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Abstract. Automotive architectures are constantly evolving to offer
new features to end-users. Safety is critical, and cannot, in modern con-
nected architectures, be achieved without strong cybersecurity. This pa-
per proposes an advanced model of architecture supporting efficient cy-
bersecurity properties. The global approach is an open way to include
cybersecurity components that dynamically enforce the requested prop-
erties in a distributed manner. It supports heterogeneous software and
hardware components and allows detection of malicious or unsafe behav-
iors. The paper illustrates the ability to integrate such a model into a
standardized automotive middleware such as SOME/IP.

Keywords: Cybersecurity model · Access control · Automotive · Mid-
dleware · Heterogeneous architecture.

Introduction

The automotive industry is moving to an extended computerization of vehicles
either through connected cars or the autonomous driving feature. Consequently,
modern cars embed their own information system built on top of many het-
erogeneous Electronic Control Units (ECU) — up to 150 — and field buses
(Ethernet-based, CAN, LIN. . . ). This exposes cars to various threats including
car theft [1], manslaughter [2], ransomware [3], or coordinated attack through
botnet networks [4]. To face these disaster scenarios, car manufacturers and their
suppliers have to deploy the appropriate cybersecurity measures [5].

Vehicles are systems capable of causing physical harm (cf. Table 1). Safety
measures are therefore critical, and mandatory [6]. As vehicles become increas-
ingly connected, and attackers can remotely take control of the car — e.g. the
Jeep Cherokee case [7] — cybersecurity measures shall contribute to safety.

More recently, vulnerabilities on BMW cars [9] allowed attackers to disrupt
the safety of the car. By exploiting multiple vulnerabilities, intruders were able
to gain remote access to the CAN bus and control critical ECU. These attacks
showed that the modern car needs a dynamic defense-in-depth to adapt per-
missions to the vehicle’s resources (actuators, sensors, services) according to the
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Table 1: Typical ASIL [6] classification according to [8]

Subsystem Type of failure ASIL

Rear lights Both side failure A

Brake lights Both side failure

B

Headlights Both side failure

Instrument cluster Loss of critical data

Rear view camera No valid sensor data

Vision ADAS Incorrect sensor feedback

Active suspension Suspension oscillates B - C

Radar cruise control Inadvertent braking C

Engine Management Unwanted acceleration C - D

Airbag Inadvertent deploy

DAntilock braking Unintented full power braking

Electric power steering Self-steering

vehicle’s state. Despite the efficiency of mandatory access control [10], the au-
thorization and the enforcement must be dynamic to prevent a false positive or
false negative decision.

This paper studies the evolution of automotive architectures wrt. cyberse-
curity aspects. It proposes an open model that improves the cybersecurity of
post-2020 vehicle architectures. Additionally, the paper shows how to integrate
the model into a standardized automotive middleware: SOME/IP.

Section 1 presents various automotive architectures, their evolution, their
flaws and compatible cybersecurity solutions. Section 2 describes our open model
for automotive cybersecurity. Section 3 focuses on a mandatory component al-
lowing the integration of our approach into an existing automotive middleware:
SOME/IP. Section 4 describes an automotive architecture using our model. The
end of the paper concludes and sketches future works.

1 State of the art

1.1 Requirements for Secured Automotive Architectures

Security aspects of automotive architectures will be evaluated wrt. the principle
of least privilege [11]. This principle states that an entity should solely have the
required privileges to fulfill its tasks. Two corollaries result from this principle:

– Separation of privileges — An entity with a fixed set of privileges shall not
obtain further privileges.
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– Separation of duties — An entity can legitimately require new privileges.
That situation requires a mediating entity to handle the privilege elevation.

The proposed architecture must comply with automotive constraints regarding
robustness, cybersecurity and safety. This paper is focused on cybersecurity.

