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Abstract

By adopting a proof-theoretic perspective on grounding, we provide a
general framework where several notions of grounding, such as complete
and mediate, partial and immediate and partial mediate, are defined and
compared with the more widespread notions of full and partial grounding.
As a result, we get a cartography of the recent work on grounding as well
as the observation of important and interesting features of this notion.

1 Introduction

Theres exists a famous distinction, which dates back at least as far as (Aristo-
tle, 1994, I.13), has been analysed in the Middle Ages and was then adopted
by (Bolzano, 2014, §525), between two types of proofs, namely proofs-that and
proofs-why. Both proofs-that and proofs-why are objects that start with some
premisses and end with a conclusion, however, while in proofs-that from the
premisses it simply follows that the conclusion is true, in proofs-why the pre-
misses represent the reasons why the conclusion is true. Hence, proofs-that are
composed of inferential steps: in each of these steps the truth of the premisses
allows one to infer that the conclusion is true as well. Proofs-why, on the other
hand, are explanatory proofs: they establish not just the truth of the conclusion
but reveal the premisses to be the grounds of the truth of the conclusion.

At the beginning of the last century, the study of proofs-that has proven to be
fertile: the well-notion of derivability can be looked at as the best formalization
of the logical aspects of the concept of proof-that. The formalization of proofs-
why has not encountered the same success: it has been ignored or forgotten by
the great developments of logic of the last century. Nowadays, we however assist
to a change of this trend. There is indeed a growing, thriving and impressive
interest for the concept of grounding, that is taken to be an explanatory relation
which is non-causal in nature (e.g. see Betti (2010); Fine (2012)). Grounding
is studied by different perspectives: most research belongs to metaphysics (e.g.
Audi (2012); Clark and Liggins (2012)), but there also exist some attempts
which aim at getting a formalization of the notion of grounding (e.g. Correia
(2014); Schnieder (2011)). In particular, in Poggiolesi (2016b, 2018, 2021) this
is done by relying on the link between grounding and proofs-why, two notions
that are intimately connected: a relation of grounding between some truths M
and a truth A can be seen as emanating from a proof-why which ends in A and
starts with the reasons M behind it. In other words, the work of Poggiolesi
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represents the attempt of formalizing grounding by adopting a proof(-why)-
theoretic perspective.1

When seen from this perspective, it is natural to ask about the relationship
between the notion of grounding (and related proofs-why) and the notion of
(non-explanatory) proof-that. Poggiolesi (2016b) has already moved some steps
towards this direction since she has proposed a definition of the notion of logical
grounding as a special type of derivability. However, as there exists several types
of grounding, namely complete and immediate, complete and mediate, partial
and immediate and partial and mediate,2 Poggiolesi’s approach is limited to
only one of them, namely complete and immediate grounding, and thus leaves
open the question of the relationships between other types of grounding and the
notion of derivability. The aim of this paper is to answer this question and thus
to provide derivability-based definitions of an array of other grounding notions.

A central contribution of such an array of definitions is that it provides
a single and harmonious framework where several types of grounding are de-
fined in terms of derivability. Moreover, as we will show, Fine’s notions of full
and partial grounding3—which are doubtless the most popular in the current
literature—are amenable to treatment in this framework, and we situate them
in the wide cartography of grounding and derivability. Finally, analyzing the
notion of grounding from the point of view of proofs allows us to re-connect
to features of grounding that have been emphasized in the past but are cur-
rently neglected; a notable example is the property of analyticity. A proof
is said to be analytic when it is self-contained: every element which occurs
in the proof, it will also occurs in the conclusion; this way in analytic proofs
one can assist to a complexity-reduction from the conclusion to the premisses:
we indeed move from more complex concepts to simpler ones. There exists a
long and illustrious philosophical tradition (e.g. see Descartes (1997); Arnauld
(2011); Bolzano (2014)) that links explanatory proofs with analytic proofs (see
also Rumberg (2013)). In particular, if grounding is seen as emanating from
an explanatory proof and explanatory proofs are special types of proofs-that,
then, according to this tradition, they are special types of analytic proofs-that.
However, in the current literature on grounding, where the links to proofs are

1As a result, Poggiolesi’s work can also be read as the attempt of formalizing proofs-why.
2The multiset of all, and only, those truths each of which contributes to ground a truth

A is a complete ground of A. On the other hand, each of the truths that compose the
complete ground of A, as well as each strict sub-multiset of them, is said to be a partial
ground of A. As for the distinction immediate and mediate, if we could describe it in proof-
theoretical terms, we would say that immediate grounding corresponds to a single (irreflexive)
grounding(proof)-step, while mediate grounding corresponds to a sequence of several steps of
immediate grounding. In other words, while immediate grounding is a relation that does
not seem to be reducible further, mediate grounding is definable as the transitive closure of
immediate grounding.

3As explained in detail in Poggiolesi (2016b,a), the distinctions complete-partial and full-
partial, although similar, are not the same. According to Fine (2012) A is a partial ground
of C if A on its own or together with some other truths is a ground of C. Thus, given that A
and B are the full ground of A ∧ B, each of A and B will be a partial ground of A ∧ B. On
the other hand, A is a full ground of C if the truth of A is sufficient to guarantee the truth of
C.
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disregarded, the question of analyticity is largely ignored. One of the main re-
sults of this paper is to show that, in order to define mediate grounding, we can
restrict ourselves to analytic derivations. This result, which emerges naturally
under a proof-theoretical view on grounding, seems to vindicate the aforemen-
tioned philosophical tradition, to reconnect such tradition to current research
on grounding and to assess rigorously an important feature of this notion.

The paper is organized as follows. In Section 2, we will briefly remind the
reader the definition of complete and immediate grounding presented in Poggi-
olesi (2016b). In Section 3 we will introduce a definition of partial and imme-
diate grounding, whilst in Section 4 we will introduce a definition of complete
grounding. Section 5 will serve to deal with the notion of partial and mediate
grounding. In Section 6 we will compare our results to Fine’s notions of full and
partial (both immediate and mediate) grounding. Finally in Section 7 we will
draw some general conclusions.

2 A definition of the notion of complete and im-
mediate logical grounding

We use this section to briefly recall the definition proposed in Poggiolesi (2016b)
of the notion of complete and immediate logical grounding, which will play an
important role in the sequel. The definition is motivated by two very simple
insights. The first consists in taking seriously the idea that grounding can be
seen as a proof-why and that proofs-why are a special type of proofs-that; if
this is the case, and derivations are the formal contemporary counterparts of
proofs-that, then a necessary condition for having a grounding relation between
a (multi)-set of formulas M and a formula A is that A is derivable from M . This
condition is called positive derivability. The second idea consists in identifying
what makes grounding a special type of derivation. Which formal constraints
should be added to positive derivability to get an explanatory relation? Poggi-
olesi identified two constraints. The first is complexity: a grounding relation is
a special type of derivation where the premisses are always less complex than
their conclusion; a precise definition of complexity is for this goal formulated.
The second constraint is what Poggiolesi calls negative derivability and corre-
sponds to the request that not only A should be derivable from M but also ¬A
should be derivable from the negation of each element in M . Negative deriv-
ability is supposed to capture the idea of variation: in a grounding relation
grounds and conclusion are so strictly related that if the grounds are modified
(we take its negation instead of the ground itself), then the modification affects
the conclusion. Hence, according to Poggiolesi’s account, a grounding relation
is characterized by positive and negative derivability, plus a complexity increase
from the ground(s) to the conclusion.

