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Contractive local adaptive smoothing based on Dörfler marking in

a-posteriori-steered p-robust multigrid solvers∗

Ani Miraçi†‡ Jan Papež§ Martin Vohraĺık†‡

March 4, 2020

Abstract

In this work we study a local adaptive smoothing algorithm for a-posteriori-steered p-robust multigrid
methods. The solver tackles a linear system which is generated by the discretization of a second-order
elliptic diffusion problem using conforming finite elements of polynomial order p ≥ 1. After one V-cycle
(“full-smoothing” substep) of the solver of [HAL Preprint 02494538, 2020], we dispose of a reliable,
efficient, and localized estimation of the algebraic error. We use this to develop our adaptive algorithm:
thanks to the information of the estimator and based on a bulk-chasing criterion, cf. Dörfler [SIAM
J. Numer. Anal., 33 (1996), pp. 1106–1124], we mark patches of elements and levels with increased
estimated error. Then, we proceed by a modified and cheaper V-cycle (“adaptive-smoothing” substep),
which only applies smoothing in the marked regions. The proposed adaptive multigrid solver picks
autonomously and adaptively the type of smoothing per level (weighted restricted additive or additive
Schwarz), the optimal step-size per level, and concentrates smoothing to marked regions with high error.
We prove that each substep contracts the error p-robustly, which is confirmed by numerical experiments.
Moreover, the proposed algorithm behaves numerically robustly with respect to the number of levels as
well as to the diffusion coefficient jump.

Key words: finite element method, multigrid method, Schwarz method, block-Jacobi smoother, a posteriori
estimate, adaptive smoothing, stable decomposition, p-robustness

1 Introduction

The finite element method is a widespread and versatile discretization method for partial differential equa-
tions, see e.g. Ciarlet [9], Ern and Guermond [12], or Brenner and Scott [4]. In particular, the use of
high-order methods has shown numerous advantages in terms of accuracy, see e.g. Szabó and Babuška [29],
Bernardi and Maday [3], Šoĺın et al. [30], and the references therein. The implementation of these methods
however, leads to a linear system that is abundantly bigger than for low-order discretizations. This appeals
to the use of an appropriate iterative solver. Moreover, since the conditioning degrades with increasing
order, commonly used solvers begin to suffer. Amongst the most efficient solvers we mention multigrid
solvers, see e.g. Hackbusch [14], Briggs et al. [6], more generally multilevel methods e.g. Zhang [32], Os-
wald [22], Griebel and Oswald [13], and the closely related domain decomposition methods, e.g. Quarteroni
and Valli [25] or Dolean et al. [10]. Note that the above methods can be used in their own right as fixed
point methods, or as a preconditioner (possibly after making them symmetric).

The idea of defining an adaptive algebraic solver is rather old. On the subject of local smoothing methods,
we refer, e.g., to Bai and Brandt [2], McCormick [19], Rüde [26], Lötzbeyer and Rüde [18], and more recently
Xu et al. [31], Janssen and Kanschat [16], or Chen et al. [8]. Here the smoothing is typically localized to
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parts where the adaptive mesh refinement was performed, but it is not adaptive per se. Adaptive smoothed
aggregation aiming at building a coarser linear system by determining near-kernel components was proposed
in the context of algebraic multigrid, see e.g. Brezina et al. [5] and the references therein. More recently,
an aggregation based on path covers was proposed by Hu et al. [15]. Another interesting approach consists
in applying an adaptive construction of preconditioners, see, e.g., the recent work of Anciaux-Sedrakian et
al. [1], where the adaptive construction relies on a posteriori error estimates of the algebraic error, cf.
Papež et al. [23, 24], in combination with a bulk-chasing criterion in the spirit of Dörfler [11]. To the
best of the authors’ knowledge, this is the first time a bulk-chasing criterion is used in an algebraic solver
adaptivity (and not mesh refinement) setting. However, the results therein are mainly numerical, whereas
mathematical analysis is not really developed.

The subject of this work is to propose a multigrid solver with local adaptive smoothing based on rigorous
a posteriori error estimates of the algebraic error and a bulk-chasing criterion, and to prove its convergence.
We rely on the polynomial-degree-robust solver introduced in Miraçi et al. [21], which is a geometric multi-
grid whose iteration consists of a V-cycle with zero pre- and one post-smoothing step, where the smoothing
is overlapping additive Schwarz (block-Jacobi), associated to patches of elements. This solver already con-
tains a first adaptive step, since the error correction update from one level to the next, in contrast to a
standard multigrid, picks the optimal (adaptive) step-size that most reduces the algebraic error. Secondly,
the results of [21] give us a reliable and efficient a posteriori estimator on the algebraic error, and equiv-
alence of the algebraic error with localized (levelwise/patchwise) computable estimators. After one step of
the original solver (one full-smoothing V-cycle), we obtain a fairly good indication of where (levelwise/-
patchwise) the algebraic error is concentrated. We then use a bulk-chasing criterion to mark the highest
contribution regions, and then perform a cheaper step (one adaptive-smoothing V-cycle) only smoothing in
these problematic regions. Additionally, based on numerical performance and literature results, see, e.g.,
Cai and Sarkis [7] or Loisel et al. [17], we give the solver the option to pick adaptively the type of smooth-
ing, be it additive Schwarz or (the typically better performing) weighted restricted additive Schwarz. We
focus on quasi-uniform meshes, but our theory also applies to possibly highly graded bisection grids, where
smoothing is already local around the refinement edges.

We prove that the algorithm we present contracts the error in each of the substeps, the full-smoothing
and the adaptive-smoothing, robustly with respect to the polynomial degree p of the underlying finite element
discretization. The results on the full-smoothing substep rely on [21], where a p-robust stable decomposition
for one level by Schöberl et al. [27], and a multilevel stable decomposition for piecewise affine polynomials on
quasi-uniform/bisection grids by Xu et al. [31] are crucial. Numerically, we additionally observe robustness
with respect to the number of levels in the mesh hierarchy as well as the jumps in the diffusion coefficient.

The manuscript is organized as follows. In Section 2 we introduce the model problem and the notation
we will be working with. Section 3 presents in detail the algorithmic description of the solver with each of its
modules, as well as the rigorous mathematical definition of the solver. In Section 4 we define the algebraic
error estimator. The main results are collected in Section 5, and the numerical tests are showcased in
Section 6. Section 7 gives the proofs of our main results. Finally, some concluding remarks are given in
Section 8.

2 Setting

In this section we present the model problem we will be studying and the notation needed for the multilevel
setting we work on.

