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On the balanceability of some graph classes?

Antoine Daillya,∗, Adriana Hansberga, Denae Venturaa

aInstituto de Matemáticas, UNAM Juriquilla, 76230 Querétaro, Mexico.

Abstract

Given a graph G, a 2-coloring of the edges of Kn is said to contain a balanced copy of G if we can find a copy
of G such that half of its edges are in each color class. If there exists an integer k such that, for n sufficiently
large, every 2-coloring of Kn with more than k edges in each color class contains a balanced copy of G, then
we say that G is balanceable. Balanceability was introduced by Caro, Hansberg and Montejano, who also
gave a structural characterization of balanceable graphs.

In this paper, we extend the study of balanceability by finding new sufficient conditions for a graph to be
balanceable or not. We use those conditions to fully characterize the balanceability of graph classes such as
circulant graphs, rectangular and triangular grids.

Keywords: Balanceable Graphs; Ramsey Theory

1. Introduction

Ramsey Theory studies the presence of ordered substructures in large, arbitrarily ordered structures. For
instance, the seminal Ramsey Theorem [6] states that, for every integer r, every 2-coloring of the edges of Kn

contains a monochromatic Kr whenever n is sufficiently large. However, it is also possible to look for other
kinds of ordered substructures. In particular, Caro, Hansberg and Montejano [1] introduced the notion of
balanceability, which looks for balanced copies of a graph in 2-colorings of the edges of Kn.

More formally, let G(V,E) be a simple, finite graph with an even number of edges. A 2-coloring of the
edges of Kn is a function α : E(Kn)→ {R,B} that associates every edge with one of two colors; R and B
being called the color classes. A 2-coloring α of the edges of Kn is said to contain a balanced copy of G if we
can find a copy of G such that its edge-set E is partitioned in two parts (E1, E2) such that |E1| = |E2| and
α(e) = R for e ∈ E1 and α(e) = B for e ∈ E2. Said otherwise, we can find a copy of G with half of its edges
in each color class. Being inspired by Ramsey Theory, balanceability is about finding a balanced copy of G in
any 2-coloring of the edges of Kn. However, it is trivial to see that, for any graph G(V,E), we need at least
|E|
2 edges in each color class in order to find a balanced copy of G. Thus, we need to guarantee a certain
number of edges in each color class, leading to the following definition of a balanceable graph:

Definition 1. Let G be a graph with an even number of edges. If there exists an integer k such that, for n
sufficiently large, every 2-coloring of the edges of Kn with more than k edges in each color class contains a
balanced copy of G, then G is balanceable.

Observation 2. Note that the concept of balanceability can be extended to graphs with an odd number of
edges, as explained in [1]. In this case, we would be looking for a copy where the number of edges in each
color class differ by 1. However, in this paper, we only consider graphs with an even number of edges.

For example, a path on two edges is balanceable, since as long as each color class contains at least one
edge, then we will be able to find two incident edges belonging to different color classes. For larger graphs, the
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question of deciding whether they are balanceable seems difficult to solve. Given a graph G and a partition
(X,Y ) of its vertices, we denote by e(X,Y ) the number of edges with one endpoint in X and the other in Y ;
given a graph G and a subset W of its vertices, we denote by e(G[W ]) the number of edges in the subgraph
of G induced by the vertices in W . In their paper, Caro, Hansberg and Montejano proved the following
characterization of balanceable graphs:

Theorem 3 ([1]). A graph G(V,E) with an even number of edges is balanceable if and only if G has both a
partition V = X ∪ Y and a set of vertices W ⊆ V such that e(X,Y ) = e(G[W ]) = |E|

2 .

In other words, a graph is balanceable if and only if it has both a cut crossed by exactly half of its edges
and an induced subgraph containing exactly half of its edges. Theorem 3 was proved by showing that, for
every integer t and any n sufficiently large, there exists a number m(n, t) such that every 2-coloring of the
edges of Kn with more than m(n, t) edges in each color class contains one of two specific colored copies of
K2t. Those specific colored copies may then be used, for some graph G, to find a balanced copy of G or to
prove that no balanced copy of G may exist.