Note that the account put forward in Poggiolesi (2016b) involves a distinction
between grounds and robust conditions that can be described briefly on the
example of a disjunction like A∨B, in a situation where the formula A is true.
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Figure 1: Axioms and Rules of the Classical Sequent Calculus.

A,M ⇒ N,A
M ⇒ N,A

¬A,M ⇒ N
¬L

A,M ⇒ N

M ⇒ N,¬A ¬R

A,B,M ⇒ N

A ∧B,M ⇒ N
∧L

M ⇒ N,A P ⇒ Q,B

M,P ⇒ N,Q,A ∧B
∧R

A,M ⇒ N B,P ⇒ Q

A ∨B,M,P ⇒ N,Q
∨L

M ⇒ N,A,B

M ⇒ N,A ∨B
∨R

In this case, A is certainly a ground for A ∨ B; but in order for A to be the
complete ground for A ∨ B, it is necessary to specify that B is false (i.e. that
B is not also a ground for A ∨ B). In other words, it is the falsity of B that
ensures that, or is a (robust) condition for A to be the complete ground of
A ∨B. Thus, A is the complete and immediate formal ground for A ∨B under
the robust condition that B is false. The reader is referred to Poggiolesi (2016b)
for a detailed explanation and discussion of the idea of robust conditions in a
grounding framework. Robust conditions are denoted by square brackets and
will be introduced in Definition 2.11.

We now present the formalism inspired by these ideas. Once more, the
reader is referred to Poggiolesi (2016b) for a detailed clarification of the various
notions. We slightly change the presentation of some of them to make it easier
to adapt them to other notions of grounding.

Definition 2.1. The classical language Lc is composed of a denumerable stock
of propositional atoms (p, q, r, . . . ), the logical operators ¬, ∧ and ∨ and the
parentheses (, ). The connectives → and ↔ are defined as usual; the symbol ⊥
is defined as A ∧ ¬A.

Once the classical language Lc is given, we can define the notion of classical
derivability in the standard way,4 by means of the classical sequent calculus C
(e.g. see Troelstra and Schwichtenberg (1996)). We will write `C M ⇒ A to
denote the fact that the sequent composed by the multiset M5 and the formula
A is derivable in classical sequent calculus C.

We now introduce the key notion of g-complexity, which is a way of assigning
a number to each formula of the language Lc. The way that number is calcu-
lated reflects deep grounding-relevant features. As we will see, g-complexity
straightforwardly leads to the identification of the relation of being completely

4Note that Poggiolesi works with derivability in the classical Hilbert system, we chose to
work with the sequent calculus for its usefulness in the definition of mediate grounding, see
Section 4.

5We work with multisets of formulas rather than with sets of formulas because we need to
take into account the number of occurrences of each formula of M.
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and immediately less g-complex, which will play a central role in the definition
of the notion of complete and immediate grounding.

Definition 2.2. As is standard, we call atoms as well as negation of atoms
literals. l, l′, ... denote literals.

Definition 2.3. The g-complexity of a formula A ∈ Lc, gcm(A), is defined in
the following way:

- gcm(l) = 0,

- gcm(¬¬A) = gcm(A) + 1,

- gcm(A ◦B) = gcm¬(A ◦B) = gcm(A) + gcm(B) +1.

where the symbol ◦ stands for either conjunction or disjunction.
To understand the notion of g-complexity, it must be kept in mind that

grounding is concerned entirely with truths. Accordingly, the appropriate notion
of complexity should track relationships among the truths expressed by the
formulas if they were true. If A and B express truths, then the truth expressed
by A∧B or A∨B is obtained from the previous truths using a single operation,
just as the formulas A∧B and A∨B are constructed from the formulas A and
B using a single connective. Counting the connective in this case is faithful to
the relationship of interest among truths and indeed gcm(A ◦ B) = gcm(A) +
gcm(B)) +1.

The negation is different, because there is no sense in which the negation of
a formula is a truth constructed from the formula itself. Consider for instance
the formulas p and ¬p (namely the literals). p is atomic and so has g-complexity
0, but does that mean that ¬p should count as having g-complexity 1? That
would be justified if the truth ¬p (when it is a truth) was constructed from
the truth p; but this is not the case in general, not least because when one of
the formulas is a truth, the other is not. From the point of view of grounding,
which deals solely in truths, there is no truth from which ¬p can be formally
constructed, so, like p, it is atomic. Similar points hold for formulas of the form
A, ¬A, where A is either a conjunction or a disjunction: the complexity of the
latter cannot be counted as one more than the complexity of the former, since it
is not reducible to it. Therefore in the formula ¬A (where A does not itself start
with a negation), the only g-complexity to count is that of A. This is precisely
what Definition 2.3 does, by setting the complexity of A ◦ B and ¬(A ◦ B) on
the same level.

The case of the double negation, however, is different. A formula like ¬¬A,
if true, can be reduced to another, simpler truth, namely A. Moreover, this
reduction is direct: there is no “intermediate” truth that one passes through
to obtain the former from the latter. Thus, it makes sense to count the g-
complexity of ¬¬A as equal to that of A plus one.

Let us now move to the introduction of some notions which are central to
define the relation of being completely and immediately less g-complex.
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Figure 2: Admissible rules of the classical sequent calculus.

M ⇒ N

P,M ⇒ N,Q
W

M ⇒ N,A A,P ⇒ Q

M,P ⇒ N,Q
cut

Ai,M ⇒ N

A1 ∧A2,M ⇒ N ∧L′
M ⇒ N,A M ⇒ N,B

M ⇒ N,A ∧B ∧R′

A,M ⇒ N B,M ⇒ N

A ∨B,M ⇒ N ∨L′
M ⇒ N,Ai

M ⇒ N,A1 ∨A2
∨R′

where i = {1, 2}

Definition 2.4. Let D be a formula. The converse of D, written D∗, is defined
in the following way

D∗ =

{
¬n−1E, if D = ¬nE and n is odd
¬n+1E, if D = ¬nE and n is even

where the principal connective of E is not a negation, n > 0 and 0 is taken to
be an even number.6

Let us provide some examples that help to clarify the notion of converse of
a formula. If D = ¬¬¬¬p, then its converse, D∗, is ¬¬¬¬¬p. If D = ¬(A∧B),
then its converse, D∗, is (A∧B); finally, if D = (A∨B), then its converse, D∗,
is ¬(A ∨ B). From now on we will use capital letters to refer to objects of PF
and their converse.

Definition 2.5. Consider a formula A. We will say that A is a-c equiv (for
associatively and commutatively equivalent) to B, if, and only if, A can be ob-
tained from B by applications of associativity and commutativity of conjunction
and disjunction.

Let us provide some exemples of formulas A and B such that A is a-c equiv
to B. A∧ (B∧C) is a-c equiv to C ∧ (A∧B). ¬((E ∨F )∧ (G∧ (H ∨D))) is a-c
equiv to ¬((F ∨ E) ∧ (G ∧ (D ∨H))), but also to ¬((G ∧ (D ∨H)) ∧ (F ∨ E)).
A ∧ ((B ∨ C) ∨ (D ∨ E)) is a-c equiv to A ∧ ((D ∨B) ∨ (E ∨ C)).

