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Abstract: Car driver modeling is a well-known research topic, with significant existing contri-
butions. In contrast, important questions related to motorcyclist modeling remain unanswered.
This study focuses on identifying a motorcyclist model that can predict the steering angle and
the rider roll angle. A black box rider model in the form of a time delay neural network is
presented. This model was developed using experimental data recorded with an instrumented
motorcycle from the VIROLO++ research project. It is used for three main issues. First, the
selection of input signals and their impact on prediction performance is discussed. Next, the
model’s ability to predict the behavior of a variety of motorcyclists is demonstrated. Finally,
the nonlinearity of the model is analyzed. These results pave the way to the development of a
cybernetic rider model.

Keywords: Motorcycle rider modeling, Cybernetic rider model, Identification, Time delay
neural network.

1. INTRODUCTION

Year after year, motorcyclists remain one of the most
vulnerable groups of road users. According to the french
observatory of road safety (ONISR), in France in 2018, the
risk of being killed was 22 times higher for a motorcyclist
than for a car driver, making motorcycles an ongoing
central issue of road safety. Outside urban areas, 42%
of lethal accidents involving motorcycle happen along
road bends. This observation was one of the motivations
behind the VIROLO++ research project (Espié et al.,
2016). The main objective of this project is to provide
a better understanding of rider behavior along bends in
order to propose efficient learning or prevention tools. The
project has three main objectives. The first is to develop a
better understanding of the rider/motorcycle interaction
and of rider modeling. The second involves designing a
risk function for bend taking, and the third is the precise
reconstruction of motorcycle trajectories. All of these tasks
rely on road tests with an instrumented motorcycle (as
presented in Section 3.1).

The present paper, which is part of the rider modeling
task, adresses three important considerations. The first is
the choice of input signals to obtain satisfying prediction
capacities. Once appropriate results are obtained for a
rider, the second issue is determining whether the model
has sufficient richness to reproduce the behavior of a
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variety of riders. Finally some model characteristics are
analyzed, especially nonlinearity.

The paper is organized in four main parts. Section 2
summarizes the state of the art of rider modeling and
outlines the assumptions made in this paper. Section 3
presents the experiments conducted as part of the VI-
ROLO++ research project. Section 4 discusses the identi-
fication problem, specifically the choice of the rider model
inputs and outputs and the motivation behind using a
time delay neural network (TDNN). Finally, Section 5
analyzes the results obtained with the presented approach,
and individually addresses the three previously mentioned
objectives of the paper.

2. RIDER MODELING

Before the experiment and the modeling problem are pre-
sented, this section summarizes the existing literature on
motorcyclist modeling and presents the main assumptions
of the paper.

2.1 State of art

A motorcycle is an unstable system with significant roll
dynamics. The mass ratio between the vehicle and the
driver is also very high. This makes motorcycle driving
more complex than, for instance, car driving. As a conse-
quence, rider modeling is difficult and remains a significant
research challenge.



A significant portion of literature on rider modeling covers
the mechanical influence of the rider body as part of the
global dynamic system: motorbike and rider. This paper
focuses more on the rider driving task and the associ-
ated processing of sensory information. In this context,
the literature about motorcycle riding deals either with
rider observation or rider modeling. A general overview
of this work is given in (Popov et al., 2010; Kooijman
and Schwab, 2013). In the domain of rider observation,
the main addressed topics are handlebar control (steering
torque vs. steering angle), the prevalence of different forms
of control (handlebars vs. rider lean) (Zellner and Weir,
1978; Rice, 1978; Bocciolone et al., 2007) and the differ-
ences between experienced and novice riders (Rice, 1978;
Prem and Good, 1983; Evertse, 2010). The conclusions
vary depending on the considered maneuver, but in gen-
eral, novice rider behavior is more subject to interpersonal
variations. Moreover, experienced riders are more reactive
and able to uncouple handlebar actions and body lean.
The handlebars are considered the most efficient means
of controlling the motorcycle. This importance may vary
according to the speed. Finally, most papers conclude that
a human rider controls a motorcycle by applying a steering
torque rather than a steering angle.