Caro, Hansberg and Montejano [1] showed via Theorem 3 that trees are balanceable. It was shown
in [2], previous to this result, that the only balanceable complete graph with an even number of edges is K4.
Caro, Lauri and Zarb [3] exhaustively studied the balanceability of graphs of at most four edges. However,
the question of balanceability remains open for many graph classes. An explanation for this is that the
characterization of Theorem 3 can be unpractical to handle. In this paper, we will give weaker but more
practical conditions for deciding whether a given graph is balanceable or not (Section 2), that we will apply
to several graph classes (circulant graphs in Section 3 and rectangular and triangular grids in Section 4).

2. Sufficient conditions for balanceable and non-balanceable graphs

In this section, we are concerned with finding weaker but more practical conditions for deciding whether a
given graph can be balanceable. Those conditions will be based on the characterization of balanceable graphs
provided by Theorem 3. A first example is the following sufficient condition for a graph to be balanceable:

Proposition 4. Let G(V,E) be a graph. If there exists I ⊂ V , an independent set of vertices of G such that∑
v∈I d(v) =

|E|
2 , then G is balanceable.

Proof. Let X = I and Y =W = V \ I. Due to the condition on I, we have e(X,Y ) = |E|
2 = e(G[W ]), and

thus, by Theorem 3, G is balanceable.

This condition gives a direct proof of the balanceability of cycles of length equal to a multiple of 4:

Corollary 5. Let ` be a positive integer. The cycle C4` is balanceable.

Proof. We denote the vertices of C4` by u0, u1, . . . , u4`−1. By setting I = {u4i | i ∈ {0, . . . , `− 1}}, we can
apply Proposition 4 and get the result.

Furthermore, we can set I to be a singleton, in which case we obtain the following:

Proposition 6. Let G(V,E) be a graph. If there is a vertex v ∈ V with d(v) = |E|
2 , then G is balanceable.

Proof. Let I be the singleton containing the vertex v with d(v) = |E|
2 and apply Proposition 4.

This condition can be applied to the family of wheels:

Corollary 7. Wheels are balanceable.

Proof. The wheel Wn contains 2n edges, and the center of Wn has degree n, hence Proposition 6 applies.

However, we can also find a condition that guarantees that a graph cannot be balanced. Recall that a
graph is eulerian if all its vertices have even degree.
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Proposition 8. Let G(V,E) be a eulerian graph. If |E|2 is odd, then G is not balanceable.

Proof. Assume by contradiction that G is balanceable. Then, using Theorem 3, there is a partition of V in
two sets X and Y = V \X such that half the edges are between X and Y . Since |E|2 is odd, this means
that, by denoting by Xodd the set of vertices of X that have an odd number of neighbours in Y , we have
that |Xodd| is odd. But now, this implies that in G[X], the vertices of Xodd have odd degree (since they have
even degree in G). Thus, G[X] has an odd number of vertices with odd degree, which is impossible. This
contradiction yields the result.

This allows us to prove that some graphs are not balanceable:

Corollary 9. Let ` be a positive integer. The cycle C4`+2 is not balanceable.

Proof. The cycle C4`+2 is eulerian, and has 4` + 2 edges, so |E(C4`+2)|
2 = 2` + 1 is odd and we can apply

Proposition 8.

We can also characterize some non-balanceable regular graphs:

Corollary 10. Let d be an even positive integer, and let G be a d-regular graph of order n. G is not
balanceable in the following cases:

1. If d, n ≡ 2 mod 4;
2. If d = 4a with a odd, and n ≡ 1, 3 mod 4.

Note that this is a sufficient condition for non-balanceability, so a regular graph that verifies neither
conditions may still be non-balanceable.

Proof. If G is d-regular of order n and size e, then e = dn
2 . Furthermore, since d is even, G is eulerian. We

will study the two cases:

1. Given d = 4a+2 and n = 4b+2, then e
2 = (4a+2)(4b+2)

4 = 4ab+2a+2b+1 is odd. Hence, Proposition 8
implies that G is not balanceable.

2. Given d = 4a and n = 4b+ c with a odd and c ∈ {1, 3}, then, e
2 = 4a(4b+c)

4 = 4ab+ ac. Since c ∈ {1, 3},
this has the same parity than a, hence it is odd and Proposition 8 implies that G is not balanceable.