Definition 2.6. For any two formulas A,B, A ∼= B if, and only if:

A is a-c equiv to B or A is a-c equiv to B∗

As extensively discussed in Poggiolesi (2016b), two formulas A and B stand
in the relation denoted by ∼= when they are about, or pertain to, or concern the
same issues. The relation ∼= is thus analogous (though not equivalent) to the
notion of factual equivalence discussed in Correia (2014, 2016). This relation
can be easily extended to multisets.

6Note that ¬0E is just E. Also we keep the term converse for continuity with Poggiolesi’s
work. However, one should not confuse ∗ with an idempotent operator.
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Definition 2.7. For any two multisets M,N , M ∼= N if, and only if, there
exists a bijection between M and N sending each A ∈M to a B ∈ N such that
A ∼= B.7

The relation ∼= allows us to define the notion of g-subformula, which is the
analogue of the notion of subformula in the grounding framework.

Definition 2.8. A is a g-subformula of B if, and only if, one of the following
holds:

- A ∼= B

- B ∼= ¬¬C and A is a g-subformula of C,

- B ∼= (C ◦D) and A is a g-subformula of C or a g-subformula of D.

Consider the formula ¬¬(p∧(q∧r)). Some of its g-subformulas are: ¬¬((p∧
q) ∧ r), ¬¬¬(p ∧ (q ∧ r)), p ∧ (q ∧ r), ¬(q ∧ (p ∧ r)), p ∧ q, q ∧ p, ¬(q ∧ r), r, ¬r,
p, ¬p, q, ¬q.

The notion of immediate g-subformula can be defined similarly.

Definition 2.9. A is an immediate g-subformula8 of B if, and only if, one of
the following holds:

- B ∼= ¬¬C and A ∼= C,

- B ∼= (C ◦D) and A ∼= C or A ∼= D.

We have now all the elements needed to establish when a multiset M is
completely and immediately less g-complex than a formula C. The insight is
that M is completely and immediately less g-complex than a formula C when
it contains all (immediate) g-subformulas of C which are such that the sum of
their g-complexity is one less than that of C.

Definition 2.10. Given a multiset of formulas M and a formula C of the
classical language Lc, we say that M is completely and immediately less g-
complex than C, if, and only if:

- C ∼= ¬¬B and M ∼= {B}, or

- C ∼= (B ◦D) and M ∼= {B,D}.

Definition 2.11. For any consistent multiset of formulas C ∪M such that C
and the formulas of M are in Lc, we say that, under the robust condition C
(that may be empty), M completely and immediately logically grounds A, in
symbols [C] M |∼ A, if and only if:

7Although the definition of the relation ∼= between multisets is not required for Poggiolesi’s
definition of the notion of complete and immediate grounding, we introduce it here because
it is related to the other notions of this section and it will become useful in the next section.

8Although the notion of immediate g-subformula is not required for Poggiolesi’s definition
of the notion of complete and immediate grounding, we introduce it here because it is related
to the other notions of this section and it will become useful in the next section.
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- `C M ⇒ A (positive derivability),

- `C C,¬(M)⇒ ¬A (negative derivability),

- C ∪M is completely and immediately less g-complex than A in the sense
of Definition 2.10.

where ¬(M) := {¬B|B ∈M}.

Under the robust condition C, the multiset M completely and immediately for-
mally grounds A if, and only if, (i) A is derivable from M – positive derivability;
(ii) ¬A is derivable from ¬(M) plus C – negative derivability; (iii) C ∪M is
completely and immediately less g-complex than A.

3 Partial and immediate logical grounding

We now extend Poggiolesi’s definition beyond the case of complete and immedi-
ate grounding. We begin by introducing a definition of the notion of partial and
immediate grounding which draws on the intuitions concerning g-complexity
and derivability used in the previous Section.

Definition 3.1. For any formula B of the classical language Lc, we say that
{B} partially and immediately logically grounds A, in symbols {B} ||∼ A, if and
only if:

- either `C A⇒ B

- or (exclusive)9 `C ¬A⇒ ¬B

- B is an immediate g-subformula of A, according to Definition 2.9.

Concerning this definition, note first of all that since the notion at stake
is immediate grounding we can limit ourselves to considering one formula at a
time. In fact, since complete immediate grounds are a multiset composed by at
most two formulas, partial immediate ground being a (proper) subset will be a
singleton. Secondly, we need to ensure that the definition is adequate: that is,
that it takes into account all cases of partial ground. As stated above, a partial
ground is one that can be modified so to become a case of complete ground,
notably by adding the missing grounds or robust conditions. The previous
definition will be adequate if the formulas that it picks out as partial grounds
are precisely those with this property. The following result shows that this is
so.

Theorem 3.2. Given two formulas A,B of the classical language Lc, {B} is
a partial and immediate ground of A according to Definition 3.1 if, and only if,
there exists a formula C such that {C,B} is a complete and immediate ground of

9We remind the reader that the exclusive or stands for either one disjunct or the other but
not both.
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A, or {B} is a complete and immediate ground of A under the robust condition
C∗ (where for the relation of complete and immediate grounding, we refer to
Definition 2.11).

Proof. Let us distinguish cases according to the form of A.

[a] A is of the form ¬¬D. According to Definition 2.10, the multisets which
are completely and immediately less g-complex than ¬¬D are {D} and {¬D}
(as well as all formulas that are ac-equivalent to D and ¬D; the points made
here hold for them as well). The latter does not enjoy neither positive nor
negative derivability with ¬¬D, the former enjoys them both. Hence none of
them, nor any other formula, can be a partial ground for ¬¬D according to
Definition 3.1. On the other hand, since according to Definition 2.11 {D} is
the only complete and immediate ground of ¬¬D and {D} has no non-empty
proper subset, no partial ground of the formula ¬¬D can be obtained from the
relation of complete and immediate grounding.

[b] A is of the form D1 ∧D2. According to Definition 2.10, the multisets which
are completely and immediately less g-complex than D1 ∧ D2 are {D1, D2},
{D∗1 , D2}, {D1, D

∗
2}, {D∗1 , D∗2}.10 The proper subsets of these mutlisets are

{D1}, {D2}, {D∗1}, {D∗2}. Amongst them only the former two can enter in a
partial grounding relation with D1 ∧ D2. Each of them enjoy negative deriv-
ability, but not positive derivability, with D1 ∧D2 (whilst neither positive nor
negative derivability are enjoyed by {D∗1} or {D∗2} and D1∧D2). So both {D1}
and {D2} are the only partial and immediate ground of D1 ∧D2 according to
Definition 3.1. On the other hand, since {D1, D2} is the only complete and
immediate ground of D1 ∧D2 according to Definition 2.11, {D1} and {D2} are
the only partial and immediate ground of D1∧D2 since they are the only proper
non empty subests of {D1, D2}.

The case where A is of the form D1∨D2, ¬(D1∧D2), ¬(D1∨D2) can be treated
analogously to [b].

According to Definition 3.1 some examples of partial and immediate ground-
ing are the following. p is a partial and immediate ground of p ∧ q, but also of
p ∨ q and also ¬(¬p ∧ ¬q). On the other hand p ∧ q is a partial and immediate
ground of p ∧ (q ∧ r), but also (p ∧ q) ∧ r, and also (p ∧ r) ∧ q.