The literature on rider modeling can be divided into two
groups: human rider modeling and automatic control. The
articles on human rider modeling (Weir, 1972, 1973; Prem
and Good, 1984) are mainly based on a theoretical ap-
proach and are not necessarily validated with experimental
data. The proposed models in (Weir, 1972, 1973) have
three inputs (the motorcycle roll angle, the heading angle
and the lateral position) and two outputs (the steering
torque and the rider lean angle). The internal structure
of the model comprises three nested loops. The speed
dependence is not explicitly formalized. (Prem and Good,
1984) have used a similar model adapted to novice rid-
ers. The automatic control based literature (Sharp, 2006,
2007; Katayama et al., 1988; Mammar et al., 2006) re-
places the human rider with a controller. The conclusions
of (Katayama et al., 1988) indicate that the handlebar
steering torque is the main method used to control a
motorcycle. (Sharp, 2006, 2007) has analyzed the pre-
view distance needed as a function of the speed and has
concluded that a greater preview distance is required for
motorcycle driving than for car driving. Furthermore the
preview distance needed to control a motorcycle increases
more than proportionally to the speed.

Although it is not exhaustive, this brief overview of the
available literature demonstrates that cybernetic model-
ing of a motorcyclist is still an unsolved problem. The
literature on car driver modeling and on aircraft pilot
modeling may constitute important sources of inspiration,
in particular concerning human perception.

Car driver modeling mainly involves visual and haptic
perception. When one considers visual feedback, it is
commonly accepted that a driver simultaneously uses
both distant visual cues, to anticipate changes in road
curvature, and near visual cues, to compensate for lateral
position errors (Donges, 1978; Land and Horwood, 1995;
Frissen and Mars, 2014). To formalize this dual process,
two indicators are generally used to reproduce the human
visual perception. In (Salvucci and Gray, 2004; Saleh et al.,

2013), these two indicators take the form of two angles
named θnear and θfar (they are illustrated in Figure 5).
The haptic feedback along bends takes the form of a
torque felt by the driver when interacting with the steering
wheel. This torque involves the auto-alignment torque, as
formalized in the cybernetic model proposed by (Saleh
et al., 2013).

In a simplified model of a car driver, the role of vestibular
feedback can be neglected. The same is not true for
an aircraft pilot model, in which rotation dynamics and
inclination with respect to gravity must also be considered.
Pilot models, including those used for the design of flight
simulators, therefore explicitly represent the properties of
vestibular organs (Hosman, 2009; Lone and Cooke, 2014).
Motorcycle modeling shares elements of both car driver
modeling (both have similar visual control of trajectory)
and aircraft pilot modeling. The dynamics of movement
are more constrained in a motorcycle than in airplanes,
but it is difficult to ignore the control of leaning in the
motorcyclist model.

2.2 Paper assumptions

Creating a cybernetic rider model, that is, a dynamic
model that explicitly describes a human rider’s behavior
through this model’s structure and the meaning of its
parameters, is an open problem. A possible high level
description of such a model is given in Figure 1. The model
incorporates three types of feedback used by a human
rider to control a motorcycle: visual feedback, vestibu-
lar feedback and haptic feedback. Methods used by the
rider to control the lateral motion of their motorbike are
also described: handlebar manipulation (steering torque)
and the generation of a roll torque. A first level of the
model structure is also provided that involves two control
processes: sensorimotor coordination and neuromuscular
control. Describing each feedback signal and the content of
the two control blocks precisely is the final goal of the rider
identification work. However, comprehensive modeling can
only be achieved gradually. The present paper summarizes
only the initial step of this modeling process.

Although a cybernetic rider model should be derived from
experimental data measured under real driving conditions,
working with a motorcycle simulator may be considered
as an alternative data collection method. Unfortunately,
in reality, such a simulator is not as ”easy” to build as, for
instance, a car simulator (mainly because of the roll degree
of freedom); hence, a motorcycle simulator is not the best
approach for human rider modeling. Experiments on an
instrumented motorcycle were made possible in this work
through the VIROLO++ research project. In this project,
a fully instrumented motorcycle (presented in Section 3.1)
was developed and used to collect data for human driver
observation and modeling.

As previously mentioned, deriving a cybernetic model
directly from the experimental data gives rise to numerous
questions especially pertaining to model structure and
identifiability. The present paper does not address all of
these questions at once, but focuses on three important
considerations: the choice of appropriate input and output
signals, the model’s capacity to reproduce the behavior of a
variety of riders and an analysis of the main characteristics
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Fig. 1. Cybernetic rider model

of the model, in particular its nonlinearity. To investigate
these questions, the rider model has been defined as a
time delay neural network. Further details on this type of
model are given in Section 4.3. This type of model has been
chosen due to its capability to approximate a large class
of nonlinear systems. This capability allows the model to
describe nonlinear behavior, without a priori specification
of one particular internal model structure. For instance,
prior assumptions about relationships between the model’s
dynamics and the longitudinal speed can thus be avoided.

3. THE EXPERIMENT

This section describes the experiment conducted under
real conditions with an instrumented motorcycle on a
track. The motorcycle is presented first, followed by the
road tests and the experimental data recorded.