1.2 Security of Automotive Architectures

Since the 1970s, the number of ECU has grown significantly, leading to higher
network requirements. For instance, Figures 1a and 1b present the shift from a
single fieldbus network to several fieldbuses connected through a gateway. This
evolution limits the bus occupation for safety considerations. In this type of ar-
chitecture, the least privilege principle is not reached as each ECU can access to
any other ECU. In addition, cybersecurity is limited to perimetric defenses. Such
networks are described as ”crunchy” [12], and are attractive targets for attackers.
For example, the On-Board Diagnostic (OBD) port [13] offers a complete access
to the car’s fieldbuses. The advanced connectivity of automotive systems (Blue-
tooth, WiFi, Vehicle-to-Everything) increases the attack surface [7]. Figures 1c
and 1d show how to improve the cybersecurity of a connected car. A Cyberse-
curity Component (CsC) acts as a GW that detects or prevents intrusions. The
CsC is the mediating entity providing duties separation.

Devices with similar functional purposes are grouped into functional domains
implemented as virtual networks (VLAN) — already in use in current cars —
allowing privileges separation. Therefore, this type of architecture can meet the
least privilege principle. VLAN also help detaching the logical architecture from
the physical one. Future architectures will likely be constituted of at least three

(a) Single CAN (b) Multiple CAN (c) Physical Eth. (d) Logical Eth.

Fig. 1: Automotive architectures evolution trend from CAN bus to Ethernet
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domains —Management, Infotainment, and Core — isolated from the remainder
of the vehicle behind a CsC. The Core domain is the only one required to keep
the car under control. Management and Infotainment domains are useful but
not safety critical. Exposed assets — Bluetooth, WiFi, 5G — are located at
the far end of the architecture within a Telematics and Communication Unit
(TCU) implementing cybersecurity measures. These components are logically
far from critical components. An additional domain, Shared, located between
the TCU and the CsC provides features for the entire architecture — Event
Data Recorder, OTA Manager. . . Post-2030 candidate architectures like FACE
[14] shift to virtualized ECU controlled by an orchestrator [15]. The proposed
model also covers these architectures. A CsC can offer different cybersecurity
mechanisms. First, a network firewall can filter malicious communications at
the lower layers of the OSI model [16]. Consider for instance an ECU holding
multiple functions, such as an Automotive Cruise Control (ACC) and a Line-
Keeping Assist (LKA), that need to communicate with a Transmission Control
Module (TCM) and a Steering Control Module (SCM), respectively. Using a
firewall to block communications between the ACC and the SCM can harm
communications between the LKA and the SCM (c.f. Figure 7).

Second, NetLabel [17], Next-Gen Firewalls (NGFW) [18] and Filtering Proxys
[19], have important drawbacks:

– NGFW cannot work in real-time and so handle safety messages;
– NetLabels require labeling capabilities;
– They are unaware of the vehicle’s state;

For instance, regarding the last point, the flow between the ACC and the
TCM must be allowed according to the ACC’s state (state = on : flow = autho-
rized; state = off : flow = blocked). NetLabel, NGFW, and Filtering Proxys are
all unable to adjust permissions dynamically according to the vehicle’s state.

Consequently, i) additional controls are required at the upper layers (5 to
7) of the OSI model and ii) automotive middlewares shall control the system
interactions; both of them taking into account the state of the vehicle.

1.3 Cybersecurity of Distributed Objects

Automotive systems are composed of heterogeneous hardware and software com-
ponents. This heterogeneity is due to the numerous contractors, tasks and safety
constraints at stake. These components need a standardized software interface
to communicate: the middleware.

Table 2 briefly sums up the evolution of middlewares of interest. Remote
Procedure Calls (RPC) are among the first middlewares [20]. With the devel-
opment of object oriented programming and a large adoption of networking,
the Object Management Group (OMG) standardized the Common Object Re-
quest Broker Architecture (CORBA) [21]. This standard specifies the interfaces
and various type of services (events, message passing, remote procedure call. . . ),
quality of services (time constraints, cybersecurity, transaction, robustness. . . )
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and application domains (process control, health, insurance, bank, transporta-
tion. . . ). Web services (WS) are inspired by CORBA. In contrast with CORBA,
WS provide limited services and domains of usage. In the automotive industry,
WS usage is restricted to end user services such as infotainment or mobile appli-
cations. Indeed, they do not support time constraints or real-time applications.

