ Jan Papež§ Martin Vohraĺık†‡

September 7, 2020

Abstract

In this work we study a local adaptive smoothing algorithm for a-posteriori-steered p-robust multigrid
methods. The solver tackles a linear system which is generated by the discretization of a second-
order elliptic diffusion problem using conforming finite elements of polynomial order p ≥ 1. After
one V-cycle (“full-smoothing” substep) of the solver of [HAL Preprint 02494538, 2020], we dispose
of a reliable, efficient, and localized estimation of the algebraic error. We use this existing result to
develop our new adaptive algorithm: thanks to the information of the estimator and based on a bulk-
chasing criterion, cf. Dörfler [SIAM J. Numer. Anal., 33 (1996), pp. 1106–1124], we mark patches of
elements and levels with increased estimated error. Then, we proceed by a modified and cheaper V-cycle
(“adaptive-smoothing” substep), which only applies smoothing in the marked regions. The proposed
adaptive multigrid solver picks autonomously and adaptively the optimal step-size per level as in our
previous work but also the type of smoothing per level (weighted restricted additive or additive Schwarz)
and concentrates smoothing to marked regions with high error. We prove that each substep (full and
adaptive) contracts the error p-robustly, which is confirmed by numerical experiments. Moreover, the
proposed algorithm behaves numerically robustly with respect to the number of levels as well as to the
diffusion coefficient jump.

Key words: finite element method, multigrid method, Schwarz method, block-Jacobi smoother, a posteriori
estimate, adaptive smoothing, stable decomposition, p-robustness

1 Introduction

The finite element method is a widespread and versatile discretization method for partial differential equa-
tions, see e.g. Ciarlet [9], Ern and Guermond [12], or Brenner and Scott [4]. In particular, the use of
high-order methods has shown numerous advantages in terms of accuracy, see e.g. Szabó and Babuška [29],
Bernardi and Maday [3], Šoĺın et al. [30], and the references therein. The implementation of these methods
however, leads to a linear system that is abundantly bigger than for low-order discretizations. This appeals
to the use of an appropriate iterative solver. Moreover, since the conditioning degrades with increasing
order, commonly used solvers begin to suffer. Amongst the most efficient solvers we mention multigrid
solvers, see e.g. Hackbusch [14], Briggs et al. [6], more generally multilevel methods e.g. Zhang [32], Os-
wald [22], Griebel and Oswald [13], and the closely related domain decomposition methods, e.g. Quarteroni
and Valli [25] or Dolean et al. [10]. Note that the above methods can be used in their own right as fixed
point methods, or as a preconditioner (possibly after making them symmetric).

The idea of defining an adaptive algebraic solver is rather old. On the subject of local smoothing
methods, we refer, e.g., to Bai and Brandt [2], McCormick [19], Rüde [26], Lötzbeyer and Rüde [18], and
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more recently Xu et al. [31], Janssen and Kanschat [16], or Chen et al. [8]. Here the smoothing is typically
localized to parts where the adaptive mesh refinement was performed, but it is not adaptive per se. Adaptive
smoothed aggregation aiming at building a coarser linear system by determining near-kernel components
was proposed in the context of algebraic multigrid, see e.g. Brezina et al. [5] and the references therein.
More recently, an aggregation based on path covers was proposed by Hu et al. [15]. Another interesting
approach consists in applying an adaptive construction of preconditioners, see, e.g., the recent work of
Anciaux-Sedrakian et al. [1], where the adaptivity relies on a posteriori error estimates of the algebraic
error, cf. Papež et al. [23, 24], combined with a bulk-chasing criterion in the spirit of Dörfler [11]. To the
best of the authors’ knowledge, this is the first time a bulk-chasing criterion is used in an algebraic solver
adaptivity (and not mesh refinement) setting. However, the results therein are mainly numerical, whereas
mathematical analysis is not really developed.

The subject of this work is to propose a multigrid solver with local adaptive smoothing based on rigorous
a posteriori error estimates of the algebraic error and a bulk-chasing criterion, and to prove its convergence.
We rely on the polynomial-degree-robust solver introduced in Miraçi et al. [21], which is a geometric multigrid
whose iteration consists of a V-cycle with zero pre- and one post-smoothing step, where the smoothing is
overlapping additive Schwarz (block-Jacobi) associated to patches of elements. This solver already contains
a first adaptive step, since the error correction update from one level to the next, in contrast to a standard
multigrid, picks the optimal (adaptive) step-size that reduces the algebraic error in the best possible way.
The results of [21] also give us a reliable and efficient a posteriori estimator on the algebraic error and
equivalence of the algebraic error with localized (levelwise/patchwise) computable estimators that serve as
a starting point for our current contribution.

In this work, after implementing one step of the original solver of [21] (one full-smoothing V-cycle), we
obtain a fairly good indication of where (levelwise/patchwise) the algebraic error is concentrated. We then
use a bulk-chasing criterion to mark the highest contribution regions, and then perform a cheaper step (one
adaptive-smoothing V-cycle) only smoothing in these problematic regions. Additionally, based on numerical
performance and literature results, see, e.g., Cai and Sarkis [7] or Loisel et al. [17], we give the solver the
option to pick adaptively the type of smoothing, be it additive Schwarz or (the typically better performing)
weighted restricted additive Schwarz. We focus on quasi-uniform meshes, but our theory also applies to
possibly highly graded bisection grids, where smoothing is already local around the refinement edges.

We prove that the algorithm we present contracts the error in each of the substeps, the full-smoothing
and the adaptive-smoothing, robustly with respect to the polynomial degree p of the underlying finite element
discretization. The results on the full-smoothing substep rely on [21], where a p-robust stable decomposition
for one level by Schöberl et al. [27], and a multilevel stable decomposition for piecewise affine polynomials on
quasi-uniform/bisection grids by Xu et al. [31] are crucial. Numerically, we additionally observe robustness
with respect to the number of levels in the mesh hierarchy as well as the jumps in the diffusion coefficient.

Compared to [21], the novelties of this work are: 1) Development of a new kind of adaptivity that
is local in patches with increased algebraic error, whereas the adaptivity in [21] chooses the number of
post-smoothing steps globally per level. 2) Localization in space relying on Dörfler’s marking. 3) Proof
that the new adaptive sub-step contracts the error p-robustly, despite it only smoothes in marked patches
(no convergence proof of the adaptive scheme is given in [21]). 4) Adaptive decision on which smoothing
(additive Schwarz or weighted restricted additive Schwarz) variant to employ per level and inclusion of the
weighted restricted additive Schwarz in the analysis, which was not done in [21].

The manuscript is organized as follows. In Section 2 we introduce the model problem and the notation
we will be working with. Section 3 presents in detail the algorithmic description of the solver with each of its
modules, as well as the rigorous mathematical definition of the solver. In Section 4 we define the algebraic
error estimator. The main results are collected in Section 5, and the numerical tests are showcased in
Section 6. Section 7 gives the proofs of our main results. Finally, some concluding remarks are given in
Section 8.

2 Setting

In this section we present the model problem we will be studying and the notation needed for the multilevel
setting we work on.
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2.1 Model problem and its finite element discretization

We work with a second-order elliptic problem defined over Ω⊂Rd, d ∈ {1, 2, 3}, an open bounded polytope
with a Lipschitz-continuous boundary. In the weak formulation, we search for u ∈ H1

0 (Ω) such that

(K∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (2.1)

where f ∈ L2(Ω) is a source term and K ∈ [L∞(Ω)]d×d is a symmetric and positive definite diffusion
coefficient.