2.1 Model problem and its finite element discretization

We work with a second-order elliptic problem with diffusion defined over Ω⊂Rd, d ∈ {1, 2, 3}, an open
bounded polytope with a Lipschitz-continuous boundary. In the weak formulation, we search for u ∈ H1

0 (Ω)
such that

(K∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (2.1)

where f ∈ L2(Ω) is a source term, and K ∈ [L∞(Ω)]d×d is a symmetric and positive definite diffusion
coefficient.
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Let TJ be a matching simplicial mesh of Ω. Fixing an integer p ≥ 1, we introduce the finite element
space of piecewise continuous polynomials of degree p

V p
J := Pp(TJ) ∩H1

0 (Ω), (2.2)

where Pp(TJ) := {vJ ∈ L2(Ω), vJ |K ∈ Pp(K) ∀K ∈ TJ}. The discrete problem consists in finding uJ ∈ V p
J

such that
(K∇uJ ,∇vJ) = (f, vJ) ∀vJ ∈ V p

J . (2.3)

2.2 A hierarchy of meshes and spaces

We rely in this contribution on a hierarchy of matching simplicial meshes {Tj}0≤j≤J , where TJ has been
introduced in Section 2.1, and where Tj is a refinement of Tj−1, 1 ≤ j ≤ J . We also introduce a hierarchy
of finite element spaces associated to the mesh hierarchy. For this purpose, fix pj the polynomial degree
associated to mesh level j ∈ {1, . . . , J} such that 1 ≤ p1 ≤ . . . ≤ pJ−1 ≤ pJ = p. We then introduce

for j = 0 : V 1
0 := P1(T0) ∩H1

0 (Ω) (lowest-order space), (2.4a)

for 1 ≤ j ≤ J − 1 : V
pj

j := Ppj
(Tj) ∩H1

0 (Ω) (pj-th order spaces), (2.4b)

where Ppj (Tj) := {vj ∈L2(Ω), vj |K ∈Ppj (K) ∀K ∈Tj}. Note that V 1
0 ⊂V

p1

1 ⊂ . . .⊂V
pJ−1

J−1 ⊂V
p
J , so that the

spaces are nested. We also formally set p0 = 1. Let Vj be the set of vertices of the mesh Tj . We denote by
ψa
j the standard hat function associated to the vertex a ∈ Vj , 0 ≤ j ≤ J ; this is the piecewise affine function

with respect to the mesh Tj that takes value 1 in the vertex a and vanishes in all other vertices of Vj .

Figure 1: Illustration of a patch T a
j , the patch subdomain ωa

j , and of the degrees of freedom for the space
V a
j with pj = 2.

For the following, we need to define the notion of patches of elements, illustrated in Figure 1. Let
j ∈ {1, . . . , J}. For any element K ∈ Tj , we denote by VK the set of its vertices. Then, given an arbitrary
vertex a∈Vj , we denote by T a

j the patch formed by all elements of the mesh T a
j sharing the vertex a, i.e.,

T a
j :={K ∈ Tj ,a ∈ VK}. (2.5)

Then we denote by ωa
j the open patch subdomain corresponding to T a

j . Finally, the associated local space
is V a

j

V a
j :=Ppj

(Tj) ∩H1
0 (ωa

j ), j ∈ {1, . . . , J}. (2.6)

Larger subdomains can also be considered, cf. [20]. Finally, denote by Ipj

j the Ppj Lagrange interpolation

operator on the mesh level j, i.e. Ipj

j : C0(Ω) → V
pj

j , Ipj

j (v) preseves the values of v in the nodes corre-
sponding to the Lagrange degrees of freedom. This will play an important role in the adaptive choice of
smoothing of the solver presented below in Section 3.

3 Adaptive multilevel solver

The basic idea of our adaptive solver is illustrated by Figure 2. In Section 3.1, we give an algorithmic
description of the solver, followed by the explanation of its constituting modules. Then in Section 3.2, we
provide a mathematical description of the solver, lengthier but better suited for the forthcoming theoretical
analysis.
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Figure 2: Illustration of the full-smoothing and adaptive-smoothing V-cycle substeps, J = 3.

3.1 Algorithmic description of the solver

The adaptive solver we propose can be written in an algorithmic description:

Algorithm 1: A-posteriori-steered multigrid with local adaptive smoothing

Input: [polynomial degree p, number of levels J , bulk-chasing parameter θ, adaptivity-decision
parameters γ and R, requested tolerance tol]
i := 0; uiJ := 0; ηialg := 10tol;

while ηialg ≥ tol do

i := i+ 1; uiJ := ui−1J ;

uiJ := uiJ + COARSE SOLVE; (ηialg)
2

:=
∥∥∥K 1

2∇(COARSE SOLVE)
∥∥∥2;

for j = 1, ..., J do
for a ∈ Vj do

ρij,a := LOCAL SOLVE(j, a);

end
ρij :=ADAPT SMOOTH(j, Vj); λij := OPTIMAL STEPSIZE(ρij);

uiJ := uiJ + λijρ
i
j ; (ηialg)

2
:= (ηialg)

2
+
(
λij

∥∥∥K 1
2∇ρij

∥∥∥)2;
end
if ηialg < tol break while loop;(
M, {a ∈Mj}j∈M

)
:= DÖRFLER MARKING

(
ρi0, {{ρij,a}Jj=1}a∈Vj , θ

)
;

if [ TEST ADAPT(γ,R) ] then
if 0 ∈M then

uiJ := uiJ+ COARSE SOLVE; (ηialg)
2
:=
∥∥∥K 1

2∇(COARSE SOLVE)
∥∥∥2;

end
for j ∈M \ {0} do

for a ∈Mj do
ρij,a := LOCAL SOLVE(j, a);

end
ρij := ADAPT SMOOTH(j, Mj); λ

i
j := OPTIMAL STEPSIZE(ρij);

uiJ := uiJ + λijρ
i
j ; (ηialg)

2
:= (ηialg)

2
+
(
λij

∥∥∥K 1
2∇ρij

∥∥∥)2;
end

end

end
istop := i;

Output: [ u
istop
J , η

istop
alg ]

3.1.1 Module COARSE SOLVE (coarse grid solution)

Input: - ; Output: global P1-lifting ρi0 of the current algebraic residual.
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Given the latest approximation uiJ ∈ V
p
J , define ρi0 ∈ V 1

0 by

(K∇ρi0,∇v0) = (f, v0)− (K∇uiJ ,∇v0) ∀v0 ∈ V 1
0 .

3.1.2 Module LOCAL SOLVE (block-Jacobi solution)

Input: level j, vertex a; Output: local Ppj
-lifting ρij,a of the current algebraic residual.

Given the latest approximation uiJ ∈ V
p
J , define the local contribution ρij,a ∈ V a

j by

(K∇ρij,a,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ ,∇vj,a)ωa

j
∀vj,a∈V a

j .

3.1.3 Module ADAPT SMOOTH (descent direction)

Input: level j, set of vertices V(j); Output: descent direction ρij .
The following test verifies if the weighted restricted additive Schwarz smoothing is compatible with the

convergence analysis of the solver.
Given the latest approximation uiJ ∈ V

p
J , if the following two conditions hold

•
∑

a∈V(j)

Ipj

j (ψa
j ρ

i
j,a) 6= 0,

•


∑

a∈V(j)

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

d+ 1


1
2

≤

∑
a∈V(j)

(
(f, Ipj

j (ψa
j ρ

i
j,a))ωa

j
− (K∇uiJ ,∇I

pj

j (ψa
j ρ

i
j,a))ωa

j

)
∥∥∥ ∑

a∈V(j)
K∇Ipj

j (ψa
j ρ

i
j,a)
∥∥∥ ,

then the solver employs weighted restricted additive Schwarz smoothing, by defining the descent direction
on level j, ρij ∈ V

pj

j , as ρij :=
∑

a∈V(j) I
pj

j (ψa
j ρ

i
j,a). Otherwise, additive Schwarz smoothing is employed and

ρij :=
∑

a∈V(j) ρ
i
j,a.

3.1.4 Module OPTIMAL STEPSIZE (optimal level step-size)

Input: descent direction ρij on level j; Output: optimal step-size λij on level j.

Given the latest approximation uiJ ∈ V
p
J , if ρij = 0, set λij := 0, otherwise define the optimal step-size

on level j, as λij :=
[
(f, ρij)− (K∇uiJ ,∇ρij)

]
/
∥∥K 1

2∇ρij
∥∥2.