In the contemporary literature it is often said that in a grounding relation
the consequent is strictly connected to its grounds or that there is an authen-
tic dependence between the two (e.g. see Correia and Schnieder (2012); Fine
(2012)). As Poggiolesi (2016b) has argued, positive and negative derivability
are the formal counterpart of this idea of connection or authentic dependence.
But if one compares Definition 2.11 with Definition 3.1, one straightforwardly
sees that positive and negative derivability only hold in the case of complete
grounding and not for partial grounding. This amounts to the fact that only

10We ignore ac-equivalence not to burden the paper. But of course such cases can be treated
analogously.
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the complete grounds - and not partial grounds - enjoy an authentic dependence
with their conclusion. In other words, whilst in a complete grounding relation
the grounds and the conclusion are dependent on each other (or as Poggiolesi
(2016b) puts it, they vary together or one tracks the truth of the other), in
partial grounding relations the connection between grounds and conclusion is
not as strict. This is an important feature of partial grounding that is rigorously
captured by Definition 3.1.

4 Complete and mediate logical grounding

We use this section to deal with the notion of complete and mediate grounding
that we aim to define in terms of derivability and g-complexity. To accomplish
this task, which is far from trivial, let us then start by considering the relation
of being completely and immediately less g-complex which ensures the grounds
to be immediate. This relation evidently needs to be adapted to the mediate
case. We will do this by employing a well-known method called tableau (e.g.
see Fitting and Mendelsohn (1998)) for constructing trees of formulas, namely
objects that might have this form:

◦ A

◦1 B

◦2 C ◦2 D

or this form:

◦ A

◦1 B

◦2 C

or this form:
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◦ A

◦1 B

◦2 C ◦2 D

◦3 E ◦3 F ◦3 G

◦4 H

We focus on this last tree to introduce the relevant terminology. This last tree
has 8 nodes, each of them associated with a formula (A,B,C, ...H) and belonging to a
different level of the tree (1, ... 4). The top node of a tree is usually called root ; other
nodes are called child-nodes; the nodes at the bottom are called leaves. Each sequence
of nodes going from the root to one of the leaves is called a branch (in the tree above
there are three different branches: the branch A,B,C,E, the branch A,B,D, F and
the branch A,B,D,G,H). A sequence of consecutive nodes starting from the root is
called a path (in the tree above paths include: the path A,B and the path A,B,D).

We use the tableau method to construct trees of g-subformulas of a given formula.
The root of the tree will be associated with the formula we want to extract the g-
subformulas from; child-nodes will be associated with g-subformulas of the formula
at the top node. In order to extract g-subformulas from a given formula and thus
construct a tree, we will use one of the following three rules:

¬¬A
A

C ◦ E
C | E

¬(C ◦ E)

C∗ | E∗

where the symbol ◦ stands for either conjunction or disjunction and the vertical line
stands for a bifurcation. In the trees we will work with, the passage from one node to
another is obtained by means of one of the rules above. Aside from the specificity of
these rules, the definition of a tree is the standard one, see Fitting and Mendelsohn
(1998). A g-subformula tree closes when no rule can be any longer applied, i.e. when
the leafs are occupied by literals. So an example of a tree constructed with our rules
is the following:

◦ ¬¬(k ∧ ¬r)

◦1 k ∧ ¬r

◦2 k ◦2 ¬r
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or the following:

◦ ¬((r ∨ p) ∧ ¬t)

◦1 ¬(r ∨ p) ◦1 t

◦2 ¬r ◦2 ¬p

or the following:

◦ (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r)

◦1(¬¬k ∧ (p ∨ (¬¬v ∧ s)) ◦1 ¬¬(¬¬r)

◦2 p ∨ (¬¬v ∧ s)◦2¬¬k

◦3k ◦3 ¬¬v ∧ s◦3p

◦4 s◦4¬¬v

◦2 ¬¬r

◦3 r

◦5 v

In each of these trees each formula associated with a node is a g-subformula of the
formula at the root and is indeed obtained from this latter by means of our rules.
Moreover each g-subformula occupies a different level in the tree, depending on the
number of rules needed to obtain it from the main formula. Given a formula A, we
will henceforth denote the tree of g-subformulas of A generated by our rules by TA.

Definition 4.1. Given a formula A of the language Lc, we say that the multiset M
is maximal for A if there exists a set of child-nodes N of the tree TA such that each
branch of TA contains exactly one child-node in N , and M is the multiset of formulas
labelling the child-nodes in N . Finally, let Gsub(A) be the set of maximal multisets
for A.

Suppose that A is the formula (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r) and that TA is
the tree of g-subformulas of A shown above. Then the multiset M = {k, p, v, s, r} is
maximal for A and belongs to Gsub(A); but also the multiset N = {k, p∨ (¬¬v∧s), r}
is maximal for A and belongs to Gsub(A); and also the multiset P = {¬¬k∧(p∨(¬¬v∧
s),¬¬(¬¬r)} is maximal for A and belongs to Gsub(A). The fact that in each multiset
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M ∈ Gsub(B), each branch of TB is taken into account ensures that each multiset
M ∈ Gsub(B) is (maximal and thus) a complete multiset of g-subformulas of B. The
fact that in each multiset M ∈ Gsub(B) each branch of TB is taken into account by
only one formula ensures that in each multiset M ∈ Gsub(B) there is no superfluous
repetition. Finally, the fact that the g-subformulas of any M ∈ Gsub(B) belong to
any level of the tree TB is the key-ingredient that will lead us to the definition of the
notion of mediate grounding.

Definition 4.2. Given a formula A ∈ Lc, we denote with G∗sub(A) the set of all
multisets M such that for any N ∈ Gsub(A), M ∼= N .

Suppose that A is the formula (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r), so TA is the
tree of g-subformulas of A drawn above. Then the multiset {k, p, v, s, r} belongs to
Gsub(A). Hence G∗sub(A) contains the following multisets: {k, p, v, s, r}, {¬k, p, v, s, r}
{k,¬p, v, s, r}, {k, p,¬v, s, r}, {k, p, v,¬s, r}, {k, p, v, s,¬r}, {¬k,¬p, v, s, r}, {¬k, p,¬v, s, r},
{¬k, p, v,¬s, r}, {¬k, p, v, s,¬r}, {k,¬p,¬v, s, r}, and so on.

Recall that, according to Definition 2.11, for any consistent multiset of formulas
C∪M such that C and M belong to the language Lc, if, under the robust condition C
(that may be empty), M completely and immediately logically grounds A, then C∪M
is completely and immediately less g-complex than A according to Definition 2.10. The
relation of being completely and immediately less g-complex forces the grounds to be
the immediate g-subformulas of their conclusion and at the same time ensures that
they are the maximal multiset of such g-subformulas. When it comes to complete and
mediate grounds, by contrast, we want a relation of g-complexity that still yields a
maximal multiset of g-subformulas of a given formula but can pick any g-subformula
and not just immediate ones. Thanks to the notion of G∗sub(...), we can get such
relation, namely the relation of being completely and mediately less g-complex.

Definition 4.3. Given a multiset M and a formula A both belonging to the classical
language Lc, we say that M is completely and mediately less g-complex than A if, and
only if, M belongs to G∗sub(A).