3.1 The instrumented motorcycle

The instrumented motorcycle is presented in Figure 2. It
is a Honda CBF1000. Most of the sensors are presented in
the picture. The most useful sensors for the present paper
are the GPS RTK, for trajectory recording; the motorcycle
inertial measurement unit (IMU), for measuring the roll
angle; the steering angle sensor and the speed sensor.
Finally three IMUs placed on the rider (not visible in
Figure 2) are also used to measure the rider roll motion.

GPS RTK

Laser Speed sensor

Pressure sensorsMotorbike IMU

Steering angle and torque sensors

Fig. 2. The instrumented motorbike (VIROLO++ project)

3.2 The road tests

The road tests were conducted on a track (presented in
Figure 3). The riders were novice riders of the French
military force. Data from six riders are considered in this
article. Each driver was asked to drive several laps without
any driving instruction (normal driving). Of these laps of
normal driving, one was used in the following experiment
for the identification (or the neural network training)
and a second lap was used for validating the prediction
performance of the identified model.

Start

Finish

Fig. 3. Track used for the experiment

3.3 Experimental data description

The data from the experiment consist of the measures from
all the sensors placed on the motorcycle and the rider
from all laps of all riders. All signals were synchronized
while recording and were sampled every 0.1s. Most data
contained some high frequency noise and required filtering.
In this paper all the data were manipulated off-line, so
noncausal filtering was used to avoid introducing phase
changes. Some additional pretreatments and estimations
were needed to determine the rider input and output
signals. These are briefly discussed in Section 4.1 but are
not fully presented for readability and conciseness.

4. THE TDNN IDENTIFICATION PROBLEM

Based on the assumptions made in Section 2.2, this section
presents the identification problem. First, the selection of
the input and output signals of the rider model is detailed
in Section 4.1, then the identification approach is presented
in Section 4.2. Finally the identification process and the
model characteristics are described in Section 4.3.



4.1 Rider model input and output signals

Before the model characteristics are discussed, the input
and output signals considered for the rider model must be
defined. As described in Figure 1, three types of feedback
can be used by a human rider to control the lateral
motion of a motorcycle. One source of information used
by a rider to control a motorcycle comes from haptic
feedback. On a motorcycle, as in a car, the rider applies
a torque on the actuator and feels a torque response
from the steering system. This haptic feedback directly
interacts with the neuromuscular system in a closed loop.
It is essential to carefully control the handlebars and this
control results in a steering angle. Only the steering angle
will be taken into account for the model since only the
sum of the driver’s torque and the steering column torque,
and not the proper force feedback, can be measured on the
instrumented motorcycle. Thus as indicated in Figure 4,
only two types of feedback are considered in this paper: the
visual feedback and the vestibular feedback. Two methods
of control are considered: the steering angle (denoted δ in
the following paragraphs) and the roll moment generated
by the rider with their upper body.

Simpli�ed
rider model

Motorbike
+

Rider body
+

Road

Steering angle

Roll torque

Visual feedback

Vestibular feedback

Fig. 4. Simplified cybernetic rider model

The hypothesis of this study concerning visual feedback
is that the analysis of the visual scene conducted by a
motorcycle rider is very similar to that of a car driver.
Consequently, the same visual indicators have been se-
lected. These indicators are the two angles presented previ-
ously θnear and θfar (Saleh et al., 2013). As illustrated in
Figure 5, θnear is the angle between the heading of the
motorcycle and the near point, while θfar is the angle
between the heading and the tangent point. The near point
is used to monitor the lateral position and to maintain a
central lane position. It is placed in the center of the lane,
5 m ahead of the vehicle. The tangent point is used to an-
ticipate the upcoming road curvature. Such indicators are
not directly measured on the instrumented motorcycle, but
are instead estimated from the trajectory measurements.

Vestibular feedback is used by the human rider to assess
linear (translation and tilt) and rotational accelerations
via the otoliths and the semi-circular canals, respectively.
This feedback is consequently closely related to the mo-
torcycle roll motion. In the present paper, the roll angle of
the motorcycle θrm is considered as a possible input of the
rider model. θ̇rm could also be considered, although the
present paper does not directly consider it for simplicity.
However the neural network model presented in Section 4.3
can estimate this signal if necessary.

The methods of control must also be considered. The first
is the steering angle δ. The second (which is generally con-
sidered secondary to handlebar control) involves initiating

lane center

tangent point

near point

heading

\=40A

\5 0A

Fig. 5. Angles θnear and θfar

a roll torque with the upper body. This additional method
of control is considered in the rider model using the rider
roll angle θrr as second output.