3.1.5 Module DÖRFLER MARKING (bulk choice of levels/patches for smoothing)

Input: liftings ρi0, ρij,a for 1 ≤ j ≤ J , a ∈ Vj , bulk-chasing parameter θ;
Output: set of marked levels M, set of marked vertices per level Mj , j ∈M.

For θ ∈ (0, 1), we sort all patchwise contributions, as well as levelwise ones, and select for marking the
smallest cardinality set of the coarsest level and vertex indices, 1 ≤ j ≤ J, by the following bulk-chasing
criterion, cf. Dörfler [11],

θ2

∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

 ≤ ∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

,

where only
∥∥K 1

2∇ρi0
∥∥ appears on the coarsest level.

3.1.6 Module TEST ADAPT (deciding whether adaptivity will pay-off)

Input: User-prescribed parameter γ, R; Output: boolean.
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For γ ∈ (0, 1), if the following (analysis-driven) condition holds, the solver will proceed to the adaptive-
smoothing substep.

∑
j∈M

∑
a∈Mj

( J∑
k=j

λikK∇ρik,∇ρij,a
)

ωa
j

≤ γ2
∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

.

Furthermore, the parameter R ensures that the full-smoothing optimal step-sizes are bounded: λij ≤ R, for
all j ∈ {0, . . . , J}. In practice, one needs to verify the first condition above, whereas the second one is easily
satisfied for, e.g., R = 5.

3.2 Mathematical description of the solver

We now present the adaptive solver in a rigorous mathematical notation. This notation will be used for
the remainder of the manuscript. Below we describe in detail one iteration of the adaptive solver. The
initialization is given by u0J := 0 ∈ V p

J .

1. Full-smoothing substep

(a) Define ρi0 ∈ V 1
0 by

(K∇ρi0,∇v0) = (f, v0)− (K∇uiJ ,∇v0) ∀v0 ∈ V 1
0 (3.1)

and set λi0 := 1 and uiJ,0 := uiJ + λi0ρ
i
0.

(b) For all j ∈ {1, . . . , J}, a ∈ Vj , define the local contributions ρij,a ∈ V a
j by

(K∇ρij,a,∇vj,a)ωa
j

=(f, vj,a)ωa
j
− (K∇uiJ,j−1,∇vj,a)ωa

j
∀vj,a∈V a

j . (3.2)

i. Test (adaptive smoothing choice): If the following conditions hold∑
a∈Vj

Ipj

j

(
ψa
j ρ

i
j,a

)
6= 0, (3.3a)


∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

d+ 1


1
2

≤

∑
a∈Vj

[(
f, Ipj

j

(
ψa
j ρ

i
j,a

))
ωa

j

−
(
K∇uiJ,j−1,∇I

pj

j

(
ψa
j ρ

i
j,a

))
ωa

j

]
∥∥∥ ∑

a∈Vj
K

1
2∇Ipj

j

(
ψa
j ρ

i
j,a

)∥∥∥ , (3.3b)

then define the level j descent direction ρij ∈ V
pj

j as

ρij :=
∑
a∈Vj

Ipj

j (ψa
j ρ

i
j,a), (3.4)

otherwise define

ρij :=
∑
a∈Vj

ρij,a. (3.5)

If ρij = 0, set λij := 0, otherwise define the optimal step-size on level j

λij :=
(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1

2∇ρij
∥∥2 . (3.6)

The level update is given by

uiJ,j := uiJ,j−1 + λijρ
i
j , (3.7)

and the update after the full-smoothing substep is u
i+ 1

2

J := uiJ,J ∈V
p
J .
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2. Marking We mark the patches and/or the coarse level by the following bulk-chasing criterion [11],
for a parameter θ ∈ (0, 1)

θ2

∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

 ≤ ∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

, (3.8)

with the convention that if 0 ∈M, we write
∑

a∈M0

∥∥K 1
2∇ρi0,a

∥∥2
ωa

0
=
∥∥K 1

2∇ρi0
∥∥2.

3. Test (adaptive substep): If the two following (analysis-driven) conditions are satisfied, proceed to
the adaptive smoothing substep:∑

j∈M

∑
a∈Mj

( J∑
k=j

λikK∇ρik,∇ρij,a
)
ωa

j

≤ γ2
∑
j∈M

∑
a∈Mj

∥∥∥K 1
2∇ρij,a

∥∥∥2
ωa

j

, (3.9)

λij ≤ R ∀j ∈ {0, . . . , J}, (3.10)

where γ ∈ (0, 1), and R are a user-prescribed parameters. If these conditions do not hold, then let

ui+1
J := u

i+ 1
2

J and ignore the adaptive-smoothing substep.

4. Adaptive-smoothing substep

(a) If 0 /∈M, define ρ
i+ 1

2
0 := 0 and λ

i+ 1
2

0 := 0.

Otherwise, when 0 ∈M, set λ
i+ 1

2
0 := 1 and define ρ

i+ 1
2

0 ∈ V 1
0 by

(K∇ρi+
1
2

0 ,∇v0) = (f, v0)− (K∇ui+
1
2

J ,∇v0) ∀v0 ∈ V 1
0 . (3.11)

Define the coarsest level update u
i+ 1

2

J,0 := u
i+ 1

2

J + λ
i+ 1

2
0 ρ

i+ 1
2

0 .

(b) Let j ∈ {1, . . . , J}. If j is not a marked level (j /∈ M), define ρ
i+ 1

2
j := 0, λ

i+ 1
2

j := 0, and

u
i+ 1

2

J,j := u
i+ 1

2

J,j−1. Otherwise, when j is a marked level (j ∈ M), define ρ
i+ 1

2
j,a ∈ V a

j for all marked
vertices a ∈Mj by

(K∇ρi+
1
2

j,a ,∇vj,a)ωa
j

=(f, vj,a)ωa
j
− (K∇ui+

1
2

J,j−1,∇vj,a)ωa
j
∀vj,a∈V a

j . (3.12)

i. Test (adaptive smoothing choice): If the following conditions hold∑
a∈Mj

Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

)
6= 0, (3.13a)


∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

d+ 1


1
2

≤

∑
a∈Mj

[(
f, Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

))
ωa

j

−
(
K∇ui+

1
2

J,j−1,∇I
pj

j

(
ψa
j ρ

i+ 1
2

j,a

))
ωa

j

]
∥∥∥ ∑

a∈Mj

K
1
2∇Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

)∥∥∥ , (3.13b)

then define the level j descent direction ρ
i+ 1

2
j ∈ V pj

j as

ρ
i+ 1

2
j :=

∑
a∈Mj

Ipj

j

(
ψa
j ρ

i+ 1
2

j,a

)
, (3.14)

otherwise define

ρ
i+ 1

2
j :=

∑
a∈Mj

ρ
i+ 1

2
j,a . (3.15)

If ρ
i+ 1

2
j = 0, set λ

i+ 1
2

j := 0, otherwise define the optimal step-size on level j

λ
i+ 1

2
j :=

(f, ρ
i+ 1

2
j )− (K∇uiJ,j−1,∇ρ

i+ 1
2

j )∥∥K 1
2∇ρi+

1
2

j

∥∥2 . (3.16)
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The level update is given by

u
i+ 1

2

J,j := u
i+ 1

2

J,j−1 + λ
i+ 1

2
j ρ

i+ 1
2

j , (3.17)

and the final update is ui+1
J := u

i+ 1
2

J,J ∈ V
p
J .