Let us now turn to the notions of positive and negative derivability. At the first
glance it would be tempting to straightforwardly use positive and negative derivability
plus the relation of being completely and mediately less g-complex in order to get the
definition of complete and mediate formal grounding. In other words it would be
tempting to formulate the following definition.

Definition 4.4. −Tentative. For any consistent multiset of formulas N ∪M and
formula A of the language Lc, we say that, under the robust conditions N (that may
be empty), M completely and mediately logically grounds A, if and only if:

- `C M ⇒ A (positive derivability),

- `C N,¬(M)⇒ ¬A (negative derivability),

- N∪M is completely and mediately less g-complex than A according to Definition
4.3.

However this definition is problematic. As a counterexample, consider again the for-
mula (¬¬k ∧ (p∨ (¬¬v ∧ s)))∧¬¬(¬¬r), which we call A. It is easy to check that the
multisets {k, p, v, s, r} and {k, p,¬v,¬s, r} belong to G∗sub(A). Moreover both multi-
sets enjoy positive and negative derivability with respect to A. Indeed since A can be
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derived from the multiset {k, p, r}, and from {¬p,¬k,¬r} ¬A can be derived, by weak-
ening we can add both the literals v and s, but also the literals ¬v and ¬s, without
changing these relations. So, according to the tentative Definition, both the multiset
{k, p, v, s, r} and the multiset {k, p,¬v,¬s, r} are complete and mediate grounds of the
formula A. However, while we might agree that the multiset {k, p, v, s, r} is a complete
and mediate ground for A since each of its atoms seem to contribute to the truth of
the formula A, nobody would ever accept {k, p,¬v,¬s, r} as a complete and mediate
ground of A. The tentative Definition 4.4 is thus inadequate.

The problem seems to stem from the breadth of the relation of derivability in
classical logic. It works fine in cases of immediate grounding because in such cases the
analysis is limited to the main connective of formulas, but with mediate grounding,
where the analysis goes deeper into the formula, and possibly down to its atomic parts,
the notion of derivability may loosen the connections. In order to avoid such losses
and retain the spirit of positive and negative derivability as the formal counterpart of
the dependence between grounds and conclusion, we need to focus on a special subset
of classical derivations, namely derivations (in the classical sequent calculus) where
the rule of weakening (W) is not used and where we start from axioms of the form
M ⇒ M . By prohibiting weakening, we avoid the introduction of irrelevant formulas
amongst the grounds and by choosing to start each derivation with axioms of the form
M ⇒M , we keep track of the connections between grounds and conclusion.

Note that although the prohibition of weakening is motivated by cases like the
example above, it also benefits from a strong defense along conceptual lines. Indeed,
Bolzano (e.g. see Rumberg (2013)) but also more recently Fine (2012) have suggested
that the relation of grounding is non-monotone: and, as a mere logical point, weakening
is typically related to monotonicity.

Definition 4.5. Given a multiset M and a formula A ∈ Lc, we write `?C M ⇒ A to
denote that there exists, in the classical sequent calculus, a derivation of the sequent
M ⇒ A where there is no use of the weakening rule and the axioms have the form
N ⇒ N (i.e. we have a derivation of the sequent M ⇒ A that starts from N ⇒ N
and is such that the only rules used are ¬L, ¬R, ∧L/L′, ∧R/R′, ∨L/L′, ∨R/R′, see
Figures 1 and 2).

We now have all the elements needed to introduce our definition of the notion of
complete and mediate grounding.

Definition 4.6. For any consistent multiset of formulas N ∪M and formula A of the
language Lc, we say that, under the robust conditions N (that may be empty), M
completely and mediately logically grounds A, in symbols [N ] M |∼m A, if and only if:

- `?C M ⇒ A (positive derivability),

- `?C N,¬(M)⇒ ¬A (negative derivability),

- N∪M is completely and mediately less g-complex than A according to Definition
4.3.

where ¬(M) := {¬B|B ∈M}.

This is a definition of complete and mediate grounding which reveals the properties
that characterize this grounding relation, namely positive and negative derivability
under `?C, but also the relation of being completely and mediately less g-complex.
We first consider some examples of complete and mediate grounding according to our
definition, then we show that the definition is adequate.
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Consider again the formula (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r) and the three
multisets {k, p, v, s, r}, {k, p,¬v,¬s, r} and {k, p, r}. The latter multiset does not
belong to G∗sub(A) so it cannot be a complete and mediate ground of A. The multiset
{k, p,¬v,¬s, r} does belong to G∗sub(A) but it enjoys neither positive nor negative
derivability with A. Let us see the case of positive derivability under `?C:11

k ⇒ k
k ⇒ ¬¬k ¬

+

p⇒ p, s, s
p,¬s⇒ p, s ¬L

⇒ v, v
¬v ⇒ ¬¬v ¬+

p,¬v,¬s⇒ p,¬¬v ∧ s ∧R′

p,¬v,¬s⇒ p ∨ (¬¬v ∧ s)
∨R

k, p,¬v,¬s⇒ ¬¬k ∧ (p ∨ (¬¬v ∧ s))
∧R′ r ⇒ r

r ⇒ ¬¬(¬¬r)
¬+

k, p,¬v,¬s, r ⇒ (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r)
∧R′

Although we have applied all the rules that could be possibly applied (we know that
since we have reached some atoms), in one case we do not have an axiom, i.e. the case
of ⇒ v, v, and in another case we do not have an axiom of the desired form, namely
p ⇒ p, s, s. Thus the multiset {k, p,¬v,¬s, r} is not a complete and mediate ground
of the formula (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r).

By contrast, the multiset {k, p, v, s, r} not only belongs to G∗sub(A), but it also
enjoys positive and negative derivability, under `?C, with A, as we can see in the
following derivations:

k ⇒ k
k ⇒ ¬¬k ¬

+

p, s⇒ p, s
v ⇒ v

¬v ⇒ ¬¬v ¬+

p, v, s⇒ p,¬¬v ∧ s ∧R′

p, v, s⇒ p ∨ (¬¬v ∧ s)
∨R

k, p, v, s⇒ ¬¬k ∧ (p ∨ (¬¬v ∧ s))
∧R′ r ⇒ r

r ⇒ ¬¬(¬¬r)
¬+

k, p, v, s, r ⇒ (¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r)
∧R′

k, p, r ⇒ p, k, r

v, s⇒ v, s
¬¬v, s⇒ v, s ¬

+

¬¬v ∧ s⇒ v, s
∧L

k, p ∨ (¬¬v ∧ s), r ⇒ k, p, v, s, r
∨L′

¬¬k, p ∨ (¬¬v ∧ s),¬¬(¬¬r)⇒ k, p, v, s, r
¬+

¬¬k ∧ (p ∨ (¬¬v ∧ s)),¬¬(¬¬r)⇒ k, p, v, s, r
∧L

(¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r)⇒ k, p, v, s, r
∧L

¬k,¬p,¬v,¬s,¬r ⇒ ¬(¬¬k ∧ (p ∨ (¬¬v ∧ s))) ∧ ¬¬(¬¬r)
¬+

Hence the multiset {k, p, v, s, r} is a complete and mediate ground of the formula A.
Other complete and mediate grounds of the formula A include:

- [¬p]{k, v, s, r}
- [¬p]{k,¬¬v, s, r}
- [¬s,¬v]{k, p, r}

11In what follows, to shorten the derivations, we might use several applications of the same
pair (R/L) of rules in one shot. We denote this by writing the connective of the pair of rules
followed by a +.
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- [¬(¬¬s ∧ v)]{k, p, r}
- [¬(v ∧ ¬¬s)]{k, p, r}
- {¬¬k, (p ∨ (¬¬v ∧ s)),¬¬r}
- {¬¬k, ((s ∧ ¬¬v) ∨ p),¬¬r}
- {¬¬k, (p ∨ (¬¬v ∧ s)),¬¬(¬¬r)}
- {¬¬k ∧ (p ∨ (¬¬v ∧ s)),¬¬(¬¬r)}

It is tedious but straightforward to verify that each of these combinations enjoy positive
and negative derivability with A and they all are completely and mediately less g-
complex than A, according to Definition 4.3. Note also that according to Definition
4.6 in a complete and mediate grounding relation there can be more than one robust
condition and even robust conditions can be decomposed in their simpler elements.