Let TJ be a matching simplicial mesh of Ω. Fixing an integer p ≥ 1, we introduce the finite element
space of piecewise continuous polynomials of degree p

V p
J := Pp(TJ) ∩H1

0 (Ω), (2.2)

where Pp(TJ) := {vJ ∈ L2(Ω), vJ |K ∈ Pp(K) ∀K ∈ TJ}. The discrete problem consists in finding uJ ∈ V p
J

such that
(K∇uJ ,∇vJ) = (f, vJ) ∀vJ ∈ V p

J . (2.3)

2.2 A hierarchy of meshes and spaces

We rely in this contribution on a hierarchy of matching simplicial meshes {Tj}0≤j≤J , where TJ has been
introduced in Section 2.1, and where Tj is a refinement of Tj−1, 1 ≤ j ≤ J . We also introduce a hierarchy
of finite element spaces associated to the mesh hierarchy. For this purpose, fix pj the polynomial degree
associated to mesh level j ∈ {1, . . . , J} such that 1 ≤ p1 ≤ . . . ≤ pJ−1 ≤ pJ = p. We then introduce

for j = 0 : V 1
0 := P1(T0) ∩H1

0 (Ω) (lowest-order space), (2.4a)

for 1 ≤ j ≤ J − 1 : V
pj

j := Ppj (Tj) ∩H1
0 (Ω) (pj-th order spaces), (2.4b)

where Ppj
(Tj) := {vj ∈L2(Ω), vj |K ∈Ppj

(K) ∀K ∈ Tj}. Note that V 1
0 ⊂V

p1

1 ⊂ . . .⊂V
pJ−1

J−1 ⊂V
p
J , so that the

spaces are nested. We also formally set p0 = 1. Let Vj be the set of vertices of the mesh Tj . We denote by
ψa
j the standard hat function associated to the vertex a ∈ Vj , 0 ≤ j ≤ J ; this is the piecewise affine function

with respect to the mesh Tj that takes value 1 in the vertex a and vanishes in all other vertices of Vj .

Figure 1: Illustration of a patch T a
j , the patch subdomain ωa

j , and of the degrees of freedom for the space
V a
j with pj = 2.

For the following, we need to define the notion of patches of elements, illustrated in Figure 1. Let
j ∈ {1, . . . , J}. For any element K ∈ Tj , we denote by VK the set of its vertices. Then, given an arbitrary
vertex a ∈ Vj , we denote by T a

j the patch formed by all elements of the mesh T a
j sharing the vertex a,

i.e., T a
j :={K ∈ Tj ,a ∈ VK}. Then we denote by ωa

j the open patch subdomain corresponding to T a
j .

Finally, the associated local space is V a
j

V a
j :=Ppj

(T a
j ) ∩H1

0 (ωa
j ), j ∈ {1, . . . , J}. (2.5)

Larger subdomains can also be considered, cf. [20]. Finally, denote by Ipj

j the Ppj Lagrange interpolation

operator on the mesh level j, i.e. Ipj

j : C0(Ω) → V
pj

j , Ipj

j (v) preseves the values of v in the nodes corre-
sponding to the Lagrange degrees of freedom. This will play an important role in the adaptive choice of
smoothing of the solver presented below in Section 3.
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3 Adaptive multilevel solver

The basic idea of our adaptive solver is illustrated by Figure 2. In Section 3.1, we give an algorithmic
description of the solver, followed by the explanation of its constituting modules. Then in Section 3.2, we
provide a mathematical description of the solver, lengthier but better suited for the forthcoming theoretical
analysis.

Figure 2: Illustration of the full-smoothing and adaptive-smoothing V-cycle substeps, J = 3.

3.1 Algorithmic description of the solver

The adaptive solver we propose can be written in an algorithmic description:

Algorithm 1: A-posteriori-steered multigrid with local adaptive smoothing

Input: [polynomial degree p, number of levels J , bulk-chasing parameter θ, adaptivity-decision
parameter γ, requested tolerance tol]
i := 0; uiJ := 0; ηialg := 10tol;

while ηialg ≥ tol do

i := i+ 1; uiJ := ui−1J ;

uiJ := uiJ + COARSE SOLVE; (ηialg)
2

:=
∥∥∥K 1

2∇(COARSE SOLVE)
∥∥∥2;

for j = 1, ..., J do
for a ∈ Vj do

ρij,a := LOCAL SOLVE(j, a);

end
ρij := ADAPT SMOOTH(j, Vj); λij := OPTIMAL STEPSIZE(ρij);

uiJ := uiJ + λijρ
i
j ; (ηialg)

2
:= (ηialg)

2
+
(
λij

∥∥∥K 1
2∇ρij

∥∥∥)2;
end
if ηialg < tol break while loop;(
M, {a ∈Mj}j∈M

)
:= DÖRFLER MARKING

(
ρi0, {{ρij,a}Jj=1}a∈Vj , θ

)
;

if [ TEST ADAPT(γ) ] then
if 0 ∈M then

uiJ := uiJ+ COARSE SOLVE; (ηialg)
2
:=
∥∥∥K 1

2∇(COARSE SOLVE)
∥∥∥2;

end
for j ∈M \ {0} do

for a ∈Mj do
ρij,a := LOCAL SOLVE(j, a);

end
ρij := ADAPT SMOOTH(j, Mj); λ

i
j := OPTIMAL STEPSIZE(ρij);

uiJ := uiJ + λijρ
i
j ; (ηialg)

2
:= (ηialg)

2
+
(
λij

∥∥∥K 1
2∇ρij

∥∥∥)2;
end

end

end
istop := i;

Output: [ u
istop
J , η

istop
alg ]
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3.1.1 Module COARSE SOLVE (coarse grid solution)

Input: - ; Output: global P1-lifting ρi0 of the current algebraic residual.
Given the latest approximation uiJ ∈ V

p
J , define ρi0 ∈ V 1

0 by

(K∇ρi0,∇v0) = (f, v0)− (K∇uiJ ,∇v0) ∀v0 ∈ V 1
0 .

3.1.2 Module LOCAL SOLVE (block-Jacobi solution)

Input: level j, vertex a; Output: local Ppj -lifting ρij,a of the current algebraic residual.

Given the latest approximation uiJ ∈ V
p
J , define the local contribution ρij,a ∈ V a

j by

(K∇ρij,a,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ ,∇vj,a)ωa

j
∀vj,a∈V a

j .

3.1.3 Module ADAPT SMOOTH (descent direction)

Input: level j, set of vertices V(j); Output: descent direction ρij .
The following test verifies if the weighted restricted additive Schwarz smoothing is compatible with the

convergence analysis of the solver.
Given the latest approximation uiJ ∈ V

p
J , if the following conditions hold

•
∑

a∈V(j)

Ipj

j (ψa
j ρ

i
j,a) 6= 0,

•


∑

a∈V(j)

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

d+ 1


1
2

≤

∑
a∈V(j)

(
(f, Ipj

j (ψa
j ρ

i
j,a))ωa

j
− (K∇uiJ ,∇I

pj

j (ψa
j ρ

i
j,a))ωa

j

)
∥∥∥ ∑

a∈V(j)
K

1
2∇Ipj

j (ψa
j ρ

i
j,a)
∥∥∥ ,

and, if the module is in the full-smoothing substep, if

•
∑
a∈Vj

∥∥∥K 1
2∇Ipj

j (ψa
j ρ

i
j,a)
∥∥∥2
ωa

j

≤
∑
a∈Vj

∥∥∥K 1
2∇ρij,a

∥∥∥2
ωa

j

,

then the solver employs weighted restricted additive Schwarz smoothing, by defining the descent direction
on level j, ρij ∈ V

pj

j , as

ρij :=
∑

a∈V(j)

Ipj

j (ψa
j ρ

i
j,a).

Otherwise, additive Schwarz smoothing is employed and

ρij :=
∑

a∈V(j)

ρij,a.

3.1.4 Module OPTIMAL STEPSIZE (optimal level step-size)

Input: descent direction ρij on level j; Output: optimal step-size λij on level j.