The automotive application domain requires specific services (events, time
constraints, real-time. . . ) in order to support safety. Since the CORBA approach
fits with these requirements, the automotive Data Distribution Service (DDS)
middleware [22] is directly derived from CORBA. In the automotive business,
AUTOSAR standardized the Run-Time Environment (RTE) middleware [23]
for inter and intra ECU communications. RTE is partially inspired by RPC. In
contrast with RPC, RTE has signal-passing and time-constraint services. RTE
supports the SOME/IP communication standard that has some connections with
CORBA, e.g. method calls. In contrast with CORBA, SOME/IP does not in-
clude cybersecurity services.

Table 2: Middleware’s landscape in various domains

Middleware Inspired by Paradigm Features

RPC Procedure Call

CORBA RPC

Procedure call
Cybersecurity

Time constraints
Publish Subscribe

Fire & Forget

� DDS CORBA Publish Subscribe
Cybersecurity

Time constraints

� RTE RPC Signal Passing
Time constraints

Automotive safety

� SOME/IP
CORBA

RTE

Procedure Call

Time constraintsPublish Subscribe

Fire & Forget

WS CORBA
Fire & Forget

Cybersecurity
Procedure Call

Both CORBA and DDS have built-in and proven approaches for authenti-
cation, authorization, and auditing. However, they do not address a dynamical
distributed cybersecurity that adapts the enforcement to the vehicle state. Our
open Model for Automotive Cybersecurity aims at supporting both the DDS
and SOME/IP middleware. Indeed, it is important to be agnostic wrt. the un-
derlying communication middleware since the standardization is continuously
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evolving. Moreover, keeping the model agnostic is a good approach to address
the heterogeneity problem.

The following section describes our model in order to enforce the cybersecu-
rity of automotive architectures.

2 A cybersecurity model for automotive systems

This section illustrates our model using a concrete automotive exemple. Our
approach takes into account the state of the components in order to provide
a dynamic MAC approach. We will illustrate how a MAC approach based on
access control automata can enforce stronger cybersecurity properties compared
to standard MAC models.

Figure 2 is a simplified view of an automotive Telematics and Communication
Unit (TCU). It is composed of a Network Access Device (NAD), in charge of the
different network accesses — 4G, Bluetooth, GPS. . . An Application micropro-
cessor (App µP) — running Linux — acts as a safety broker between the NAD
and the Safety microcontroller (µC). The Safety µC — running AUTOSAR —
manages communication with the remainder of the architecture.

Fig. 2: Simplified view of a TCU’s components

Considering the use cases of a remote diagnostic (RD) and a remote control
(RC), two annotated functional flows can be defined. The RD flow (1) starts in
the 4G software components of the NAD which will send a message to the RD
component of the App µP. The App µP’s RD will in turn send a message to the
Diagnostic (Diag) of the Safety µC. The RC flow (2) works similarly.

Allow NAD
4G invoke RD−−−−−−−−−−→ App µP

RD invoke Diag−−−−−−−−−−−→ Safety µC (1)

Allow NAD
4G invoke RC−−−−−−−−−→ App µP

RC invoke Ctrl−−−−−−−−−−→ Safety µC (2)

These flows describe the sequencing of the network messages in order to
realize the desired action. To enforce these behaviors, standard MAC models
would define policies of the form : Allow NAD −→ App µP. However, these
policies enforce neither duties separation (as App µP −→ Safety µC is possible
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before NAD −→ App µP), nor privileges separation (as App µP
RD invoke Diag−−−−−−−−−−−→

Safety µC can happen after NAD
4G invoke RC−−−−−−−−−→ App µP). In addition, standard

MAC models suffer from the complexity of their policies as they specify every
interaction of the system. An adequate access control policy should solely concern
interactions of interest and take into account the sequencing of messages.