We now need to prove that Definition 4.6 is adequate, namely that it captures
all cases of complete and mediate grounding. As stated in Section 2, complete and
mediate grounding should be thought of as the transitive closure of the relation of
complete and immediate grounding and as such it can be defined inductively in the
following way.

Definition 4.7. For any consistent multiset of formulas N ∪M and formula A of the
language Lc, [N ] M |∼m A if, and only if,

- [N ] M |∼ A, or

- if [C] M ′ |∼ B and [N ′] B,M ′′ |∼m A, then [N ] M |∼m A, where N = N ′ ∪C
and M = M ′ ∪M ′′.

Note that the second item of the definition is said to be a cut12 between the relation
of complete and immediate grounding and its transitive closure.

In what follows we will show that Definition 4.6 is equivalent to Definition 4.7.

Theorem 4.8. For any consistent multiset of formulas N ∪M and formula A of the
language Lc, [N ] M |∼m A, as defined in Definition 4.6 if, and only if, [N ] M |∼m A
as defined in Definition 4.7.

Proof. The proof of this theorem is complicated and long and thus we divide it into
two parts. By Lemma 4.9, we show the right to left direction, while by Lemma 4.11,
we prove the direction from left to right.

Lemma 4.9. For any consistent multiset of formulas N ∪M and formula A of the
language Lc, if [N ] M |∼m A, as defined in Definition 4.6, then [N ] M |∼m A as
defined in Definition 4.7.

Proof. The proof is by induction on the number n of cuts used to obtain the relation
[N ] M |∼m A.

- if n is 0, then the relation of complete and mediate grounding is actually a relation
of complete and immediate grounding. We then need to show that the restrictions of
classical derivability to the special `?C does not affect immediate grounding, and that
the relation of being completely and mediately less g-complex cover all the appropriate

12This is the technical term standardly used, for further details see Troelstra and Schwicht-
enberg (1996).
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cases. We will prove this by distinguishing cases following the form of the formula A.
We first however show that derivability under `?C takes into account ac-equivalences:

A⇒ A B ⇒ B
A,B ⇒ B ∧A ∧R

A ∧B ⇒ B ∧A ∧L

A⇒ A B ⇒ B
A ∨B ⇒ B,A

∨L

A ∨B ⇒ B ∨A ∨R

A⇒ A B ⇒ B
A,B ⇒ A ∧B ∧R

C ⇒ C

A,B,C ⇒ (A ∧B) ∧ C
∧R

A,B ∧ C ⇒ (A ∧B) ∧ C
∧L

A ∧ (B ∧ C)⇒ (A ∧B) ∧ C
∧L

A⇒ A
A⇒ A B ⇒ B
A ∨B ⇒ A,B

∨L

A ∨ (B ∨ C)⇒ A,B,C
∨L

A ∨ (B ∨ C)⇒ (A ∨B), C
∨R

A ∨ (B ∨ C)⇒ (A ∨B) ∨ C
∨R

Now we can distinguish cases following the form of the formula A.

If A is ¬¬B, then either {B} or any multiset composed by formulas ac-equivalent
to B is a complete and immediate ground of A according to Definition 2.11. As the
following derivations show, {B} enjoys positive and negative derivability under `?C
with ¬¬B:

B ⇒ B
B,¬B ⇒ ¬L

B ⇒ ¬¬B ¬R

B ⇒ B
¬¬B ⇒ B

¬+

¬B ⇒ ¬¬¬B ¬+

The same holds for any formula ac-equivalent to B by constructing a derivation that
starts as one of those (or a combination of one of those) that takes into account ac-
equivalence and then continuing with negation rules. Note that {B} as well as any
multiset composed by a formula ac-equivalent to it belongs to G∗sub(¬¬B) and thus it
is completely and mediately less g-complex than ¬¬B.

If A is B ∧ C, then either {B,C} or any multiset composed by formulas ac-
equivalent to B or to C is a complete and immediate ground of A according to Def-
inition 2.11. As the following derivations show, {B,C} enjoys positive and negative
derivability under `?C with B ∧ C:

B ⇒ B C ⇒ C
B,C ⇒ B ∧ C ∧R

B,C ⇒ B,C

B ∧ C → B,C
∧L

¬B,¬C → ¬(B ∧ C)
¬+

The same holds for any formula ac-equivalent to B by constructing a derivation that
starts as one of those (or a combination of one of those) that takes into account ac-
equivalence and then continuing with the rule ∧R or ∧L and the negation rules. Note
that {B,C} as well as any multiset composed by formulas ac-equivalent to B and to
C belongs to G∗sub(B∧C) and thus it is completely and mediately less g-complex than
B ∧ C.

If A is B ∨ C, then either {B,C} or any multiset composed by formulas ac-
equivalent to B or to C is a complete and immediate ground of A according to Def-
inition 2.11. But also {B} under the robust condition C∗, as well as {C} under the
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robust condition B∗, are complete and immediate of A (as well as formulas that are
ac-equivalent to them) according to Definition 2.11. We first show that {B,C} enjoys
positive and negative derivability under `?C with B ∨ C:

B,C ⇒ B,C

B,C ⇒ B ∨ C ∨R

B ⇒ B C ⇒ C
B ∨ C → B,C

∨L

¬B,¬C → ¬(B ∨ C)
¬+

The same holds for any multisets containing formulas that are ac-equivalent to B or
to C by constructing a derivation that starts as one of those (or a combination of one
of those) that takes into account ac-equivalence and then continuing with the rule ∨R
or ∨L and the negation rules. Note that {B,C} as well as any multiset composed by
formulas ac-equivalent to B and to C belongs to G∗sub(B∨C) and thus it is completely
and mediately less g-complex than B ∨ C.

Let us move to the case where {B} under the robust condition C∗ is a complete
and immediate ground of B∨C (the case where {C} under the robust condition B∗ is
a complete and mediate ground of B ∨ C can be treated analogously). We first show
that {B} enjoys positive derivability under `?C with B∨C (negative derivability is the
same as before):

B ⇒ B
B ⇒ B ∨ C ∨R′

An analogous derivation can be constructed for formulas that are ac-equivalent to B.
Finally, note that {B,C∗}, as well as any multiset composed by formulas ac-equivalent
to B or to C∗ belongs to G∗sub(B ∨ C) and thus it is completely and mediately less
g-complex than B ∨ C.