Given the latest approximation uiJ ∈ V
p
J , if ρij = 0, set λij := 1, otherwise define the optimal step-size

on level j, as

λij :=
(f, ρij)− (K∇uiJ ,∇ρij)∥∥K 1

2∇ρij
∥∥2 .
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3.1.5 Module DÖRFLER MARKING (bulk choice of levels/patches for smoothing)

Input: liftings ρi0, ρij,a for 1 ≤ j ≤ J , a ∈ Vj , bulk-chasing parameter θ;
Output: set of marked levels M, set of marked vertices per level Mj , j ∈M.

For θ ∈ (0, 1), we sort all patchwise contributions on all levels and select for marking the smallest
cardinality set of the coarsest level and vertex indices, 1 ≤ j ≤ J, by the following bulk-chasing criterion,
cf. Dörfler [11],

θ2

∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

 ≤ ∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

,

where only
∥∥K 1

2∇ρi0
∥∥ appears on the coarsest level j = 0 if it is marked.

Here and below, we will always use the shorthand notation “j ∈M” for accessing the setM in ascending
order.

3.1.6 Module TEST ADAPT (deciding whether adaptivity will pay-off)

Input: User-prescribed parameter γ; Output: bool.
For γ ∈ (0, 1), if the following (analysis-driven) conditions hold, the solver will proceed to the adaptive-

smoothing substep.

•
∑
j∈M

λij
∑

a∈Mj

( J∑
k=j

λikK∇ρik,∇ρij,a
)

ωa
j

≤ γ2
∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

,

• λij ≤ 2(d+ 1) ∀j ∈ {0, . . . , J}.

In practice, one needs to verify mainly the first condition, whereas the second one seems much less restrictive.

3.2 Mathematical description of the solver

We now present the adaptive solver in a rigorous mathematical notation. This notation will be used for
the remainder of the manuscript. Below we describe in detail one iteration of the adaptive solver. The
initialization is given by u0J := 0 ∈ V p

J .

1. Full-smoothing substep

(a) Define ρi0 ∈ V 1
0 by

(K∇ρi0,∇v0) = (f, v0)− (K∇uiJ ,∇v0) ∀v0 ∈ V 1
0 (3.1)

and set λi0 := 1 and uiJ,0 := uiJ + λi0ρ
i
0.

(b) For all j ∈ {1, . . . , J}, a ∈ Vj , define the local contributions ρij,a ∈ V a
j by

(K∇ρij,a,∇vj,a)ωa
j

=(f, vj,a)ωa
j
− (K∇uiJ,j−1,∇vj,a)ωa

j
∀vj,a∈V a

j . (3.2)

i. Test (adaptive smoothing choice): If the following conditions hold∑
a∈Vj

Ipj

j (ψa
j ρ

i
j,a) 6= 0, (3.3a)


∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

d+ 1


1
2

≤

∑
a∈Vj

[(
f, Ipj

j (ψa
j ρ

i
j,a)
)
ωa

j

−
(
K∇uiJ,j−1,∇I

pj

j (ψa
j ρ

i
j,a)
)
ωa

j

]
∥∥∥ ∑

a∈Vj
K

1
2∇Ipj

j (ψa
j ρ

i
j,a)
∥∥∥ , (3.3b)

∑
a∈Vj

∥∥∥K 1
2∇Ipj

j (ψa
j ρ

i
j,a)
∥∥∥2
ωa

j

≤
∑
a∈Vj

∥∥∥K 1
2∇ρij,a

∥∥∥2
ωa

j

, (3.3c)
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then define the level j descent direction ρij ∈ V
pj

j as

ρij :=
∑
a∈Vj

Ipj

j (ψa
j ρ

i
j,a), (3.4)

otherwise define

ρij :=
∑
a∈Vj

ρij,a. (3.5)

If ρij = 0, set λij := 1, otherwise define the optimal step-size on level j

λij :=
(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1

2∇ρij
∥∥2 . (3.6)

The level update is given by

uiJ,j := uiJ,j−1 + λijρ
i
j , (3.7)

and the update after the full-smoothing substep is u
i+ 1

2

J := uiJ,J ∈V
p
J .

2. Marking We mark the patches and/or the coarse level by the following bulk-chasing criterion [11],
for a parameter θ ∈ (0, 1)

θ2

∥∥K 1
2∇ρi0

∥∥2+ J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

 ≤ ∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

, (3.8)

with the convention that if 0 ∈M, we write
∑

a∈M0

∥∥K 1
2∇ρi0,a

∥∥2
ωa

0
to mean

∥∥K 1
2∇ρi0

∥∥2.

3. Test (adaptive substep): If the two following (analysis-driven) conditions are satisfied, proceed to
the adaptive-smoothing substep:

∑
j∈M

λij
∑

a∈Mj

( J∑
k=j

λikK∇ρik,∇ρij,a
)
ωa

j

≤ γ2
∑
j∈M

λij
∑

a∈Mj

∥∥∥K 1
2∇ρij,a

∥∥∥2
ωa

j

, (3.9)

λij ≤ 2(d+ 1) ∀j ∈ {0, . . . , J}, (3.10)

where γ ∈ (0, 1) is a user-prescribed parameter. If these conditions do not hold, then let ui+1
J := u

i+ 1
2

J

and ignore the adaptive-smoothing substep.

4. Adaptive-smoothing substep

(a) If 0 /∈M, define ρ
i+ 1

2
0 := 0 and λ

i+ 1
2

0 := 1.

Otherwise, when 0 ∈M, set λ
i+ 1

2
0 := 1 and define ρ

i+ 1
2

0 ∈ V 1
0 by

(K∇ρi+
1
2

0 ,∇v0) = (f, v0)− (K∇ui+
1
2

J ,∇v0) ∀v0 ∈ V 1
0 . (3.11)

Define the coarsest level update u
i+ 1

2

J,0 := u
i+ 1

2

J + λ
i+ 1

2
0 ρ

i+ 1
2

0 .

(b) Let j ∈ {1, . . . , J}. If j is not a marked level (j /∈ M), define ρ
i+ 1

2
j := 0, λ

i+ 1
2

j := 1, and

u
i+ 1

2

J,j := u
i+ 1

2

J,j−1. Otherwise, when j is a marked level (j ∈ M), define ρ
i+ 1

2
j,a ∈ V a

j for all marked
vertices a ∈Mj by

(K∇ρi+
1
2

j,a ,∇vj,a)ωa
j

=(f, vj,a)ωa
j
− (K∇ui+

1
2

J,j−1,∇vj,a)ωa
j
∀vj,a∈V a

j . (3.12)
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i. Test (adaptive smoothing choice): If the following conditions hold∑
a∈Mj

Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

)
6= 0, (3.13a)


∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

d+ 1


1
2

≤

∑
a∈Mj

[(
f, Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

))
ωa

j

−
(
K∇ui+

1
2

J,j−1,∇I
pj

j

(
ψa
j ρ

i+ 1
2

j,a

))
ωa

j

]
∥∥∥ ∑

a∈Mj

K
1
2∇Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

)∥∥∥ , (3.13b)

then define the level j descent direction ρ
i+ 1

2
j ∈ V pj

j as

ρ
i+ 1

2
j :=

∑
a∈Mj

Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

)
, (3.14)

otherwise define

ρ
i+ 1

2
j :=

∑
a∈Mj

ρ
i+ 1

2
j,a . (3.15)

If ρ
i+ 1

2
j = 0, set λ

i+ 1
2

j := 1, otherwise define the optimal step-size on level j

λ
i+ 1

2
j :=

(f, ρ
i+ 1

2
j )− (K∇uiJ,j−1,∇ρ

i+ 1
2

j )∥∥K 1
2∇ρi+

1
2

j

∥∥2 . (3.16)

The level update is given by

u
i+ 1

2

J,j := u
i+ 1

2

J,j−1 + λ
i+ 1

2
j ρ

i+ 1
2

j , (3.17)

and the final update is ui+1
J := u

i+ 1
2

J,J ∈ V
p
J .