The rider model used in this work is summarized in
Figure 6. The inputs considered are the near angle θnear,
the far angle θfar and the roll of the motorcycle θrm. The
outputs considered are the steering angle, δ, and the rider
roll angle, θrr. The longitudinal speed vx constitutes an
additional model input, as it certainly affects the rider
model dynamics. These lists of input and output signals
is validated with regard to the identification results in
Section 5.1.

Nonlinear
model
(NN)

Motorbike
+

Rider body
+

Road

θnear
θf ar

θrm
vx

δ

θr r

Fig. 6. Considered rider model

Examples of experimental output signals are given in
Section 5 and some input signals are shown in Figures 7
and 8.
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Fig. 7. Input signal (Validation data, Rider 1)

4.2 The motivations behind neural network identification

Once the input and output signals had been selected, it
was necessary to specify the characteristics of the model.
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First, the multivariable coherence between all the input
signals and each output signal was computed. This indica-
tor highlighted that the relationship between the inputs
(speed excluded) and the steering angle is mostly (but
not entirely) linear. However, as discussed in Section 5.3,
linear identification does not lead to satisfactory prediction
capabilities. Consequently, the model chosen here for iden-
tification purposes is a possibly nonlinear dynamic neural
network model. This type of black box model is far from
the desired cybernetic model but is very interesting at this
stage due to its investigation capabilities.

In addition, with the limited constraints imposed on the
neural network model and its ability to approximate
a large class of nonlinear models, it can be expected
to achieve a very satisfying level of identification and
prediction performances. If data are rich enough, the time
delay neural network model will constitute a reference
in terms of achievable performance in future attempts to
create a cybernetic model.

4.3 Time delay neural network

In this paper, the considered neural network is a multi
input multi output (MIMO) time delay neural network
with a single hidden layer (as represented in Figure 9). The
relation between the inputs and outputs of this network
can be written as follows:

ym(k) =

σ0

 N∑
i=1

w0
im σ1

 ni∑
j=1

n∑
l=1

w1
ijlm uj(k − l) + b1im

+ b0m

 .

In this expression, ym is the network output signal number
m, uj is the network input signal number j, σ0 and σ1 are
the activation functions (respectively linear σ0(x) = x and
sigmoid σ1(x) = 2/((1+exp(−2x))−1) in this paper), w0

im
and b0m are the weights and bias of the output layer, w1

ijlm

and b1im the weights and bias of the hidden layer, N is
the number of neurons, n the number of input delays and
finally ni the number of input signals.

Such a model, with a single hidden layer, permits the
approximation of a large class of nonlinear functions. The
model can be restricted to a linear model by selecting
linear activation functions σ0 and σ1. In this case, it
reduces to a simple finite impulse response (FIR) filter.
The finite number of input delays considered in the model
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Fig. 9. MIMO TDNN with a single hidden layer

formalizes the fact that a motorcycle rider exploits only
recent informations from their inputs to make decisions.

The neural network training presented in this paper was
realized with Matlab’s Neural Network ToolboxTM.

5. ANALYSIS OF RESULTS

Three important questions are addressed in this section.
The first is: which input signals should be chosen for the
rider model to obtain good predictive capacities. Once a
correct result is obtained for a given rider, the second
question arises: is the model sufficiently rich to account
for the behavior of a large variety of riders? Finally, the
third question involves the nonlinearity of the model.

All these questions were analysed using the classical Fit
indicator for evaluating model accuracy:

Fit = 100

(
1− ‖ye − ym‖2

‖ye − ȳe‖2

)
.

In this expression, ye and ym denote respectively the
experimental signal and the model output signal, while
ȳe is the average of signal ye. If the Fit indicator is
equal to 100, the model output ym perfectly matches the
experimental data. In general, a Fit value above 80 is
considered good.

5.1 Input and output signals vs. prediction capabilities

A key issue with rider modeling is the selection of appro-
priate input signals, that contain enough information to
predict the model output signals. This input selection has
been evaluated using the Fit indicator presented above. In
Table 1, ”Fit (id)” designates the Fit value obtained with
the identification data, while ”Fit (va)” indicates the one
obtained with the validation data. ”Fit (id)” is of course
always better than ”Fit (va)” and the latter is the most
meaningful indicator of model prediction performance.