Some works have explored solutions using annotated functional flows. [24]
proposes to monitor specific relations between objects. If an observed relation
is not in the monitored list, it is considered as functional noise and implicitly
authorized. This enables having a non-exhaustive policy by specifying only the
relations needing to be controlled. A smaller policy being generally faster to
process, this solution is faster compared to classical MAC solutions. With fewer
relations, update and validation of the policy become easier, allowing dynamicity.

The approach of [24] uses automata to describe functional flows. Figure 3
represents the corresponding automaton of a simplified remote diagnostic sce-
nario. This automaton guarantees privileges separation as it enables the rule
App µP −→ Safety µC only after monitoring the rule NAD −→ App µP. With
the sources and destinations software components it also provides privileges sepa-

ration as the rule App µP
RD invoke Diag−−−−−−−−−−−→ Safety µC is enabled after monitoring

4G
4G invoke RD−−−−−−−−−−→ App µP.

Fig. 3: Access control automaton

Figure 4 sums up our proposition. Several reference monitors [25], distributed
on the architecture, jointly enforce the expected global behavior through sub-
automata. Each reference monitor can have a partial view of the car’s access
control policy. A Cybersecurity Component, if present, could add a synchroniza-
tion mechanism for the different automata.
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Fig. 4: Implementation of our model in the architecture of Figure 2

As a proof-of-concept, we chose to modify SOME/IP to support our protec-
tion model. The following section details the proposed modification of SOME/IP
and illustrates a reference monitor that controls an automaton.

3 SOME/IP as use case

We now propose an extension of the SOME/IP middleware in order to enforce
a policy defined by an automaton.

3.1 Test Configuration

A variant of the configuration depicted by Figure 5 was used to test the imple-
mentation. For clarity purposes, SOME/IP’s hexadecimal identifiers are volun-
tarily omitted. The policy applied is the one presented in Section 2.

Allow NAD
4G invoke RD−−−−−−−−−−→ App µP

RD invoke Diag−−−−−−−−−−−→ Safety µC (1)

Allow NAD
4G invoke RC−−−−−−−−−→ App µP

RC invoke Ctrl−−−−−−−−−−→ Safety µC (2)

oMAC : Open Model for Automotive Cybersecurity
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Fig. 5: Test scenario

The functional flow F1 of Figure 5 represents the calls of a Remote Diagnostic
(RD) following rule (1) as described in Section 2. The flow F2 shows that duties
separation is enforced in our model as the Remote Control (RC) of the App
µP cannot call the Control (Ctrl) of the Safety µC without receiving a call
from the Network Access Device (NAD). With the flow F3, privileges separation
is also enforced: once in the functional flow of the RC it is not possible to
switch to Diagnostic. The flow F4 shows that local software components are
distinguishable as the NAD’s GPS cannot call the RD.

Without our access control feature, each call represented in Figure 5 succeeds.
With it, the monitor blocks the calls, which is denoted by a cross in Figure 5.
Calls can be blocked by the sender or the receiver, depending on the local policy
— e.g. if the receiver has a local Deny rule. With the current implementation,
the notion of domain is not controlled. Future works will make it possible to
add controls regarding the domains. For example, this feature will be useful if a
component of a domain offers a method which should not be freely accessed.

3.2 Implementation requirements

To implement our access control mechanism, it was necessary to extend the
SOME/IP protocol. The header of SOME/IP [26] already contains enough in-
formation for the implementation of a basic access control policy of the form
Client ID −→ Service ID : Method ID. This policy expresses rules of the form A
given client can (or cannot) call a given method of a given service. If the method
is omitted, the interpretation is A given client can (or cannot) call any of the
methods of a given service. However, the implementation of more general rules
requires additional information. As we saw in section 1, ECU tend to be grouped
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in functional domains which can be encompassed by a domain policy. Therefore,
we enhanced SOME/IP messages with the addition of a domain identifier, spec-
ified for each SOME/IP application. Likewise, the header lacks an identifier for
the caller method; if different methods of a client call the same method of a
service, it is not possible to distinguish them. The addition of a caller method
to SOME/IP messages gives us a finer grain. Finally, an authentication field
was added, without which the access control feature could be impersonated.
The proposed solution is backward-compatible in order to integrate into exist-
ing products. The impact on network communication should be kept as low as
possible. Real-time constraints will not be addressed for this proof-of-concept.