Remark 3.1 (Compact writing of the iteration updates). Let uiJ ∈ V
p
J . After the full-smoothing substep of

the solver introduced above, we have

u
i+ 1

2

J = uiJ +
J∑

j=0

λijρ
i
j , (3.18)

and after the adaptive-smoothing substep we have

ui+1
J = u

i+ 1
2

J +
∑
j∈M

λ
i+ 1

2
j ρ

i+ 1
2

j . (3.19)

Analogously to [21, Theorem 4.6], due to the optimal step-sizes (3.6),(3.16), the error after each substep
of the solver can be represented conveniently:

Lemma 3.2 (Error representation of each substep of the solver). For uiJ ∈ V
p
J , let u

i+ 1
2

J ∈ V p
J , ui+1

J ∈ V p
J

be constructed from uiJ by the full-smoothing and the adaptive-smoothing substep of the solver of Section 3,
respectively. Then

∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2= ∥∥K 1
2∇
(
uJ − uiJ

)∥∥2 − J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2, (3.20)

∥∥K 1
2∇
(
uJ − ui+1

J

)∥∥2= ∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2−∑
j∈M

(
λ
i+ 1

2
j

∥∥K 1
2∇ρi+

1
2

j

∥∥)2. (3.21)
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4 A posteriori estimator on the algebraic error

The solver we introduced in Section 3 is inherently linked to an a posteriori estimator ηialg for the full-

smoothing substep and η
i+ 1

2

alg for the adaptive-smoothing substep.

Definition 4.1 (Algebraic error estimator). Let uiJ ∈ V
p
J be arbitrary, let u

i+ 1
2

J ∈ V p
J be the update at the

end of the full-smoothing substep, and let ui+1
J ∈ V p

J be the update at the end of the adaptive substep. We
define the algebraic error estimators

ηialg :=

( J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2) 1

2

, (4.1)

η
i+ 1

2

alg :=

( ∑
j∈M

(
λ
i+ 1

2
j

∥∥K 1
2∇ρi+

1
2

j

∥∥)2) 1
2

. (4.2)

The following result is immediate from Lemma 3.2:

Lemma 4.2 (Guaranteed lower bound on the algebraic error per substep). Under the assumptions of
Lemma 3.2 and Definition 4.1, the estimators are guaranteed lower bounds on the algebraic error for the
respective substeps of the solver ∥∥K 1

2∇
(
uJ − uiJ

)∥∥ ≥ ηialg, (4.3)∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥ ≥ ηi+ 1
2

alg . (4.4)

5 Main results

We present here our main result for the solver introduced in Section 3. Similarly to [20, 21], we show for each
substep that the error contraction of the solver is equivalent to the efficiency of the associated a posteriori
error estimator.

5.1 Mesh assumptions

For j ∈ {1, . . . , J}, we denote in the following hK := diam(K) for K ∈ Tj and hj = maxK∈Tj hK . We shall
always assume that our meshes are shape-regular:

Assumption 5.1 (Shape regularity). There exists κT > 0 such that

max
K∈Tj

hK

ρK
≤ κT for all 0 ≤ j ≤ J, (5.1)

where ρK denotes the diameter of the largest ball contained in K.

We mainly work with a hierarchy of quasi-uniform meshes with a bounded refinement factor between
consecutive levels. This setting is described by:

Assumption 5.2 (Refinement strength and mesh quasi-uniformity). There exists 0 < Cref ≤ 1, a fixed
positive real number such that for any j ∈ {1, . . . , J}, for all K ∈ Tj−1, and for any K∗ ∈ Tj such that
K∗ ⊂ K, there holds

CrefhK ≤ hK∗ ≤ hK . (5.2)

There further exists Cqu, a fixed positive real number such that for any j ∈ {0, . . . , J} and for all K ∈ Tj,
there holds

Cquhj ≤ hK ≤ hj . (5.3)

9



Figure 3: Illustration of the set Bj ; the refinement Tj (dotted lines) of mesh Tj−1 (full lines).

The forthcoming main result also covers the setting of graded bisection grids, e.g. the newest vertex
bisection, cf. Sewell [28], that we present here for completeness. In this case, one refinement of an edge of
Tj−1, for j∈{1, . . . , J}, gives us a new finer mesh Tj . We denote by Bj ⊂ Vj the set consisting of the new
vertex obtained after the bisection together with its two neighbors on the refinement edge, cf. Figure 3 for
an illustration when d = 2. We denote by hBj

the maximal diameter of elements having a vertex in Bj .
This setting is described by:

Assumption 5.3 (Local quasi-uniformity of bisection-generated meshes). T0 is a conforming quasi-uniform
mesh with parameter C0

qu. The graded conforming mesh TJ is generated from T0 by a series of bisections.
There exists a fixed positive real number Cloc,qu such that for any j∈{1, . . . , J}, there holds

Cloc,quhBj ≤ hK≤ hBj ∀K∈Tj such that a vertex of K belongs to Bj . (5.4)

5.2 Main result

We now present the main result of this manuscript.

Theorem 5.4 (p-robust error contraction of the adaptive multilevel solver). Let Assumption 5.1 hold,
together with either Assumption 5.2 or Assumption 5.3. Let uJ ∈ V p

J be the (unknown) solution of (2.3)

and let uiJ ∈ V
p
J be arbitrary, i ≥ 0. Let u

i+ 1
2

J ∈ V p
J be the update at the end of the full-smoothing substep

of the solver described in Section 3. Then∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥ ≤ α∥∥K 1
2∇
(
uJ − uiJ

)∥∥. (5.5)

When tests (3.9)–(3.10) are satisfied, let ui+1
J ∈ V p

J be the update at the end of the adaptive substep. Then∥∥K 1
2∇
(
uJ − ui+1

J

)∥∥ ≤ α̃∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥. (5.6)

Here 0 < α < 1, 0 < α̃ < 1 depend on the space dimension d, the mesh shape regularity parameter κT , the
number of mesh levels J , and the ratio of the largest and the smallest eigenvalues of the diffusion coefficient
K, as well as on the mesh refinement parameter Cref and quasi-uniformity parameter Cqu if Assumption 5.2
holds, or the coarse grid/local quasi-uniformity parameters C0

qu and Cloc,qu if Assumption 5.3 holds. The
dependence of the number of levels J is at most linear for α and cubic for α̃. The factor α̃ depends
additionally on the marking parameter θ and the adaptivity tests parameter γ from (3.9).

Tests (3.9)–(3.10) are analysis-driven checks, that, if satisfied, ensure at the end of the full-smoothing
substep, based on pre-computed quantities, that the adaptive-smoothing substep will also contract the error.

5.3 Additional results

There is a strong link between the solver defined in Section 3 and the a posteriori estimators defined in
Section 4. Similarly to [20, 21], we have:
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Theorem 5.5 (Equivalence estimator efficiency–solver contraction). Let the assumptions of Theorem 5.4
be satisfied. Then (5.5) holds if and only if

ηialg ≥ β
∥∥K 1

2∇
(
uJ − uiJ

)∥∥ (5.7)

holds with β =
√

1− α2. Similarly, (5.6) holds if and only if

η
i+ 1

2

alg ≥ β̃
∥∥K 1

2∇
(
uJ − u

i+ 1
2

J

)∥∥ (5.8)

holds with β̃ =
√

1− α̃2.

The following result can be seen as the main motivation for our adaptive algorithm.

Corollary 5.6 (Equivalence error–estimator–localized contributions). Let the assumptions of Theorem 5.4
be satisfied. There holds∥∥K 1

2∇
(
uJ − uiJ

)∥∥2 ≈ (ηialg)2 ≈ ∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

, (5.9)

where the constants involved in the equivalences “≈” have the same dependency as α in (5.5), see (7.6)
below for details.