Three input sets were tested. First, u1 considers only the
visual feedback. As one can see from the first line of
Table 1, u1 allows one to partially predict the steering
angle δ, but the correspondence between the model output



Table 1. Fit indicator obtained with a nonlin-
ear TDNN for rider 1 when changing the model
inputs and outputs (u1 = [θfar, θnear]T , u2 =
[θfar, θnear, vx]T , u3 = [θfar, θnear, θrm, vx]T )

Input Output Fit (id) Fit (va) n N

u1 δ 94.7 67.0 20 20

u2 δ 97.5 78.0 20 20

u3 δ 98.8 84.5 25 20

u3 [δ θrr]T 98.2 99.0 84.1 85.6 30 20

and the measured (validation) data presented in Figure 10
is not fully satisfactory.

Fig. 10. Comparison of the TDNN model output δ with
the validation data (Rider 1, Input u1, Output δ)

Remark 1. The initial errors in Figures 10, 11 and 12 are
due to the initialization of the network and are unavoid-
able and not significant. They are not considered in the
calculation of the Fit indicator.

Adding the longitudinal speed as input (that is considering
u2) offers additional prediction capabilities (see the second
line of Table 1). This crucial result was expected as it
matches knowledge from car driver modeling. The nature
of the speed influence is not yet explicit, but its importance
is highlighted with a Fit (va) improved by more than 10%.

Finally, adding the motorcycle roll signal θrm as an input
allows the model to reach very good prediction accuracy
(”Fit (va)” above 80 on line 3 and 4 of table 1). This
result is confirmed by Figures 11 and 12 which represent
the match obtained for δ and θrr, respectively, with the
validation data for the configuration of the last line of
Table 1.

In short, the necessary input signals are : θfar, θnear, θrm
and vx. They allow the model to properly predict the
steering angle δ and the rider roll angle θrr.

Remark 2. One may note that the value of n is not always
the same in Table 1 (and also in Table 3). In each input
and output configuration, several values were tested for n
(and also N) with different initial conditions. The value
retained is the one with the best prediction performance.

5.2 Generalization to different riders

Once the best input configuration was established for one
rider (rider 1), it was tested with five others riders to
validate the ability of the model to achieve satisfactory
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Fig. 11. Comparison of the TDNN model output δ with the
validation data (Rider: 1, Input: u3, Output: [δ θrr]T )
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the validation data (Rider: 1, Input: u3, Output:
[δ θrr]T )

results for a variety of riders. As seen in Table 2, results
obtained for riders 2 to 6 are very similar to those obtained
with rider 1 (the reference rider).

Table 2. Fit indicator obtained with a non-
linear TDNN for different riders (Input:

[θfar, θnear, θrm, vx]T )

Rider Output Fit (id) Fit (va)

1 δ 98.8 84.5

2 δ 98.4 88.0

3 δ 99.0 88.6

4 δ 98.9 81.4

5 δ 98.6 80.2

6 δ 98.5 86.3

1 [δ θrr]T 98.2 99.0 84.1 85.6

2 [δ θrr]T 98.0 98.9 89.0 88.8

3 [δ θrr]T 98.2 99.2 89.0 88.5

4 [δ θrr]T 97.3 98.3 84.0 84.1

5 [δ θrr]T 98.1 98.4 82.1 80.0

6 [δ θrr]T 97.0 98.4 85.8 90.8

5.3 Linear/nonlinear

The results presented in Table 3 are the same as those
presented in the last two lines of Table 1, but the results
in Table 3 were obtained with a linear time delay neural



network (σ0(x) = σ1(x) = x). The degradation of the pre-
diction performance for δ when imposing model linearity is
apparent. Furthermore, the neural network’s use of speed
is not clear in this case. However, the loss of performance
is not that significant. It can even be said that, although
the motorcycle is a nonlinear system, the rider’s behavior
is predominantly linear.

Table 3. Fit indicator obtained with
a linear TDNN for rider 1 (Input:

[θfar, θnear, θrm, vx]T )

Output Fit (id) Fit (va) n N

δ 76.0 72.0 20 20

[δ θrr]T 74.4 85.9 74.7 85.2 10 20

6. CONCLUSION

This paper discusses the identification of a motorcycle
rider model based on experimental data recorded during
road tests with a fully instrumented motorcycle. The
main contribution of this work is the proposal of a black
box rider model in the form of a time delay neural
network. This model has enabled the investigation of
several important questions. It was first confirmed that
the considered experimental data are sufficiently rich to
identify a rider model. Strong prediction capabilities were
obtained for various riders. In addition to the longitudinal
speed, θnear and θfar (for visual perception), and θrm
(for vestibular perception), have been validated as a set
of explicative inputs that are well suited to predict rider
actions in terms of steering angle and even rider roll angle
θrr. Finally, despite the nonlinearity of the motorcycle-
road system, rider behavior seems to be predominantly
linear. These very encouraging results allow to target a
more gray box rider model and to gradually progress
toward a cybernetic rider model.
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