To add these new fields to SOME/IP messages, different solutions were avail-
able. The first one is to encapsulate SOME/IP messages into secured-messages.

3.3 Encapsulation

This approach is similar to HTTP with SSL. The HTTP packet is encapsulated in
a SSL packet. SOME/IP messages would be encapsulated into secured-messages.
Secured-messages carry information presented in section 3.2. This solution has
a major drawback in the case considered in this paper: it does not preserves
backward compatibility. If the SOME/IP message is encapsulated, the standard
library will not be able to find its header because it will be padded by the secured-
message’s header. Encapsulating the message requires a level of processing before
letting the message flow through SOME/IP. If this level is not present on some
ECU, they will not receive the messages. Backward compatibility is therefore
lost and this solution is inadequate for the considered use case.

3.4 Protocol overload

The second option is to change SOME/IP at heart. This can be done in two ways.
The first consists of encapsulating the payload with cybersecurity information.

Payload Encapsulating the payload is the approach used by Secured Onboard
Communication (SecOC). The header of the message — used for routing pur-
poses — remains untouched. The payload is encapsulated in a secured payload,
carrying cybersecurity information. This approach mixes application data with
unrelated cybersecurity information. It does not overload SOME/IP’s own infor-
mation, but adds another layer of processing on top of it, before the functional
processing. Backward compatibility is not preserved because as with the encap-
sulation presented earlier, another level of treatment is needed.

Header The second approach consists of overloading SOME/IP’s header. Cy-
bersecurity information would be concatenated with the standard header. In
contrast with the last approach, functional data are not mixed with cybersecu-
rity information. However, the change in the size of the header breaks backward
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compatibility. The length field of SOME/IP messages indicates the payload’s
length plus eight bytes (accounting for the five last fields of the header). If the
length takes into account the cybersecurity information of the header, a standard
library will consider that the payload starts at the first cybersecurity informa-
tion. PayloadLength = HeaderLengthField−HeaderStandardLength. If the header
length field does not take into account the cybersecurity information, an offset
should be added when deserializing the payload. Without changing the header
standard length or the deserilization step, backward compatibility is broken.

As for the encapsulation, overloading SOME/IP breaks backward compati-
bility. In both cases, it introduces a new level of processing to interpret cyber-
security information. Cybersecurity should be handled by SOME/IP, without
changing the header. A footer therefore seems the right approach.

3.5 Footer

The third option is to add a footer to SOME/IP messages, using an approach
similar to the PRP protocol [27]. Cybersecurity information are packed into
a footer — of fixed length —, glued at the end of the payload. The header
and payload values remains untouched. This implementation allows us to send
secured messages to both secured and unsecured clients. A secured client will
look for a special value right after the payload. If this value is found, the message
has a secured footer. If not, the message is processed as a standard SOME/IP
message. When an unsecured client receives a secured message, it will try to
interpret the footer as another SOME/IP message — as SOME/IP allows sending
multiple messages in a single UDP packet or TCP segment [26]. By having
a different structure than the header, this operation will fail. The footer will
therefore be dropped and an error message will be sent to the emitter. However,
with this approach, the client still receives and interprets the SOME/IP header
and payload. The footer allows flexibility as other fields can be added if need be.
As stated earlier, the chosen ones are: a calling method ID, a domain ID and an
authentication field as a Message Authentication Code (MACo in this paper in
order to distinguish it from Mandatory Access Control).

The footer approach is the only one preserving backward compatibility. The
impact on messages’ length should be lower than with the encapsulation solution,
as no extra header is needed. It keeps application information separated from
cybersecurity information. This approach has been the one implemented and
used for the tests of section 3.1; the next section reports on the implementation.