Remark 3.1 (Compact writing of the iteration updates). Let uiJ ∈ V
p
J . After the full-smoothing substep of

the solver introduced above, we have

u
i+ 1

2

J = uiJ +

J∑
j=0

λijρ
i
j , (3.18)

and after the adaptive smoothing substep we have

ui+1
J = u

i+ 1
2

J +
∑
j∈M

λ
i+ 1

2
j ρ

i+ 1
2

j . (3.19)

Analogously to [21, Theorem 4.5], due to the optimal step-sizes (3.6),(3.16), the error after each substep
of the solver can be represented conveniently:

Lemma 3.2 (Error representation of each substep of the solver). For uiJ ∈ V
p
J , let u

i+ 1
2

J ∈ V p
J , ui+1

J ∈ V p
J

be constructed from uiJ by the full-smoothing and the adaptive-smoothing substep of the solver of Section 3,
respectively. Then

∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2= ∥∥K 1
2∇
(
uJ − uiJ

)∥∥2 − J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2, (3.20)

∥∥K 1
2∇
(
uJ − ui+1

J

)∥∥2= ∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2−∑
j∈M

(
λ
i+ 1

2
j

∥∥K 1
2∇ρi+

1
2

j

∥∥)2. (3.21)

4 A posteriori estimator on the algebraic error

The solver we introduced in Section 3 induces an a posteriori estimator ηialg for the full-smoothing substep

and η
i+ 1

2

alg for the adaptive smoothing substep.

Definition 4.1 (Algebraic error estimator). Let uiJ ∈ V
p
J be arbitrary, let u

i+ 1
2

J ∈ V p
J be the update at the

end of the full-smoothing substep, and let ui+1
J ∈ V p

J be the update at the end of the adaptive substep. We
define the algebraic error estimators

ηialg :=

( J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2) 1

2

, (4.1)

η
i+ 1

2

alg :=

( ∑
j∈M

(
λ
i+ 1

2
j

∥∥K 1
2∇ρi+

1
2

j

∥∥)2) 1
2

. (4.2)

The following result is immediate from Lemma 3.2:

Lemma 4.2 (Guaranteed lower bound on the algebraic error per substep). Under the assumptions of
Lemma 3.2 and Definition 4.1, the estimators are guaranteed lower bounds on the algebraic error for the
respective substeps of the solver ∥∥K 1

2∇
(
uJ − uiJ

)∥∥ ≥ ηialg, (4.3)∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥ ≥ ηi+ 1
2

alg . (4.4)
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5 Main results

We present here our main result for the solver introduced in Section 3. Similarly to [20, 21], we show for each
substep that the error contraction of the solver is equivalent to the efficiency of the associated a posteriori
error estimator.

5.1 Mesh assumptions

For j ∈ {1, . . . , J}, we denote in the following hK := diam(K) for K ∈ Tj and hj = maxK∈Tj hK . We shall
always assume that our meshes are shape-regular:

Assumption 5.1 (Shape regularity). There exists κT > 0 such that

max
K∈Tj

hK

ρK
≤ κT for all 0 ≤ j ≤ J, (5.1)

where ρK denotes the diameter of the largest ball inscribed in K.

We mainly work with a hierarchy of quasi-uniform meshes with a bounded refinement factor between
consecutive levels. This setting is described by:

Assumption 5.2 (Refinement strength and mesh quasi-uniformity). There exists 0 < Cref ≤ 1, a fixed
positive real number such that for any j ∈ {1, . . . , J}, for all K ∈ Tj−1, and for any K∗ ∈ Tj such that
K∗ ⊂ K, there holds

CrefhK ≤ hK∗ ≤ hK . (5.2)

There further exists Cqu, a fixed positive real number such that for any j ∈ {0, . . . , J} and for all K ∈ Tj,
there holds

Cquhj ≤ hK ≤ hj . (5.3)

Figure 3: Illustration of the set Bj ; the refinement Tj (dotted lines) of mesh Tj−1 (full lines).

The forthcoming main result also covers the setting of graded bisection grids, e.g. the newest vertex
bisection, cf. Sewell [28], that we present here for completeness. In this case, one refinement of an edge of
Tj−1, for j∈{1, . . . , J}, gives us a new finer mesh Tj . We denote by Bj ⊂ Vj the set consisting of the new
vertex obtained after the bisection together with its two neighbors on the refinement edge, cf. Figure 3 for
an illustration when d = 2. We denote by hBj the maximal diameter of elements having a vertex in Bj .
This setting is described by:

Assumption 5.3 (Local quasi-uniformity of bisection-generated meshes). T0 is a conforming quasi-uniform
mesh with parameter C0

qu. The graded conforming mesh TJ is generated from T0 by a series of bisections.
There exists a fixed positive real number Cloc,qu such that for any j∈{1, . . . , J}, there holds

Cloc,quhBj
≤ hK≤ hBj

∀K∈Tj such that a vertex of K belongs to Bj . (5.4)
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5.2 Main result

We now present the main result of this manuscript.

Theorem 5.4 (p-robust error contraction of the adaptive multilevel solver). Let Assumption 5.1 hold,
together with either Assumption 5.2 or Assumption 5.3. Let uJ ∈ V p

J be the (unknown) solution of (2.3)

and let uiJ ∈ V
p
J be arbitrary, i ≥ 0. Let u

i+ 1
2

J ∈ V p
J be the update at the end of the full-smoothing substep

of the solver described in Section 3. Then∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥ ≤ α∥∥K 1
2∇
(
uJ − uiJ

)∥∥. (5.5)

When tests (3.9)–(3.10) are satisfied, let ui+1
J ∈ V p

J be the update at the end of the adaptive substep. Then∥∥K 1
2∇
(
uJ − ui+1

J

)∥∥ ≤ α̃∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥. (5.6)

Here 0 < α < 1, 0 < α̃ < 1 depend on the space dimension d, the mesh shape regularity parameter κT ,
the number of mesh levels J , and the diffusion coefficient K, as well as on the mesh refinement parameter
Cref and quasi-uniformity parameter Cqu if Assumption 5.2 holds, or the coarse grid/local quasi-uniformity
parameters C0

qu and Cloc,qu if Assumption 5.3 holds. The dependence of the number of levels J is at most
linear for α and cubic for α̃. The factor α̃ depends additionally on the marking parameter θ and the
adaptivity tests parameters γ, R from (3.9)–(3.10).

Tests (3.9)–(3.10) are analysis-driven checks, that, if satisfied, ensure at the end of the full-smoothing
substep, based on pre-computed quantities, that the adaptive-smoothing substep will also contract the error.

5.3 Additional results

There is a strong link between the solver defined in Section 3 and the a posteriori estimators defined in
Section 4. Similarly to [20, 21], we have:

Theorem 5.5 (Equivalence estimator efficiency–solver contraction). Let the assumptions of Theorem 5.4
be satisfied. Then (5.5) holds if and only if

ηialg ≥ β
∥∥K 1

2∇
(
uJ − uiJ

)∥∥ (5.7)

holds with β =
√

1− α2. Similarly, (5.6) holds if and only if

η
i+ 1

2

alg ≥ β̃
∥∥K 1

2∇
(
uJ − u

i+ 1
2

J

)∥∥ (5.8)

holds with β̃ =
√

1− α̃2.

The following result can be seen as the main motivation for our adaptive algorithm.