6 Numerical experiments

We consider four test cases: “Peak” (smooth solution with source term dominating in a part of a square
domain), “L-shape” (problem with a singularity due to the L-shaped domain with a re-entrant corner), and
“Skyscraper” (a problem we consider in two variants: with diffusion tensor having a jump of order 102 and
105), also described in detail in [21, Section 8]. We point out that test (3.10) is always satisfied in practice.
In order to see numerical evidence of p-robustness, the stopping criterion is given by the relative residual
dropping below 10−5.
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Figure 4: [L-shape, J=2, p0=1, p1=p2=3, θ=0.95, γ=0.7] Comparing algebraic error distribution (left) to
local error indicators (right) (levels j=1 top, j=2 bottom). Voronoi cells correspond to patch values, and
the ones with the red border are marked for local smoothing.
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6.1 Can we predict the distribution of the algebraic error?

We provide in Figures 4–5 an illustration on how the distribution of the algebraic error
∥∥K 1

2∇
(
uJ − uiJ

)∥∥
is locally estimated using our algebraic error indicators. For this purpose, we consider the L-shape and
Peak problems on a mesh hierarchy with J = 2 and p1 = p2 = 3, respectively p1 = p2 = 6 (recall that
p0 = 1 in our setting). In the figures, we compare, for a single iteration (i = 3 for L-shape, i = 4 for

Peak), our algebraic error indicators ‖K
1
2∇ρij,a‖ωa

j
with the local algebraic error distribution ‖K

1
2∇ρ̃ij‖ωa

j
,

where ρ̃ij ∈ V
pj

j is the levelwise orthogonal decomposition of the algebraic error with ρ̃i0 = ρi0 and, for
j ∈ {1, . . . , J},

(K∇ρ̃ij ,∇vj) = (f, vj)− (K∇uiJ ,∇vj)−
j−1∑
k=0

(K∇ρ̃ik,∇vj) ∀vj ∈ V
pj

j ,

see, e.g., [21, Section 3]. We highlight by a red border patches marked for local smoothing in the adaptive-
smoothing substep, with the choice of the Dörfler marking parameter θ = 0.95 in (3.8).
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Figure 5: [Peak, J=2, p0=1, p1=p2=6, θ=0.95, γ=0.7] Comparing algebraic error distribution (left) to local
error indicators (right) (levels j= 1 top, j= 2 bottom). Voronoi cells correspond to patch values, and the
ones with the red border are marked for local smoothing.

One can see that the local error indicators provide indeed a quite accurate information about the error
distribution over the levels and patches in these tests. We note that one obtains similar results also for
the other test cases, higher number of mesh levels J , different polynomial degrees, and different choices
of the marking parameter θ. Thus the considered adaptivity indeed targets the problematic regions. It
is important to note that the region with increased error could be dynamically changing from iteration to
iteration. Our localized a posteriori estimator is designed in such a way that it will dynamically adjust to
the new region with increased error. In all our experiments, the regions of increased algebraic error were
rather stable, but we note that when periodic flipping occurred, the overall efficiency of the adaptive local
smoothing Algorithm 1 may be spoiled.
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Figure 6: [All tests, J=3, p0 =1, p1 =1, p2 =2, p3 =3, θ=0.95, γ=0.7] Convergence of the Algorithm 1 in

the relative energy norm of the algebraic error ‖K
1
2∇(uJ − uiJ)‖/‖K

1
2∇uJ‖.

6.2 Does the adaptivity pay off?

Next, we investigate the performace of the adaptive Algorithm 1. We focus on convergence in the energy
norm of the algebraic error during the iterations and the percentage of patches marked for local adaptive
smoothing. For this purpose, we consider the four test cases and J = 3, pj = 1, 1, 2, 3, 0 ≤ j ≤ J , γ = 0.7,
and the marking parameter θ fixed to 0.95; one obtains similar results also for other polynomial degrees.
The results are summarized in Figure 6. One can see the decrease in each full-smoothing substep and that
the adaptive substeps indeed also yield a decrease of the energy norm of the error; the adaptive-smoothing
substeps actually yield nearly the same decrease as the full substeps – the convergence curve is nearly linear
(in log scale) in the iterations where the adaptive smoothing is performed. Figures 7–8 then confirm that
only a small portion of patches is marked for local adaptive smoothing, which suggest that Algorithm 1
may also be computationally beneficial.

Next, we test if the adaptive substeps provide a speed-up with respect to the variant without the
adaptive substep. In Table 1, we compare, for varying polynomial degrees and number of levels, the results
of Algorithm 1 when varying the parameter γ from test (3.9). We consider choices γ = 0, which corresponds
to not using the adaptive substep at all, γ = 0.7, and, formally, γ = ∞, which stands for skipping the
evaluation of (3.9), (3.10) and using the adaptive substep in every iteration. The latter choice is motivated
by the fact that one would want to avoid evaluating the terms in test (3.9) if possible.

In Table 1, we in particular provide the number of iterations i with the number of adaptive-smoothing
substeps in the brackets. For example “6(4)” means that the solver took 6 iterations to reach the stop-
ping criterion, and the tests (3.9)–(3.10) were passed four times, i.e., 4 adaptive-smoothing substeps were
performed in addition to the 6 full-smoothing substeps. For p = 1, test (3.9) is typically not verified, but
otherwise Algorithm 1 with γ = 0.7 usually passes the adaptivity test (3.9) and leads to a reduction of
the total number of iterations for the price of only employing a few local-adaptive-smoothing substeps. By
always employing the adaptive substep (γ = ∞), we may cut the iteration count by nearly a half also for
p = 1.

For comparison of the associated computational cost, we also provide, as in [21], an estimated number
of floating point operations. This number is given by the formula

nflops :=
|V0|3

3
+

J∑
j=1

∑
a∈Vj

ndof(V a
j )3

3
+

istop∑
i=1

[
2δi0|V0|2 +

∑
j∈M\{0}

∑
a∈Mj

2ndof(V a
j )2
]

+

istop∑
i=1

J∑
j=1

[
2 nnz(Ijj−1) + 2 nnz(Ij−1j ) + 2 nnz(Aj) + 3(2 size(Aj))

]
.

This formula is derived assuming 1) an initial Cholesky decomposition of local matrices associated to
each patch on each level except for the coarsest one, where the global stiffness matrix for piecewise affine
functions is factorized (for a matrix of size n, this cost is estimated as 1/3n3); 2) local solves by forward
and backward substitutions (cost 2n2); 3) Ijj−1 : V

pj−1

j−1 → V
pj

j with the cost estimated by two-times the
number of nonzeros of the associated interpolation matrix; and 4) evaluation of the optimal step-sizes λj as
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P
ea

k
te

st
ca

se

γ = 0 γ = 0.7 γ =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 19(0) 2.11×107 19(0) 2.11×107 11(11) 2.22×107

1 1 2 3 15(0) 4.26×108 10(5) 3.70×108 8(8) 3.63×108

1 2 4 6 12(0) 8.81×109 9(4) 8.15×109 7(7) 7.74×109

1 3 6 9 13(0) 8.17×1010 9(7) 7.69×1010 8(8) 7.54×1010

4 1 1 1 1 1 20(0) 7.17×107 20(0) 7.17×107 12(12) 8.20×107

1 1 2 2 3 13(0) 1.51×109 10(4) 1.43×109 8(8) 1.46×109

1 2 3 5 6 11(0) 3.78×1010 9(4) 3.68×1010 7(7) 3.52×1010

1 3 5 7 9 13(0) 3.46×1011 9(7) 3.28×1011 8(8) 3.21×1011

L
-s

h
ap

e
te

st
ca

se

γ = 0 γ = 0.7 γ =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 21(0) 2.17×107 21(0) 2.17×107 11(11) 2.11×107