3.6 Implementation

Adding a footer to SOME/IP’s messages has a low impact on the SOME/IP stan-
dard library3 in terms of code overhead. The new messages (message secured impl),
which include the footer, inherit the standard messages of SOME/IP (as shown

3 vSOME/IP implementation: https://github.com/GENIVI/vsomeip
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in Figure 6). This allows to keep standard messages unaltered, in case they are
required for future works. Service-discovery-messages are not modified, as it was
not a requirement for this solution. Methods were overrided in order to replace
standard messages by secured ones and hooks were added to route messages in
the reference monitor before releasing them on the network. By seeing every
message, the reference monitor knows the state of each component. If a mes-
sage does not comply with the policy, it is dropped. The ability to use a control
automaton enables safety tasks such as the reset of an ECU in specific situations.

Fig. 6: SOME/IP’s messages inheritance UML class diagram

To authenticate the message, a MACo was needed. The hashing function
used to compute it is CMAC [28]. Cryptographic tasks such as this are usually
handled by a Hardware Security Module (HSM), which is generally faster. The
final size of the footer is 24 bytes, 16 of which account for the MACo.

The domain of a SOME/IP client (or service) is passed using an environment
variable in the same way as the name of the application is passed. This solution
should be replaced by setting the domain in the configuration file, which is a
more consistent approach in our opinion.

The calling method field is the only one that can have an impact on developers
habits. They can set it in the application code, in accordance with the defined
policy. This field is currently used for forwarded calls. In case of a method acting
as a broker, the called method ID is copied in the calling method field.

The proposed implementation blocks successfully undesired calls according
to the specified automaton. Though an incomplete implementation of our model,
our experiment shows that an existing middleware can be extended in order to
add advanced cybersecurity. Since the approach is agnostic with regard to the
middleware, the cybersecurity does not impact the development chain. The fol-
lowing section describes a state-of-the-art automotive architecture which benefits
of our implementation.

4 Perspectives

Consider automotive architectures based on automotive grade Ethernet [29] [30].
Figure 7 is a populated version of the architecture of Figure 1d based on the
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description made in section 1.2. Here, a Perception domain is added as a subdo-
main of the Core domain. Compared to previous architectures — c.f. Figures 1a
and 1b — domains are interconnected through gateways using Ethernet links in
place of CAN buses. This provides the backbone for the system, thanks to the
large bandwidth of Ethernet. ECU can either be connected through Ethernet or
fieldbuses depending on their connectivity. Far ends actuators and sensors will
still use fieldbuses as they are lacking resources to handle Ethernet connectivity.

This architecture provides better cybersecurity properties compared to the
architectures presented at the beginning of this paper. The least privilege prin-
ciple is enforced through the usage of VLAN and the CsC. Domains are clearly
separated, restricting an attacker capability to move from one domain to another.

Fig. 7: Post-2020 secured vehicle’s architecture

However, if an attacker breaks into a domain (resp. an ECU), he gains a
complete access to the entire domain (resp. ECU). For example, if an attacker
corrupts the ACC feature, he can also corrupt the LKA, as there is not neces-
sarily any hardware-based memory protection. He could also send messages to
components of the domain, assuming the CsC implements basic filtering capa-
bilities, and disrupt the car’s behavior. In this situation, current cryptographic
solutions such as SecOC [31] are ineffective, as the attacker has access to the cryp-
tographic material. A compromised ECU implies a cryptographic compromision.
Mitigating locally the attack on a ECU could be achieved with a microkernel —
such as PikeOS. ECU embedding multiple functions — such as the ECU with
the ACC and the LKA from Figure 7 — would also benefit from a microkernel.
A microkernel, by its architecture, would isolate functions running on the same
microprocessor [32]. Thus, corrupting a function through, for instance, a memory
corruption attack, would prevent an attacker from having any impact on other
functions hosted on the ECU, assuming these functions are not dependent.