Corollary 5.6 (Equivalence error–estimator–localized contributions). Let the assumptions of Theorem 5.4
be satisfied. There holds∥∥K 1

2∇
(
uJ − uiJ

)∥∥2 ≈ ∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≈
(
ηialg

)2
, (5.9)

where the constants involved in the equivalence “≈” have the same dependency as α in (5.5), and additionally
depend on R, see (7.4) below for details.

6 Numerical experiments

We consider four test cases: “Peak” (smooth solution with source term dominating in a part of a square
domain), “L-shape” (problem with a singularity due to the L-shaped domain with a re-entrant corner), and
“Skyscraper” (a problem we consider in two variants: with diffusion tensor having a jump of order 102 and
105), all described in detail in [21, Section 8]. We assume throughout this section that the parameter of
boundedness of the optimal step-sizes λij is fixed with R = 5. This leads to test (3.10) always being satisfied
in practice. We vary the other parameters. In order to see numerical evidence of p-robustness, the stopping
criterion is given by the relative residual dropping below 10−5.
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Figure 4: [L-shape, J=2, p0=1, p1=p2=3, θ2=0.9, γ2=0.5] Comparing algebraic error distribution (left) to
local error indicators (right) (levels j=1 top, j=2 bottom). Voronoi cells correspond to patch values, and
the ones with the red border are marked for local smoothing.

6.1 Can we predict the distribution of the algebraic error?

We provide in Figures 4–5 an illustration on how the distribution of the algebraic error
∥∥K 1

2∇
(
uJ − uiJ

)∥∥
is locally estimated using our algebraic error indicators. For this purpose, we consider the L-shape and
Peak problems on a mesh hierarchy with J = 2 and p1 = p2 = 3, respectively p1 = p2 = 6 (recall that
p0 = 1 in our setting). In the figures, we compare, for a single iteration (i = 3 for L-shape, i = 4 for

Peak), our algebraic error indicators ‖K
1
2∇ρij,a‖ωa

j
with the local algebraic error distribution ‖K

1
2∇ρ̃ij‖ωa

j
,

where ρ̃ij ∈ V
pj

j is the levelwise orthogonal decomposition of the algebraic error with ρ̃i0 = ρi0 and, for
j ∈ {1, . . . , J},

(K∇ρ̃ij ,∇vj) = (f, vj)− (K∇uiJ ,∇vj)−
j−1∑
k=0

(K∇ρ̃ik,∇vj) ∀vj ∈ V
pj

j ,

see, e.g., [21, Section 3]. We highlight by a red border patches marked for smoothing in the adaptive
smoothing substep, with the choice of the Dörfler marking parameter θ2 = 0.9 in (3.8).

One can see that the local error indicators provide indeed a quite accurate information about the error
distribution over the levels and patches in these tests. We note that one obtains similar results also for the
other test cases, higher number of mesh levels J , different polynomial degrees, and different choices of the
marking parameter θ. Thus the considered adaptivity indeed targets the problematic regions.

11



0

5

10

15

10
-9

2

4

6
10

-9

1

2

3

10
-10

2

4

6

8

10

12

14

10
-10

Figure 5: [Peak, J=2, p0=1, p1=p2=6, θ2=0.9, γ2=0.5] Comparing algebraic error distribution (left) to local
error indicators (right) (levels j= 1 top, j= 2 bottom). Voronoi cells correspond to patch values, and the
ones with the red border are marked for local smoothing.
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Figure 6: [All tests, J=3, p0 =1, p1 =1, p2 =2, p3 =3, θ2 =0.9, γ2 =0.5] Convergence of the Algorithm 1 in

the relative energy norm of the algebraic error ‖K
1
2∇(uJ − uiJ)‖/‖K

1
2∇uJ‖.

6.2 Does the adaptivity pay off?

Next, we investigate the performace of the adaptive Algorithm 1. We focus on convergence in the energy
norm of the algebraic error during the iterations and the percentage of patches marked for adaptive smooth-
ing. For this purpose, we consider the four test cases and J = 3, pj = 1, 1, 2, 3, 0 ≤ j ≤ J , γ2 = 0.5, and
the marking parameter θ2 fixed to 0.9, one obtains similar results also for other polynomial degrees. The
results are summarized in Figure 6. One can see the decrease on each full-smoothing substep, and that
the adaptive substeps indeed also yield a decrease of the energy norm of the error; the adaptive smoothing
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substeps actually yield nearly the same decrease as full substeps – the convergence curve is nearly linear (in
log scale) in the iterations where the adaptive smoothing is performed. Figures 7–8 then confirm that only
a small portion of patches is marked for adaptive smoothing, which suggest that Algorithm 1 may also be
computationally beneficial.

Peak test case
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Skyscraper test case (diff. contrast O(102))
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Skyscraper test case (diff. contrast O(105))
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Figure 7: [Different tests, J = 3, p0 = 1, p1 = 1, p2 = 2, p3 = 3, θ2 = 0.9, γ2 = 0.5] Adaptive smoothing:
coarsest level marked or not and percentages of patches marked for each level 1 ≤ j ≤ J (Y-axis). Iterations
of Algorithm 1 (X-axis). Results for the L-shape test case are given in the separate Figure 8.

Next, we test if the adaptive substeps provide a speed-up with respect to the variant without adaptive
adaptive substep. In Table 1, we compare, for varying polynomial degrees and number of levels, the results of
Algorithm 1 when varying the parameter γ2 from test (3.9). We consider choices γ2 = 0, which corresponds
to not using the adaptive substep at all, γ2 = 0.5, and, formally, γ2 = ∞, which stands for skipping the
evaluation of (3.9), (3.10) and using the adaptive substep in every iteration. The latter choice is motivated
by the fact that one would want to avoid evaluating the terms in test (3.9) if possible.

In Table 1, we in particular provide the number of iterations i with the number of adaptive smoothing
substeps in the brackets. For example “6(4)” means that the solver took 6 iterations to reach the stop-
ping criterion, and the tests (3.9)–(3.10) were passed four times, i.e., 4 adaptive-smoothing substeps were
performed in addition to the 6 full-smoothing substeps. For p = 1, test (3.9) is typically not verified, but
otherwise Algorithm 1 with γ2 = 0.5 usually passes the adaptivity test (3.9) and leads to a reduction of the
total number of iterations for the price of only employing a few adaptive smoothing substeps. By always
employing the adaptive substep (γ2 =∞), we may cut the iteration count by nearly a half also for p = 1.

For comparison of the associated computational cost, we also provide, as in [21], an estimated number
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P
ea

k
te

st
ca

se

γ2 = 0 γ2 = 0.5 γ2 =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 17(0) 1.92×107 17(0) 1.92×107 11(11) 2.22×107

1 1 2 3 13(0) 3.73×108 10(5) 3.69×108 8(8) 3.61×108

1 2 4 6 10(0) 8.01×109 9(3) 8.00×109 6(6) 7.19×109

1 3 6 9 11(0) 7.76×1010 8(6) 7.44×1010 7(7) 7.29×1010

4 1 1 1 1 1 18(0) 6.49×107 18(0) 6.49×107 11(11) 7.55×107

1 1 2 2 3 11(0) 1.30×109 10(3) 1.37×109 7(7) 1.29×109

1 2 3 5 6 9(0) 3.40×1010 9(2) 3.54×1010 6(6) 3.26×1010

1 3 5 7 9 11(0) 3.28×1011 8(6) 3.16×1011 7(7) 3.09×1011

L
-s

h
ap

e
te

st
ca

se

γ2 = 0 γ2 = 0.5 γ2 =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 21(0) 2.17×107 21(0) 2.17×107 11(11) 2.11×107