1 1 2 3 13(0) 3.63×108 8(7) 3.43×108 7(7) 3.19×108

1 2 4 6 8(0) 7.02×109 5(5) 6.50×109 5(5) 6.50×109

1 3 6 9 8(0) 6.94×1010 5(5) 6.59×1010 5(5) 6.59×1010

4 1 1 1 1 1 21(0) 7.24×107 21(0) 7.24×107 11(11) 7.29×107

1 1 2 2 3 9(0) 1.06×109 8(5) 1.24×109 6(6) 1.10×109

1 2 3 5 6 7(0) 2.95×1010 5(5) 2.92×1010 5(5) 2.92×1010

1 3 5 7 9 6(0) 2.75×1011 5(5) 2.78×1011 5(5) 2.78×1011

S
k
y
sc

ra
p

er
te

st
ca

se

d
iff

.
co

n
tr

as
t
O

(1
02

)

γ = 0 γ = 0.7 γ =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 19(0) 1.90×107 19(0) 1.90×107 12(12) 2.18×107

1 1 2 3 15(0) 4.10×108 8(8) 3.50×108 8(8) 3.50×108

1 2 4 6 9(0) 7.36×109 6(6) 6.94×109 6(6) 6.94×109

1 3 6 9 9(0) 7.11×1010 6(6) 6.80×1010 6(6) 6.80×1010

4 1 1 1 1 1 19(0) 6.31×107 19(0) 6.31×107 12(12) 7.61×107

1 1 2 2 3 11(0) 1.26×109 8(7) 1.35×109 7(7) 1.25×109

1 2 3 5 6 8(0) 3.11×1010 6(6) 3.15×1010 6(6) 3.15×1010

1 3 5 7 9 8(0) 2.91×1011 5(5) 2.77×1011 5(5) 2.77×1011

S
k
y
sc

ra
p

er
te

st
ca

se

d
iff

.
co

n
tr

as
t
O

(1
05

)

γ = 0 γ = 0.7 γ =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 19(0) 1.90×107 19(0) 1.90×107 13(13) 2.33×107

1 1 2 3 15(0) 4.10×108 8(8) 3.48×108 8(8) 3.48×108

1 2 4 6 9(0) 7.36×109 6(6) 6.93×109 6(6) 6.93×109

1 3 6 9 9(0) 7.11×1010 6(6) 6.79×1010 6(6) 6.79×1010

4 1 1 1 1 1 19(0) 6.31×107 19(0) 6.31×107 12(12) 7.60×107

1 1 2 2 3 11(0) 1.26×109 8(7) 1.35×109 7(7) 1.25×109

1 2 3 5 6 8(0) 3.11×1010 6(6) 3.15×1010 6(6) 3.15×1010

1 3 5 7 9 8(0) 2.91×1011 5(5) 2.77×1011 5(5) 2.77×1011

Table 1: Number of iterations (number of adaptive-smoothing substeps in brackets) for various choices of
the parameter γ in (3.9). The marking parameter in (3.8) is set as θ = 0.95
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Peak test case
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Skyscraper test case (diff. contrast O(102))
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Skyscraper test case (diff. contrast O(105))
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Figure 7: [Different tests, J = 3, p0 = 1, p1 = 1, p2 = 2, p3 = 3, θ = 0.95, γ = 0.7] Local adaptive
smoothing: coarsest level marked or not and percentages of patches marked for each level 1 ≤ j ≤ J
(Y-axis). Iterations of Algorithm 1 (X-axis). Results for the L-shape test case are given in the separate
Figure 8.

in formulas (3.6), (3.16) involving multiplication with the stiffness matrix Aj on the given level (cost equal to
two-times the number of nonzeros) and three inner products. From the above tests, we see that adaptivity
is of interest. Not only does it provide error contraction on the adaptive substep of almost the same quality
as the full-smoothing substep with just local smoothing in a relatively small percentage of marked patches,
cf. Figures 6–8, but in numerous cases, the adaptive variant is cheaper than the non-adaptive one in terms
of the nflops formula. Note that the nflops only represent one way of estimating the costs and the interest
in adaptivity is not solely determined by it.

6.3 Dependence on the marking parameter

We finally vary the Dörfler marking parameter θ from (3.8), setting θ = 0.7, 0.9, 0.95, 0.99. The results are
given in Figure 9 and in Table 2, where we consider γ = 0.7.

One can see that the choice θ = 0.7 is often not sufficiently efficient. For this choice, the number of
iterations is not reduced sufficiently and the cost of intergrid operation then dominates over the cost of local
smoothings. The best choice of θ seems to differ, but θ = 0.95 reveals quite satisfactory in most of the cases.

Remark 6.1 (Dependence on the shape regularity parameter). We would like to point out how the perfor-
mance of the solver depends on the parameters of the Assumptions 5.1–5.3. As an example, we present in
Table 3 the number of iterations required when the shape regularity parameter κT degrades. One can see an
overall degradation, but the polynomial degree robustness is preserved as expected.
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L-shape test case

θ = 0.7
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θ = 0.9
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θ = 0.95
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θ = 0.99
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Figure 8: [L-shape, J = 3, p0 = 1, p1 = 1, p2 = 2, p3 = 3, γ = 0.7, varying θ] Local adaptive smoothing:
coarsest level marked or not and percentages of patches marked for each level 1 ≤ j ≤ J (Y-axis). Iterations
of Algorithm 1 (X-axis).
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Peak test case

θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 20(0) 7.17×107 20(0) 7.17×107 20(0) 7.17×107 20(0) 7.17×107

1 1 2 2 3 12(2) 1.52×109 11(3) 1.47×109 10(4) 1.43×109 10(4) 1.44×109

1 2 3 5 6 11(0) 3.78×1010 10(3) 3.80×1010 9(4) 3.68×1010 8(4) 3.52×1010

1 3 5 7 9 12(8) 3.57×1011 10(8) 3.39×1011 9(7) 3.28×1011 8(6) 3.17×1011

L-shape test case

θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 21(0) 7.24×107 21(0) 7.24×107 21(0) 7.24×107 21(0) 7.24×107

1 1 2 2 3 9(4) 1.28×109 8(5) 1.24×109 8(5) 1.24×109 6(5) 1.06×109

1 2 3 5 6 6(3) 2.97×1010 6(4) 3.03×1010 5(5) 2.92×1010 4(4) 2.70×1010

1 3 5 7 9 6(6) 2.90×1011 5(5) 2.78×1011 5(5) 2.78×1011 4 (4) 2.68×1011

Skyscraper test case (diff. contrast O(102))

θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 19(0) 6.31×107 19(0) 6.31×107 19(0) 6.31×107 19(0) 6.31×107

1 1 2 2 3 10(4) 1.38×109 8(7) 1.34×109 8(7) 1.35×109 6(6) 1.10×109

1 2 3 5 6 8(4) 3.38×1010 6(6) 3.15×1010 6(6) 3.15×1010 5(5) 2.92×1010

1 3 5 7 9 7(7) 2.99×1011 6(6) 2.88×1011 5(5) 2.77×1011 5(5) 2.77×1011

Skyscraper test case (diff. contrast O(105))

θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 19(0) 6.31×107 19(0) 6.31×107 19(0) 6.31×107 19(0) 6.31×107

1 1 2 2 3 11(5) 1.53×109 8(7) 1.34×109 8(7) 1.35×109 7(7) 1.26×109

1 2 3 5 6 8(4) 3.38×1010 6(6) 3.15×1010 6(6) 3.15×1010 5(5) 2.91×1010

1 3 5 7 9 7(7) 2.99×1011 6(6) 2.88×1011 5(5) 2.77×1011 5(5) 2.77×1011

Table 2: Number of iterations (number of adaptive-smoothing substeps in brackets) for various choices of
marking parameter θ in (3.8). The parameter γ from (3.9) is set as γ = 0.7

minimal angle: 32.1◦ minimal angle: 21.4◦ minimal angle: 12.0◦

pj DoF niter niter niter

1 1 2 3 1e5 8(7) 9(9) 17(17)

1 2 4 6 6e5 5(5) 6(6) 11(11)

1 3 6 9 1e6 5(5) 6(6) 10(10)

Table 3: [L-shape,J=3,θ=0.95,γ=0.7] Study of sensitivity with respect to the shape regularity of the mesh
(minimal angle of mesh elements) for the local adaptive smoothing solver.
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Figure 9: [All tests, J = 3, p0 = 1, p1 = 1, p2 = 2, p3 = 3, γ= 0.7, varying θ] Convergence of Algorithm 1 in

the relative energy norm of the algebraic error ‖K
1
2∇(uJ − uiJ)‖/‖K

1
2∇uJ‖.