If A is ¬(B ∧ C) or ¬(B ∨ C), then these cases can be treated analogously to the
previous ones.

- n is > 0. Suppose that the relation [N ] M |∼m A has been obtained by [C]
M ′ |∼ B and [N ′] B,M ′′ |∼m A where N = N ′ ∪ C and M = M ′ ∪M ′′. By the
inductive hypothesis, we have that B,M ′′ `?C A. Since B is not atomic (we know that
since we have [C] M ′ |∼ B) we can continue this derivation (upwards) applying the
rules deriving B. Whatever form B might have, we know that such derivation exists
and ends with axioms of the appropriate form because of what we have just proved
with n= 0. This yields a derivation of M `?C A. Similar reasoning applies to negative
derivability. Finally note that from [N ′] B,M ′′ |∼m A, by the inductive hypothesis we
have that {N ′, B,M ′′} is completely and mediately less complex than A. But then this
also holds for {N,M}, since this multiset is obtained from {N ′, B,M ′′} by substituting
B for its complete and immediate g-subformulas. Therefore {N,M} still belongs
to G∗sub(A). Hence all conditions are satisfied to claim that M is a complete and
mediate ground of A under the robust conditions N (that may be empty), according
to Definition 4.6.

Let us make two important remarks. The first remark is that via Lemma 4.9 we
have actually shown that any complete and immediate ground according to Definition
2.11 is also a complete and mediate ground in the sense of Definition 4.6; this involves
that even if in Definition 2.11 Poggiolesi uses positive and negative derivability in
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classical logic, she could have used positive and negative derivability restricted to our
notion `?C and the resulting grounds would have been the same. Hence Definition 4.6
is a proper extension of Definition 2.11.

The second remark concerns Lemma 4.9 which tells us that any mediate grounding
established via the use of n cuts can also be established without using any cut. If
from a grounding point of view, this formulation of the Lemma might nor ring any
bell, from a proof-theoretical point of view it surely does, since Lemma 4.9 is clearly
proving a sort of cut-elimination theorem (see Indrzejczak (2010); Poggiolesi (2010))
for mediate grounding. In other words, Lemma 4.9 is telling us that the underlying
proof-structure of grounding chains is purely analytic: nothing enters in the derivation
that is not required to draw the conclusion. As explained in the Introduction, the
importance of analyticity property for explanatory proofs has been underlined by a
long and illustrious philosophical tradition. Hence Lemma 4.9 does not do anything
else than confirming this tradition.

Definition 4.10. Let M be a consistent multiset of formulas of the language Lc which
is completely and mediately less g-complex than a formula A of the language Lc. Let
TA be the tree of g-subformulas of A such that each formula of M either is associated
to a node of TA or is in the relation ∼= with a formula associated to a node of TA.
By Definition 4.2, each formula B of M is associated to a (different) node in TA. We
associate to each formula B of M , the tree-distance td(B), defined as the length of the
path ending with the node associated with B (or to a formula in the ∼= relation with
B) in TA, minus one. Let td(M) be the sum of all td(B) such that B ∈ M .

Lemma 4.11. For any consistent multiset of formulas N ∪M and formula A of the
language Lc, if [N ] M |∼m A, as defined in Definition 4.7, then [N ] M |∼m A as
defined in Definition 4.6.

Proof. We reason by induction on td(N ∪M).
- If td(N ∪M) is 0, then we have a case of complete and immediate grounding.

First of all, inspection of cases show that the relation of completely and mediately
less g-complex between M ∪ N and A corresponds to the relation of completely and
immediately less g-complex betweenM∪N and A. MoreoverM∪N enjoys positive and
negative derivability under `?C with A. Hence, by the way `?C is defined, M ∪N also
enjoys classical positive and negative derivability with A. Therefore M is a complete
and mediate ground of A under the robust conditionsN (that may be empty) according
to Definition 4.7.

- If td(N ∪M) > 0, then M and the eventual robust conditions N do not contain
only immediate g-subformulas of A, but also g-subformulas of a deeper tree-distance
from A. In particular, there exists C in M such that the path between node associated
to C and the root node in TA contains intermediate nodes. Let B be the formula
associated to the parent node of C on this path, let M ′′∪{D}, with M ′′ a subset of M
and D in N , be the set of formulae in M ∪N associated to the child nodes of this node,
and let M ′ be M \M ′′ and and N ′ be N \{D}. Since (the nodes associated to) M ′′ and
D are immediate children of (the node associated to) B in the tree, they are completely
and immediately less g-complex. It is straightforward to see that whenever child nodes
are connected to a parent node via a single tree-rule, they satisfy positive and negative
derivability; hence this holds for M ′′ and D with respect to B. So, by Definition 2.11,
M ′′ is a complete and immediate ground of B, under the robust condition D. On
the other hand, by construction, it is clear that {B} ∪M ′ ∪ N ′ form a completely
and mediately less g-complex multiset of g-subformulas of A. By the way positive and
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negative derivability under `?C have been defined, it is straightforward to see that M ′,
N ′ and B enter in this relation with A. Hence, M ′ ∪ {B} is a complete and mediate
ground of A, under the robust condition N , according to Definition 4.6. Moreover,
td(M ′ ∪ {B} ∪N) < td(M) since M ′ ∪ {B} ∪N ′ has been obtained from M ∪N by
replacing formulas with a tree-distance from A higher than that of B. We can thus
apply the inductive hypothesis and obtain that M ′, B are the complete and mediate
grounds of A under the robust conditions N ′ according to Definition 4.6. Hence M
is a complete and mediate ground of A under the robust condition N according to
Definition 4.6, as required.

5 Partial and mediate logical grounding

Let us now consider the notion of partial and mediate grounding. As for the case of
complete and mediate grounding, the notion of partial and mediate grounding should
be seen as the transitive closure of the relation of partial and immediate grounding
and as such it can be rigorously defined in the following way.

Definition 5.1. For any consistent multiset of formulas M and formula A of the
language Lc, M is a partial and mediate ground of A, in symbols M ||∼m A if, and
only if:

- M ||∼ A, or

- if M ′ ||∼ B and B,M ′′ ||∼m A, then M ||∼m A, where M = M ′ ∪M ′′.

Unfortunately, careful reflexion shows that the notion of partial and mediate
grounding cannot be defined in terms of derivability and complexity as we have done
for the notions of partial and immediate and complete and mediate grounding. Par-
tial and mediate grounding is a sequence of partial and immediate grounding steps
and Definition 3.1 tells us that each step can either enjoy positive or (exclusive) neg-
ative derivability, but of course there seems to be no way to describe the order in
which each step satisfies either one or the other. Consider the pairs of formulas p
and ((p ∨ q) ∧ (r ∨ s)) ∧ f on the one hand, and p and ((p ∧ q) ∨ (r ∧ s)) ∨ f on the
other: there seems to be a relation of partial and immediate grounding within each
pair, and indeed it even seems possible to identify steps of either positive or negative
derivability. However an unique and general procedure that covers them both does
not seem to be describable since they differ in each step. So there seems to be no way
to generalize Definition 3.1.

6 Complete and partial versus full and partial

In this section, we explore the links between the complete-partial distinction studied
above, and the distinction between full and partial grounds, as introduced by Fine
(2012). First of all note that the comparison of the two approaches cannot but be on
the basis of their extensions: in case of the full-partial distinction, full grounding is
taken as a primitive notion and thus there is no definition to rely on.