1 1 2 3 13(0) 3.64×108 8(7) 3.45×108 7(7) 3.20×108

1 2 4 6 8(0) 7.02×109 5(5) 6.51×109 5(5) 6.51×109

1 3 6 9 8(0) 6.94×1010 5(5) 6.59×1010 5(5) 6.59×1010

4 1 1 1 1 1 21(0) 7.24×107 21(0) 7.24×107 11(11) 7.29×107

1 1 2 2 3 9(0) 1.07×109 7(6) 1.21×109 6(6) 1.11×109

1 2 3 5 6 7(0) 2.95×1010 5(5) 2.92×1010 5(5) 2.92×1010

1 3 5 7 9 6(0) 2.75×1011 5(5) 2.78×1011 5(5) 2.78×1011

S
k
y
sc

ra
p

er
te

st
ca

se

d
iff

.
co

n
tr

as
t
O

(1
02

)

γ2 = 0 γ2 = 0.5 γ2 =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 19(0) 1.84×107 19(0) 1.84×107 12(12) 2.10×107

1 1 2 3 15(0) 4.09×108 8(8) 3.49×108 8(8) 3.49×108

1 2 4 6 9(0) 7.36×109 6(6) 6.93×109 6(6) 6.93×109

1 3 6 9 9(0) 7.11×1010 6(6) 6.79×1010 6(6) 6.79×1010

4 1 1 1 1 1 19(0) 6.06×107 19(0) 6.06×107 12(12) 7.29×107

1 1 2 2 3 11(0) 1.26×109 7(6) 1.19×109 7(7) 1.25×109

1 2 3 5 6 8(0) 3.11×1010 6(6) 3.15×1010 6(6) 3.15×1010

1 3 5 7 9 8(0) 2.91×1011 5(5) 2.77×1011 5(5) 2.77×1011

S
k
y
sc

ra
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d
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.
co

n
tr
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t
O

(1
05

)

γ2 = 0 γ2 = 0.5 γ2 =∞
J pj niter nflops niter nflops niter nflops

3 1 1 1 1 19(0) 1.84×107 19(0) 1.84×107 12(12) 2.10×107

1 1 2 3 15(0) 4.10×108 8(8) 3.49×108 8(8) 3.49×108

1 2 4 6 9(0) 7.36×109 6(6) 6.93×109 6(6) 6.93×109

1 3 6 9 9(0) 7.10×1010 6(6) 6.79×1010 6(6) 6.79×1010

4 1 1 1 1 1 19(0) 6.06×107 19(0) 6.06×107 12(12) 7.28×107

1 1 2 2 3 11(0) 1.26×109 8(7) 1.35×109 7(7) 1.25×109

1 2 3 5 6 8(0) 3.11×1010 6(6) 3.15×1010 6(6) 3.15×1010

1 3 5 7 9 8(0) 2.91×1011 5(5) 2.77×1011 5(5) 2.77×1011

Table 1: Number of iterations (number of adaptive smoothing substeps in brackets) for various choices of
the parameter γ2 in (3.9). The marking parameter in (3.8) is set as θ2 = 0.9
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L-shape test case

θ2 = 0.5
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θ2 = 0.8
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θ2 = 0.9

1 2 3 4 5 6 7 8
0

25

50

75

100

p
re

c
e

n
ta

g
e

 o
f

m
a

rk
e

d
 p

a
tc

h
e

s

j=0

j=1

j=2

j=3

θ2 = 0.95
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Figure 8: [L-shape, J = 3, p0 = 1, p1 = 1, p2 = 2, p3 = 3, γ2 = 0.5, varying θ2] Adaptive smoothing:
coarsest level marked or not and percentages of patches marked for each level 1 ≤ j ≤ J (Y-axis). Iterations
of Algorithm 1 (X-axis).

of floating point operations. This number is given by the formula

nflops :=
|V0|3

3
+

J∑
j=1

∑
a∈Vj

ndof(V a
j )3

3
+

istop∑
i=1

[
2δi0|V0|2 +

∑
j∈M\{0}

∑
a∈Mj

2ndof(V a
j )2
]

+

istop∑
i=1

J∑
j=1

[
2 nnz(IVj

Vj−1
) + 2 nnz(IVj−1

Vj
) + 2 nnz(Aj) + 3(2 size(Aj))

]
.

This formula is derived assuming 1) an initial Cholesky decomposition of local matrices associated to
each patch on each level except for the coarsest one, where the global stiffness matrix for piecewise affine
functions is factorized (for a matrix of size n, this cost is estimated as 1/3n3); 2) local solves by forward

and backward substitutions (cost 2n2); 3) intergrid operators IVj

Vj−1
: Vj → Vj−1 have the cost given by

two-times the number of nonzeros; and 4) evaluation of the optimal step-sizes λj as in formulas (3.6), (3.16)
involving multiplication with the stiffness matrix Aj on the given level (cost equal to two-times the number
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Peak test case
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L-shape test case
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Skyscraper (102)
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Skyscraper (105)
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Figure 9: [All tests, J=3, p0 =1, p1 =1, p2 =2, p3 =3, γ2 =0.5, varying θ2] Convergence of Algorithm 1 in

the relative energy norm of the algebraic error ‖K
1
2∇(uJ − uiJ)‖/‖K

1
2∇uJ‖.

of nonzeros) and three inner products. From the above tests, we see that adaptivity is of interest. Not only
does it provide error contraction on the adaptive substep of the same quality as the full-smoothing substep
with just local smoothing, cf. Figure 6, but in numerous cases, the adaptive variant is cheaper than the
non-adaptive one in terms of the nflops formula.

6.3 Dependence on the marking parameter

We finally vary the Dörfler marking parameter θ from (3.8), setting θ2 = 0.5, 0.8, 0.9, 0.95. The results are
given in Figure 9 and in Table 2, where we consider γ2 = 0.5.

One can see that the choice θ2 = 0.5 is often not sufficiently efficient. For this choice, the number of
iterations is not reduced sufficiently and the cost of intergrid operation then dominates over the cost of local
smoothings.

The best choice of θ2 seems to differ, but θ2 = 0.9 reveals quite satisfactory in most of the cases.
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Peak test case

θ2 = 0.5 θ2 = 0.8 θ2 = 0.9 θ2 = 0.95

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 18(0) 6.49×107 18(0) 6.49×107 18(0) 6.49×107 18(0) 6.49×107

1 1 2 2 3 11(1) 1.36×109 10(2) 1.32×109 10(3) 1.37×109 10(3) 1.38×109

1 2 3 5 6 9(0) 3.40×1010 9(2) 3.54×1010 9(2) 3.54×1010 9(2) 3.54×1010

1 3 5 7 9 10(7) 3.37×1011 8(6) 3.16×1011 8(6) 3.16×1011 7(6) 3.07×1011

L-shape test case

θ2 = 0.5 θ2 = 0.8 θ2 = 0.9 θ2 = 0.95

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 21(0) 7.24×107 21(0) 7.24×107 21(0) 7.24×107 21(0) 7.24×107

1 1 2 2 3 9(5) 1.34×109 7(5) 1.14×109 7(6) 1.21×109 6(5) 1.06×109

1 2 3 5 6 6(5) 3.10×1010 6(5) 3.10×1010 5(5) 2.92×1010 5(5) 2.93×1010

1 3 5 7 9 6(6) 2.90×1011 5(5) 2.78×1011 5(5) 2.78×1011 4(4) 2.67×1011

Skyscraper test case (diff. contrast O(102))