7 Proofs of the main results

In this section we present the proofs of the results stated in Section 5. We start with noting that Theorem 5.5
can be proven exactly along the lines of [21, Corollary 6.7].

7.1 Proof of contraction: full-smoothing substep

We start with a generalization of the properties given in [21] covering the test (3.3), in order to extend the
results to the case of weighted restricted additive Schwarz smoothing.

Lemma 7.1 (Lower bound on levelwise updates by patchwise contributions). Let uiJ ∈ V
p
J be arbitrary.

Let j ∈ {1, . . . , J} and let ρij, λij be constructed from uiJ by the full-smoothing substep of the solver described
in Section 3. Then ∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ (d+ 1)
(
λij
∥∥K 1

2∇ρij
∥∥)2 ∀1 ≤ j ≤ J, (7.1)

where for each vertex a ∈ Vj, ρij,a is the solution of the local problem (3.2).

Proof. Depending if test (3.3) of the solver in Section 3 is satisfied or not, ρij will be constructed differently.
We show that (7.1) holds for either outcome of test (3.3).

Case test (3.3) is satisfied: Then ρij is constructed by (3.4) and the outcome of Test (3.3a),(3.3b) ensures
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on the one hand that ρij 6= 0 and on the other hand that

∑a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

d+ 1


1
2

≤
(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1

2∇ρij
∥∥ .

Using (3.6), this leads to:
(∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

) 1
2 ≤
√
d+ 1λij

∥∥K 1
2∇ρij

∥∥.
Case test (3.3) is not satisfied: Then ρij is constructed by (3.5). First, note that∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(3.2),(3.5)
= (f, ρij)− (K∇uiJ,j−1,∇ρij). (7.2)

Thus, if ρij = 0, then the result (7.1) holds trivially. To treat the remaining case ρij 6= 0, we use the

expression of λij together with [21, Lemma 9.1] to obtain

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(3.6)
= λij

∥∥K 1
2∇ρij

∥∥2≤ λij∥∥K 1
2∇ρij

∥∥((d+ 1)
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

) 1
2

.

The second important property we will need is given below.

Lemma 7.2 (Upper bound on levelwise updates by patchwise contributions). Let uiJ ∈ V
p
J be arbitrary.

Let j ∈ {1, . . . , J} and let ρij, λij be constructed from uiJ by the full-smoothing substep of the solver described
in Section 3. Then (

λij
∥∥K 1

2∇ρij
∥∥)2 ≤ λij ∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

∀1 ≤ j ≤ J, (7.3)

where for each vertex a ∈ Vj, ρij,a is the solution of the local problem (3.2).

Proof. We only need to show (7.3) when ρij 6= 0, otherwise the result is trivial.

Case test (3.3) is satisfied: Then ρij is constructed by (3.4) and by using a Young inequality together
with test (3.3c), we obtain

(f, ρij)−(K∇uiJ,j−1,∇ρij) =
∑
a∈Vj

((
f, Ipj

j (ψa
j ρ

i
j,a)
)
ωa

j

−
(
K∇uiJ,j−1,∇I

pj

j (ψa
j ρ

i
j,a)
)
ωa

j

)
(3.2)
=
∑
a∈Vj

(
K∇ρij,a,∇I

pj

j (ψa
j ρ

i
j,a)
)
ωa

j

≤
∑
a∈Vj

1

2

(∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
∥∥K 1

2∇Ipj

j (ψa
j ρ

i
j,a)
∥∥2
ωa

j

)
(3.3c)

≤
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

Case test (3.3) is not satisfied: The above estimate is in fact an equality, by (7.2).
As we see, for both possible outcomes of test (3.3), we obtain the desired result

(
λij
∥∥K 1

2∇ρij
∥∥)2 (3.6)

= λij
(f, ρij)−(K∇uiJ,j−1,∇ρij)∥∥K 1

2∇ρij
∥∥2 ∥∥K 1

2∇ρij
∥∥2≤ λij∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

.

Remark 7.3 (Lower bound on the optimal step-sizes). As in [21, Remark 9.2], by putting together the
results of Lemmas 7.1, 7.2, and since λij = 1 when ρij = 0 or j = 0, we have

λij ≥
1

d+ 1
0 ≤ j ≤ J. (7.4)

19



We can now present the proof of contraction of the solver for the full-smoothing substep. The proof
follows as the proof of [21, Theorem 6.6].

Proof of part 1 of Theorem 5.4. Even though the results in [21] are given for the case of additive Schwarz
smoothing only, we will use here the three main estimates established in the proof of [21, Theorem 6.6] under
minimal H1-regularity. This is possible because the estimates only use the levelwise and patchwise contribu-
tions ρij,a which are constructed in the same way here, allowing us to extend the proof for case of the weighted

restricted additive Schwarz smoothing. This yields CS,1 :=
√

2(d+ 1)CS,KJ , CS,2 :=
√

2(d+ 1)CS,K, for
CS,K ≥ 1 of [21] having the same dependencies as α, such that

∥∥K 1
2∇
(
uJ − uiJ

)∥∥2≤ C2
S,1

(
ηialg

)2
+ C2

S,2

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(7.1)

≤ C2
S

(
ηialg

)2
, (7.5)

with C2
S := 2 max(CS,1, (d+ 1)CS,2).

By Theorem 5.5, this is equivalent to (5.5) with α =
√

1− C2
S.

Proof of Corollary 5.6. First, note that this result extends [21, Corollary 6.8] to the weighted restricted
additive Schwarz smoothing case. In the case when additive Schwarz smoothing is employed, the second
equivalence in (5.9) is in fact an equality as given in [21]. We obtain the desired equivalences by using
Lemmas 7.1, 7.2 together with Remark 7.3, (3.10) and λi0 = 1 in a closed chain of estimates(

ηialg

)2 (4.3)

≤
∥∥K 1

2∇
(
uJ − uiJ

)∥∥2
(7.5)
(7.3)

≤ C2
S

((
λi0
∥∥K 1

2∇ρi0
∥∥)2+ J∑

j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

)
(7.6)

(3.10)

≤ 2(d+ 1)C2
S

(
‖K

1
2∇ρi0

∥∥2 +

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

)
(7.1)

≤ 2(d+ 1)2C2
S

(
ηialg

)2
.

7.2 Proof of contraction: adaptive-smoothing substep

Let tests (3.9)–(3.10) be satisfied. We introduce the notation δj = 1 if the level j is marked (when j ∈M),
otherwise δj = 0. Firstly, we present the generalization of Lemma 7.1, obtained by only working with the
marked vertices.

Lemma 7.4 (Lower bound on levelwise updates by patchwise contributions). Let uiJ ∈ V
p
J be arbitrary.

Let j ∈ M \ {0}, and ρ
i+ 1

2
j , λ

i+ 1
2

j be constructed from u
i+ 1

2

J by the adaptive-smoothing substep of the solver
described in Section 3. There holds∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

≤ (d+ 1)
(
λ
i+ 1

2
j

∥∥K 1
2∇ρi+

1
2

j

∥∥)2 ∀1 ≤ j ≤ J, (7.7)

where for each vertex a ∈ Vj, ρ
i+ 1

2
j,a is the solution of the local problem (3.12).