However, a microkernel does not prevent an attacker from sending messages
to other ECU. This type of attack can be blocked by our mandatory component
integrated to SOME/IP through the use of functional flows (c.f. section 2).
Without our approach, interactions between the NAD, the App µP and the
Safety µC cannot be efficiently controlled. In case of compromision of a feature,
the reference monitor would constrain the attacker to the defined flow of callable
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description made in section 1.2. Here, a Perception domain is added as a subdo-
main of the Core domain. Compared to previous architectures — c.f. Figures 1a
and 1b — domains are interconnected through gateways using Ethernet links in
place of CAN buses. This provides the backbone for the system, thanks to the
large bandwidth of Ethernet. ECU can either be connected through Ethernet or
fieldbuses depending on their connectivity. Far ends actuators and sensors will
still use fieldbuses as they are lacking resources to handle Ethernet connectivity.

This architecture provides better cybersecurity properties compared to the
architectures presented at the beginning of this paper. The least privilege prin-
ciple is enforced through the usage of VLAN and the CsC. Domains are clearly
separated, restricting an attacker capability to move from one domain to another.

Fig. 7: Post-2020 secured vehicle’s architecture

However, if an attacker breaks into a domain (resp. an ECU), he gains a
complete access to the entire domain (resp. ECU). For example, if an attacker
corrupts the ACC feature, he can also corrupt the LKA, as there is not neces-
sarily any hardware-based memory protection. He could also send messages to
components of the domain, assuming the CsC implements basic filtering capa-
bilities, and disrupt the car’s behavior. In this situation, current cryptographic
solutions such as SecOC [31] are ineffective, as the attacker has access to the cryp-
tographic material. A compromised ECU implies a cryptographic compromision.
Mitigating locally the attack on a ECU could be achieved with a microkernel —
such as PikeOS. ECU embedding multiple functions — such as the ECU with
the ACC and the LKA from Figure 7 — would also benefit from a microkernel.
A microkernel, by its architecture, would isolate functions running on the same
microprocessor [32]. Thus, corrupting a function through, for instance, a memory
corruption attack, would prevent an attacker from having any impact on other
functions hosted on the ECU, assuming these functions are not dependent.

However, a microkernel does not prevent an attacker from sending messages
to other ECU. This type of attack can be blocked by our mandatory component
integrated to SOME/IP through the use of functional flows (c.f. section 2).
Without our approach, interactions between the NAD, the App µP and the
Safety µC cannot be efficiently controlled. In case of compromision of a feature,
the reference monitor would constrain the attacker to the defined flow of callable
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methods authorized for this feature. In further versions, the reference monitor
could react if the ECU’s policy is infringed upon. In case of defective policy, the
CsC would receive OEM-approved policy updates from the cloud and push them
to local components.

Domain-designed architectures offer strong cybersecurity properties. How-
ever, without suitable mechanisms to achieve defense-in-depth, cybersecurity
stays perimetric. Our mandatory component integrated to SOME/IP allows for
a strong and widespread defense-in-depth in automotive architectures.

Conclusion and future works

The automotive industry is living its computing revolution. Customer needs
are evolving, standards follow, and the industry is adapting. In recent years, it
has been shown that cybersecurity is necessary to protect safety objectives. The
proposed model partly addresses this need. It is agnostic wrt. the middleware and
could therefore support future automotive middlewares like DDS. As a proof-of-
concept, we propose a partial implementation of our model for SOME/IP.

The main objective of the proposed solution has been reached: an access
control feature has been added to an automotive middleware without breaking
backward-compatibility. This feature allows to block undesired calls according
to the specified automaton. The current stage of development does not support
the notion of domain. The implementation proposed in this paper shows that
adding cybersecurity can be done without disturbing the development process.

Future works will extend the development to fully support the model defined
in section 2. They will focus mainly on the way the automata can be specified,
synthesized, distributed, and coordinated in order to implement an efficient dis-
tributed access control. Additionaly, the CsC can be improved with a Security
Intrusion and Event Management (SIEM) system or an Intrusion Detection Sys-
tem (IDS) built on top of our solution. Those security mechanisms can correlate
different probes to address broader attacks, thanks to our automaton approach.
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