θ2 = 0.5 θ2 = 0.8 θ2 = 0.9 θ2 = 0.95

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 19(0) 6.06×107 19(0) 6.06×107 19(0) 6.06×107 19(0) 6.06×107

1 1 2 2 3 10(6) 1.48×109 8(7) 1.34×109 7(6) 1.19×109 7(6) 1.19×109

1 2 3 5 6 7(4) 3.19×1010 6(6) 3.15×1010 6(6) 3.15×1010 5(5) 2.91×1010

1 3 5 7 9 7(7) 2.99×1011 6(6) 2.88×1011 5(5) 2.77×1011 5(5) 2.77×1011

Skyscraper test case (diff. contrast O(105))

θ2 = 0.5 θ2 = 0.8 θ2 = 0.9 θ2 = 0.95

J pj niter nflops niter nflops niter nflops niter nflops

4 1 1 1 1 1 19(0) 6.06×107 19(0) 6.06×107 19(0) 6.06×107 19(0) 6.06×107

1 1 2 2 3 10(6) 1.48×109 8(7) 1.34×109 8(7) 1.34×109 7(6) 1.19×109

1 2 3 5 6 7(4) 3.19×1010 6(6) 3.15×1010 6(6) 3.15×1010 5(5) 2.90×1010

1 3 5 7 9 7(7) 2.99×1011 6(6) 2.88×1011 5(5) 2.77×1011 5(5) 2.77×1011

Table 2: Number of iterations (number of adaptive smoothing substeps in brackets) for various choices of
marking parameter θ2 in (3.8). The parameter γ2 from (3.9) is set as γ2 = 0.5

7 Proofs of the main results

In this section we present the proofs of the results stated in Section 5. We start with noting that Theorem 5.5
is proven in [21, Corollary 6.7].

7.1 Proof of contraction: full-smoothing substep

We start with a generalization of [21, Lemma 9.2] to cover test (3.3).

Lemma 7.1 (Lower bound on levelwise updates by patchwise contributions). Let uiJ ∈ V
p
J be arbitrary.

Let j ∈ {1, . . . , J} and let ρij, λij be constructed from uiJ by the full-smoothing substep of the solver described
in Section 3. Then ∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ (d+ 1)
(
λij
∥∥K 1

2∇ρij
∥∥)2 ∀1 ≤ j ≤ J, (7.1)

where for each vertex a ∈ Vj, ρij,a is the solution of the local problem (3.2).
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Proof. Depending if test (3.3) of the solver in Section 3 is satisfied or not, ρij will be constructed differently.
We show that (7.1) holds for either outcome of test (3.3).

Case test (3.3) is satisfied: Then ρij is constructed by (3.4) and the outcome of Test (3.3a),(3.3b) ensures

on one hand that ρij 6= 0, and on the other that

∑a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

d+ 1


1
2

≤
(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1

2∇ρij
∥∥ .

Using (3.6), this leads to:
(∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

) 1
2 ≤
√
d+ 1λij

∥∥K 1
2∇ρij

∥∥.
Case test (3.3) is not satisfied: Then ρij is constructed by (3.5). First, note that∑

a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(3.2)
=

∑
a∈Vj

(
(f, ρij,a)ωa

j
− (K∇uiJ,j−1,∇ρij,a)ωa

j

)
(3.5)
= (f, ρij)− (K∇uiJ,j−1,∇ρij).

Thus, if ρij = 0, then the result (7.1) holds trivially. To treat the remaining case ρij 6= 0, we use the inequality

|
∑d+1

k=1 ak|2 ≤ (d+ 1)
∑d+1

k=1 |ak|2 to write

∥∥K 1
2∇ρij

∥∥2 =
∑
K∈Tj

∥∥K 1
2∇ρij

∥∥2
K

(3.5)
=
∑
K∈Tj

∥∥∥∥ ∑
a∈VK

K
1
2∇ρij,a

∥∥∥∥2
K

≤ (d+ 1)
∑
K∈Tj

∑
a∈VK

∥∥K 1
2∇ρij,a

∥∥2
K

= (d+ 1)
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

.

This, together with the the expression of λij gives

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(3.6)
= λij

∥∥K 1
2∇ρij

∥∥2≤ λij∥∥K 1
2∇ρij

∥∥((d+ 1)
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

) 1
2

.

Summing over all mesh levels and since d+ 1 ≥ 1 (on j = 0), (7.1) gives:

Corollary 7.2 (Lower bound on the estimator by localized contributions). There holds

J∑
j=0

∑
a∈Vj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

≤ (d+ 1)
(
ηialg

)2
. (7.2)

We can now present the proof of contraction of the solver for the full-smoothing substep. The proof
follows as the proof of [21, Theorem 6.6].

Proof of part 1 of Theorem 5.4. In fact, the proof of [21, Theorem 6.6] is independent of the construction
of ρij and only uses the levelwise and patchwise contributions ρij,a which are constructed in the same way
here. This yields CS ≥ 1 with the same dependencies as α such that

∥∥K 1
2∇
(
uJ − uiJ

)∥∥2 ≤ C2
S

(
ηialg

)2
. (7.3)

By Theorem 5.5, this is equivalent to (5.5) with α =
√

1− C2
S.
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Proof of Corollary 5.6. Using the result given in [21, Corollary 6.8], when test (3.10) is satisfied, we moreover
have (

ηialg

)2 (4.3)

≤
∥∥K 1

2∇
(
uJ − uiJ

)∥∥2 (7.3)

≤ C2
S

(
ηialg

)2
≤ C2

SR2(d+1)

(∥∥K 1
2∇ρi0

∥∥2+ J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

)
(7.4)

(7.1)

≤ C2
SR2(d+ 1)2

(
λi0
∥∥K 1

2∇ρi0
∥∥2+

J∑
j=1

λij
∥∥K 1

2∇ρij
∥∥2) (4.1)

= C2
SR2(d+ 1)2

(
ηialg

)2
.

7.2 Proof of contraction: adaptive-smoothing substep

Let tests (3.9)–(3.10) be satisfied. We introduce the notation δl = 1 if the level l is marked (when l ∈ M),
otherwise δl = 0. Firstly, we present the generalization of Lemma 7.1 and Corollary 7.2, obtained by only
working with the marked vertices.

Lemma 7.3 (Lower bound on levelwise updates by patchwise contributions). Let uiJ ∈ V
p
J be arbitrary.

Let j ∈ M \ {0}, and ρ
i+ 1

2
j , λ

i+ 1
2

j be constructed from u
i+ 1

2

J by the adaptive-smoothing substep of the solver
described in Section 3. There holds∑

a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

≤ (d+ 1)
(
λ
i+ 1

2
j

∥∥K 1
2∇ρi+

1
2

j

∥∥)2 ∀1 ≤ j ≤ J, (7.5)

where for each vertex a ∈ Vj, ρ
i+ 1

2
j,a is the solution of a local problem (3.12).

As for Corollary 7.2, we immediately have:

Corollary 7.4 (Lower bound on the estimator by localized contributions). There holds∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

≤ (d+ 1)
(
η
i+ 1

2

alg

)2
. (7.6)

The following result is crucial in the proof of contraction of the adaptive-smoothing substep. Since
the marking takes place at the end of the full-smoothing substep, which determines where the adaptive-
smoothing takes place, a connection between the two substeps is needed. This is the goal of the test (3.9).