Summing over all mesh levels and since d+ 1 ≥ 1 (on j = 0), (7.7) gives:

Corollary 7.5 (Lower bound on the estimator by localized contributions). There holds∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

≤ (d+ 1)
(
η
i+ 1

2

alg

)2
. (7.8)
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The following result is crucial in the proof of contraction of the adaptive-smoothing substep. Since
the marking takes place at the end of the full-smoothing substep, which determines where the adaptive-
smoothing takes place, a connection between the two substeps is needed. This is the goal of the
tests (3.9)–(3.10).

Lemma 7.6 (Link between full- and adaptive-smoothing substeps). Under the adaptivity tests (3.9)–(3.10),
there holds ∑

j∈M
λij

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ 4(d+ 1)2(|M|2 + 1)

(1− γ2)2

(
η
i+ 1

2

alg

)2
. (7.9)

Proof. We first make the connection between the two substeps, then we arrange together the terms given
by the adaptive substep. The remaining full-smoothing substep terms are then treated by (3.9) and finally,
we apply a Young’s inequality. The main term we want to estimate can be split in the two quantities below∑

j∈M
λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

= δ0(K∇ρi0,∇ρi0) +
∑

j∈M\{0}

λij
∑

a∈Mj

(K∇ρij,a,∇ρij,a)ωa
j
.

First,

δ0(K∇ρi0,∇ρi0)
(3.1),(3.18)

= δ0

(
(f, ρi0)− (K∇ui+

1
2

J ,∇ρi0) +

J∑
j=0

λij(K∇ρij ,∇ρi0)
)

(3.11)
= δ0

(
(K∇ρi+

1
2

0 ,∇ρi0) +

J∑
j=0

λij(K∇ρij ,∇ρi0)
)

≤ δ0
1

2(1− γ2)

∥∥K 1
2∇ρi+

1
2

0

∥∥2 + δ0
1− γ2

2

∥∥K 1
2∇ρi0

∥∥2 + δ0

J∑
j=0

λij(K∇ρij ,∇ρi0).

Second, ∑
j∈M\{0}

λij
∑

a∈Mj

(K∇ρij,a,∇ρij,a)ωa
j

(3.2)
=

∑
j∈M\{0}

λij
∑

a∈Mj

(
(f, ρij,a)ωa

j
− (K∇uiJ,j−1,∇ρij,a)ωa

j

)
(3.7)
=

∑
j∈M\{0}

λij
∑

a∈Mj

(
(f, ρij,a)ωa

j
− (K∇uiJ ,∇ρij,a)ωa

j
−

j−1∑
k=0

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.18)

=
∑

j∈M\{0}

λij
∑

a∈Mj

(
(f, ρij,a)ωa

j
− (K∇ui+

1
2

J ,∇ρij,a)ωa
j

+

J∑
k=0

λik(K∇ρik,∇ρij,a)ωa
j
−

j−1∑
k=0

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.17)

=
∑

j∈M\{0}

λij
∑

a∈Mj

(
(f, ρij,a)ωa

j
− (K∇ui+

1
2

J,j−1,∇ρ
i
j,a)ωa

j

+

j−1∑
l=0
l∈M

λ
i+ 1

2

l (K∇ρi+
1
2

l ,∇ρij,a)ωa
j

+

J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.12)

=
∑

j∈M\{0}

λij
∑

a∈Mj

(
(K∇ρi+

1
2

j,a ,∇ρij,a)ωa
j

+

j−1∑
l=0

δlλ
i+ 1

2

l (K∇ρi+
1
2

l ,∇ρij,a)ωa
j

+

J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)
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(3.12)

≤
∑

j∈M\{0}

λij
∑

a∈Mj

(
1

1− γ2
∥∥K 1

2∇ρi+
1
2

j,a

∥∥2
ωa

j

+
1− γ2

4

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
1

1− γ2
∥∥∥ j−1∑

l=0

δlλ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

+
1− γ2

4

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+

J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)

We return to the main estimate by summing the two estimates and using the result of Test (3.9)

∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ 1

1− γ2
∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

+
1− γ2

2

∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
1

1− γ2
∑

j∈M\{0}

λij
∑

a∈Mj

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

+
∑

j∈M\{0}

λij
∑

a∈Mj

( J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)
+ δ0

J∑
j=0

λij(K∇ρij ,∇ρi0)

(3.9)

≤ 1

1− γ2
∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

+
1− γ2

2

∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
1

1− γ2
∑

j∈M\{0}

λij
∑

a∈Mj

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

+ γ2
∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

.

Rearranging the terms, we have

1− γ2

2

∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ 1

1− γ2
∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

+
1

1− γ2
∑

j∈M\{0}

λij
∑

a∈Mj

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

,

leading to

∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(3.10)
(7.8)

≤ 4(d+ 1)2

(1− γ2)2

((
η
i+ 1

2

alg

)2
+
∑

j∈M\{0}

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2)

≤ 4(d+ 1)2

(1− γ2)2

((
η
i+ 1

2

alg

)2
+

∑
j∈M\{0}

|M|
j−1∑
l=0
l∈M

∥∥∥λi+ 1
2

l K
1
2∇ρi+

1
2

l

∥∥∥2)

≤ 4(d+ 1)2

(1− γ2)2

((
η
i+ 1

2

alg

)2
+ |M|2

∑
l∈M

(
λ
i+ 1

2

l

∥∥K 1
2∇ρi+

1
2

l

∥∥)2) (4.2)
=

4(d+ 1)2(|M|2 + 1)

(1− γ2)2

(
η
i+ 1

2

alg

)2
.

where |M| denotes the number of marked levels.

We can now prove the contraction of the adaptive-smoothing substep below.

Proof of part 2 of Theorem 5.4. Step 1. We prove that there holds:∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2≤ β̃2
(
η
i+ 1

2

alg

)2
. (7.10)
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By Theorem 5.5, the efficiency of the estimator ηialg is equivalent to error contraction of the full-smoothing
substep. Using the equivalence error–localized contributions of Corollary 5.6/(7.6), the bulk-chasing crite-
rion (3.8), and the result of Lemma 7.6,

∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2 Theorem 5.5
≤ α2

∥∥K 1
2∇
(
uJ − uiJ

)∥∥2
(7.6)

≤ α2C2
S

(∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

)
(3.8)

≤ α2C2
S

θ2

∑
j∈M

λij
∑

a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(7.9)

≤ 4α2C2
S(d+ 1)2(|M|2 + 1)

θ2(1− γ2)2

(
η
i+ 1

2

alg

)2
,

giving the desired result for β̃2 =
4α2C2

S(d+ 1)2(|M|2 + 1)

θ2(1− γ2)2
. Thus, the estimator η

i+ 1
2

alg (guaranteed lower

bound (4.4)), is p-robustly efficient.

Step 2. By Theorem 5.5, (7.10) is equivalent to (5.6) with α̃ =

√
1− β̃2.

8 Conclusions

In this work we presented an adaptive multilevel solver whose adaptive process is supervised by an a
posteriori estimator of the algebraic error. We showed that both full-smoothing and adaptive-smoothing
substeps of the solver contract the error robustly with respect to the polynomial degree of approximation p,
under the decision tests (3.9)–(3.10) for the latter. To the best of the authors’ knowledge, this is the first work
where adaptive smoothing not necessarily everywhere in the meshes is proven to contract the algebraic error,
and moreover does so in a p-robust way. Numerical experiments indicate that the adaptivity can provide
an interesting speed-up and is worth considering in practice. Furthermore, the solver appears numerically
robust with respect to the number of levels in the hierarchy as well as the jump in the diffusion coefficient.
Further work would explore how this can be rigorously proven.
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