We use the symbol < to denote full and immediate grounding, and the symbol
≺ to denote partial and immediate ground in Fine’s sense. The grounding principles
holding for these notions, according to Fine (2012), are given in Figure 3 and Figure
4, respectively.
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Figure 3: Full and immediate grounding principles.

A < ¬¬A

A,B < A ∧B A < A ∨B B < A ∨B A,B < A ∨B

¬A < ¬(A ∧B) ¬B < ¬(A ∧B) ¬A,¬B < ¬(A ∧B) ¬A,¬B < ¬(A ∨B)

Figure 4: Partial and immediate grounding principles.

A ≺ A ∧B B ≺ A ∧B A ≺ A ∨B B ≺ A ∨B

¬A < ¬(A ∧B) ¬B < ¬(A ∧B) ¬A < ¬(A ∨B)¬B < ¬(A ∨B)

To compare the two approaches, let us firstly note a difference between Fine’s and
Poggiolesi’s accounts which, although transversal to the notions of full and complete,
is relevant here. It concerns the treatments of negation in formulas like ¬(A ∧ B)
and ¬(A ∨ B). Whilst in Fine’s account ¬A and ¬B are as grounds, in Poggiolesi’s
account the notion of converse is used. Hence, to give an example, in case of the
formula ¬(p ∨ q), both Poggiolesi and Fine’s accounts agree that the grounds are
¬p,¬q, whilst in case of the formula ¬(¬p∨¬q), under Fine’s account the grounds are
¬¬p and ¬¬q, whilst under Poggiolesi’s the grounds are p, q. A detailed discussion of
the advantages of using the notion of converse is provided in Poggiolesi (2016a) so we
do not dwell on it. Let us introduce the definition of the function τ that allows us to
account for this difference.

Definition 6.1. Let M be a multiset of formulas and A a formula of the language Lc
such that M < A. Then either M only contains g-subformulas of A or it contains a
formula of the form ¬¬B such that B is a g-subformula of A. Let τ be the function
assigning to the multiset M , the multiset M itself in case it contains only g-subformulas
of A, otherwise the multiset M ′ which will be obtained from M by replacing each non-
g-subformula of A of the form ¬¬B with the corresponding formula of the form B.

Proposition 6.2. For any consistent multiset M and formula A of the language Lc,
we have that if M < A, then there exists a formula C (that may be empty) and a
function τ defined as above such that [C] (M)τ |∼ A.

Proof. By a simple inspection of cases.

The notion of full ground is thus definable in terms of the notion of complete
ground via the function τ . This result may help clarifying the notion of full ground
itself. Indeed, although full ground is never explicitly defined, Fine seems to assume
that full grounds are sufficient to obtain their conclusion. In cases where A is a full
ground of A∨B or A,B are the full ground of A∧B, the sufficiency statement seems
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to work. On the other hand, the grounding principle stating that A,B are the full
ground of A∨B fits less well with the idea that sufficiency characterises full grounds,
for A,B are more than sufficient to obtain A ∨ B. Someone might wonder, if one
allows A,B to be full grounds in such cases, why one cannot also take A,C or B,D
as full grounds of A ∨ B. Proposition 6.2 provides a reply to such worries, insofar as
it characterises the full grounds of a truth are those that either are complete grounds
or may become with the help of some robust conditions.

We have not been able to find a definition of the notion of complete grounds
in terms of the notion of full ground. Indeed, we conjecture that there is no way
of defining complete from full ground, for two reasons. Firstly, the former involves
the notion of robust condition which is absent from the latter; secondly, complete
and immediate grounds are closed under ac-equivalence, while no ground-theoretic
equivalence emerges from Fine’s account.

Let us now move to the two notions of partial ground, one expressed by the symbol
||∼, and the other by the symbol ≺. If we ignore the contrast between the negation
of a formula versus its converse, and the closure under ac-equivalence of the relation
||∼, the two notions coincide.

Definition 6.3. Let A,B be two formulas of the language Lc such that B ≺ A. Then
either B is a g-subformula of A or it might differ from a g-subformula of A because of
the form ¬¬C and C is a g-subformula of A. Let φ be the function assigning to the
formula B, the formula B itself in case it already is a g-subformula of A, otherwise
the formula B′ which is obtained by B by appropriately erasing the double negation.

Proposition 6.4. For any formulas A and B of the language Lc, if B ≺ A, then
there exists a function φ such that (B)φ ||∼ A.

Proof. By a simple inspection of cases.

Let us now move to mediate grounding. In order to obtain the notion of full and
mediate grounding, we can take the transitive closure of the corresponding notion of
immediate grounding.13 So we have:

Definition 6.5. Given a multiset of formulas M and a formula A of the language Lc,
M is a full and mediate ground of A, in symbols M <m A if, and only if:

- M < A, or

- if M ′ < B and B,P ′ <m A, then M <m A, where M = M ′ ∪ P ′.

It is easy to see that the relationship between complete and full grounding at the
mediate level is analogous to that between complete and full at the immediate level.

Proposition 6.6. For any consistent multiset M and formula A of the language Lc,
we have that if M <m A, then there exists a multiset N (that may be empty) and a
function τ defined as above such that [N ] (M)τ |∼ A.

Proof. By considering Definition 4.7, Proposition 6.2 and Theorem 4.11, it is straight-
forward.

13In Definition 6.5 we slightly deviate from Fine’s original notation and formulation. How-
ever it is easy to see that the one adopted here is equivalent to that used by Fine and is more
useful for our comparison.
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Figure 5: Cartography of grounding
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In the table TC stands for transitive closure, while SUB stands for subset and PSUB

for proper subset.

The same holds for partial grounding. Let us indeed define partial and mediate
grounding in the Finean sense in the following way:

Definition 6.7. Given a multiset of formulas M and a formula A of the language Lc,
M is a partial and mediate ground of A, in symbols M ≺m A if, and only if:

- M ≺ A, or

- if M ′ ≺ B and B,P ′ ≺m A, then M ≺m A, where M = M ′ ∪ P ′.

Therefore we have:

Proposition 6.8. For any consistent multiset M and formula A of the language Lc,
we have that if M ≺m A, then there exists a function τ such that (M)τ |∼ A.

Proof. The proof is straightforward.

7 Conclusions

In the recent literature on grounding two dominant distinctions are that between
full and partial grounding, and that between immediate and mediate grounding. An
older distinction, which is analogous to yet different from the former one, is that
between complete and partial grounding. In this paper, drawing on previous work
on complete and immediate grounding, we have developed a single framework where
the three different notions of complete and immediate, complete and mediate and
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partial and immediate have been rigorously defined via the notions of derivability and
complexity. These definitions not only revive an old tradition relating grounding to
proof, but they illustrate the insight it can provide into grounding concepts. Moreover
they have emphasized important and interesting features of grounding: in case of
partial grounding the lack of a proper dependence between grounds and conclusion,
and in case of complete and mediate grounding the absence of weakening as well as
the presence of a purely analytic base. Finally, drawing on this rich analysis, we
have also incorporated Fine’s notion of full grounding by translating it in terms of
complete grounding. We have thus obtained a single proof-based framework mapping
out the relationships among all of the grounding notions and with other non-grounding
notions.
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