Lemma 7.5 (Link between full- and adaptive-smoothing substeps). Under the adaptivity test (3.9), there
holds ∑

j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ 2(d+ 1)(|M|2 + 1)

(1− γ2)2

(
η
i+ 1

2

alg

)2
. (7.7)

Proof. We first make the connection between the two substeps, then we arrange together the terms given
by the adaptive substep. The remaining full-smoothing substep are then treated by (3.9) and finally, we
apply a Young’s inequality. The main term we want to estimate can be split in the two quantities below∑

j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

= δ0(K∇ρi0,∇ρi0) +
∑

j∈M\{0}

∑
a∈Mj

(K∇ρij,a,∇ρij,a)ωa
j
.
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First,

δ0(K∇ρi0,∇ρi0)
(3.1),(3.18)

= δ0

(
(f, ρi0)− (K∇ui+

1
2

J ,∇ρi0) +

J∑
j=0

λij(K∇ρij ,∇ρi0)
)

(3.11)
= δ0

(
(K∇ρi+

1
2

0 ,∇ρi0) +

J∑
j=0

λij(K∇ρij ,∇ρi0)
)

≤ δ0
1

2(1− γ2)

∥∥K 1
2∇ρi+

1
2

0

∥∥2 + δ0
1− γ2

2

∥∥K 1
2∇ρi0

∥∥2 + δ0

J∑
j=0

λij(K∇ρij ,∇ρi0).

Second, ∑
j∈M\{0}

∑
a∈Mj

(K∇ρij,a,∇ρij,a)ωa
j

(3.2)
=
∑

j∈M\{0}

∑
a∈Mj

(
(f, ρij,a)ωa

j
− (K∇uiJ,j−1,∇ρij,a)ωa

j

)
(3.7)
=

∑
j∈M\{0}

∑
a∈Mj

(
(f, ρij,a)ωa

j
− (K∇uiJ ,∇ρij,a)ωa

j
−

j−1∑
k=0

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.18)

=
∑

j∈M\{0}

∑
a∈Mj

(
(f, ρij,a)ωa

j
− (K∇ui+

1
2

J ,∇ρij,a)ωa
j

+

J∑
k=0

λik(K∇ρik,∇ρij,a)ωa
j
−

j−1∑
k=0

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.17)

=
∑

j∈M\{0}

∑
a∈Mj

(
(f, ρij,a)ωa

j
− (K∇ui+

1
2

J,j−1,∇ρ
i
j,a)ωa

j

+

j−1∑
l=0
l∈M

λ
i+ 1

2

l (K∇ρi+
1
2

l ,∇ρij,a)ωa
j

+

J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.12)

=
∑

j∈M\{0}

∑
a∈Mj

(
(K∇ρi+

1
2

j,a ,∇ρij,a)ωa
j

+

j−1∑
l=0

δlλ
i+ 1

2

l (K∇ρi+
1
2

l ,∇ρij,a)ωa
j

+

J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)
(3.12)

≤
∑

j∈M\{0}

∑
a∈Mj

(
1

1− γ2
∥∥K 1

2∇ρi+
1
2

j,a

∥∥2
ωa

j

+
1− γ2

4

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
1

1−γ2
∥∥∥ j−1∑

l=0

δlλ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

+
1−γ2

4

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+

J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)

We return to the main estimate by summing the two estimates and using the result of Test (3.9)

∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ 1

1− γ2
∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

+
1− γ2

2

∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
1

1− γ2
∑

j∈M\{0}

∑
a∈Mj

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

+
∑

j∈M\{0}

∑
a∈Mj

( J∑
k=j

λik(K∇ρik,∇ρij,a)ωa
j

)
+ δ0

J∑
j=0

λij(K∇ρij ,∇ρi0)
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(3.9)

≤ 1

1− γ2
∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

+
1− γ2

2

∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

+
1

1− γ2
∑

j∈M\{0}

∑
a∈Mj

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

+ γ2
∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

.

Rearranging the terms, we have

1− γ2

2

∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

≤ 1

1− γ2
∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρi+

1
2

j,a

∥∥2
ωa

j

+
1

1− γ2
∑

j∈M\{0}

∑
a∈Mj

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2
ωa

j

,

leading to

∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(7.6)

≤ 2(d+ 1)

(1− γ2)2

((
η
i+ 1

2

alg

)2
+
∑

j∈M\{0}

∥∥∥ j−1∑
l=0
l∈M

λ
i+ 1

2

l K
1
2∇ρi+

1
2

l

∥∥∥2)

≤ 2(d+ 1)

(1− γ2)2

((
η
i+ 1

2

alg

)2
+

∑
j∈M\{0}

|M|
j−1∑
l=0
l∈M

∥∥∥λi+ 1
2

l K
1
2∇ρi+

1
2

l

∥∥∥2)

≤ 2(d+ 1)

(1− γ2)2

((
η
i+ 1

2

alg

)2
+ |M|2

∑
l∈M

(
λ
i+ 1

2

l

∥∥K 1
2∇ρi+

1
2

l

∥∥)2)(4.2)
=

2(d+1)(|M|2+1)

(1−γ2)2

(
η
i+ 1

2

alg

)2
.

where |M| denotes the number of marked levels.

We can now prove the contraction of the adaptive-smoothing substep below.

Proof of part 2 of Theorem 5.4. Step 1. We prove that there holds:∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2≤ β̃2
(
η
i+ 1

2

alg

)2
. (7.8)

By Theorem 5.5, the efficiency of the estimator ηialg is equivalent to error contraction of the full-smoothing
substep. Using the equivalence error–localized contributions of Corollary 5.6/(7.4), the bulk-chasing crite-
rion (3.8), and the result of Lemma 7.5,

∥∥K 1
2∇
(
uJ − u

i+ 1
2

J

)∥∥2 Theorem 5.5
≤ α2

∥∥K 1
2∇
(
uJ − uiJ

)∥∥2
(7.4)

≤ α2C2
SR2(d+ 1)

(∥∥K 1
2∇ρi0

∥∥2 +

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

)
(3.8)

≤ α2C2
SR2(d+1)

θ2

∑
j∈M

∑
a∈Mj

∥∥K 1
2∇ρij,a

∥∥2
ωa

j

(7.7)

≤ 2α2C2
SR2(d+1)2(|M|2+1)

θ2(1− γ2)2

(
η
i+ 1

2

alg

)2
,

giving the desired result for β̃2 =
2α2C2

SR2(d+1)2(|M|2+1)

θ2(1− γ2)2
. Thus, the estimator η

i+ 1
2

alg (guaranteed lower

bound (4.4)), is p-robustly efficient.

Step 2. By Theorem 5.5, (7.8) is equivalent to (5.6) with α̃ =

√
1− β̃2.
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8 Conclusions

In this work we presented an adaptive multilevel solver whose adaptive process is supervised by an a
posteriori estimator of the algebraic error. We showed that both full-smoothing and adaptive-smoothing
substeps of the solver contract the error robustly with respect to the polynomial degree of approximation p,
under the decision tests (3.9)–(3.10) for the latter. To the best of the author’s knowledge, this is the first work
where adaptive smoothing not necessarily everywhere in the meshes is proven to contract the algebraic error,
and moreover does so in a p-robust way. Numerical experiments indicate that the adaptivity can provide
an interesting speed-up and is worth considering in practice. Furthermore, the solver appears numerically
robust with respect to the number of levels in the hierarchy as well as the jump in the diffusion coefficient.
Further work would explore how this can be rigorously proven.
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