Furthermore, the following result is contained in the fact that no complete graph other than K4 is
balanceable [1, 2], but the proof of this stronger statement is more complex.

Corollary 11. If n ≡ 5 mod 8, then Kn is not balanceable.

Proof. If n = 8k + 5 for some nonnegative integer k, then Kn is 4(2k + 1)-regular. Thus we can apply
Corollary 10 with d = 4(2k + 1) and n = 4(2k + 1) + 1, which implies that Kn is not balanceable.

We will now characterize the balanceability of several graph classes, starting with circulant graphs.

3. Balanceability of circulant graphs

Let k, ` be two integers such that k > 3 and ` ∈ {2, . . . , k − 2}. The circulant graph Ck,` is the cycle
graph Ck with vertices u0, . . . , uk−1, and such that the chords uiui+` (where the addition is modulo k) are
added to the edge set.

Theorem 12. Let k, ` be two integers such that k > 3 and ` ∈ {2, . . . , k − 2}. The circulant graph Ck,` is
balanceable in the following cases:

• If k ≡ 0 mod 4;
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• If k ≡ 2 mod 4 and ` 6= k
2 , and if (k, `) 6= (6, 2).

In all the other cases, Ck,` either has an odd number of edges or is not balanceable.

Due to the many cases we have to consider, the proof of Theorem 12 will be divided into several lemmas.
The statement of Theorem 12 and the different cases and lemmas that prove them are summarized in Table 1.
For the remainder of this section, we will assume that ` ≤ k

2 , since if this is not the case then we can apply
the same reasoning with `′ = k − `.

k

` k
2

< k
2

odd 2 even, ≥ bk4 c even, > 2, < bk4 c
odd Not balanceable (Lemma 14)

≡ 0 mod 4
Balanceable
(Lemma 13)

Balanceable
(Lemma 15) Balanceable (Lemma 16)

≡ 2 mod 4
Balanceable
(Lemma 17)

Balanceable
except C6,2

(Lemma 18)
Balanceable (Lemma 19)

Table 1: The balanceability of the circulant graph Ck,`. If ` > k
2
, then, refer to Ck,k−`.

First, we consider the case of Ck, k2
. Note that this graph only exists if k is even. Furthermore, if

k ≡ 2 mod 4, then Ck, k2
has an odd number of edges, so we will only consider the case where k is a multiple

of 4.

Lemma 13. If k is a multiple of 4, then the circulant graph Ck, k2
is balanceable.

Proof. Let k = 4a with a > 1. Note that, in Ck, k2
, every vertex has degree 3. Furthermore, let e be the

number of edges in Ck, k2
, then e = 3k

2 = 6a, which implies that e
2 = 3a. Denote the vertices of Ck, k2

by
u0, u1, u2, . . . , uk−1, and let I = {u0, u2, . . . , u2a−2}. It is easy to see that I is an independent set of size a,
and thus

∑
v∈I d(v) = 3a = e

2 . Thus, by Proposition 4, Ck, k2
is balanceable.

In all future cases, we assume ` < k
2 , thus every vertex of Ck,` has degree 4. Furthermore, let e be the

number of edges in Ck,`, then e = 2k. We will also denote the vertices of Ck,` by u0, u1, u2, . . . , uk−1.

Lemma 14. Let k be an odd integer. The circulant graph Ck,` is not balanceable.

Proof. Since k is odd, e
2 = 2k

2 = k is odd. Since Ck,` is eulerian, Proposition 8 implies that Ck,` is not
balanceable.

Lemma 15. Let k be an integer such that k ≡ 0 mod 4, and let ` be an odd integer. The circulant graph
Ck,` is balanceable.

Proof. We denote k = 4a. Let I = {u0, u2, . . . , u2a−2}. It is easy to see that I is an independent set
(since it contains vertices with an even index, that only have neighbours of odd index) of size a, and thus∑

v∈I d(v) = 4a = k = e
2 . Proposition 4 implies that Ck,` is balanceable.

Lemma 16. Let k be an integer such that k ≡ 0 mod 4, and let ` be an even integer. The circulant graph
Ck,` is balanceable.

Proof. We denote k = 4a and ` = 2b. The idea is to select an independent set I of size a, allowing us to
invoke Proposition 4. We start by adding to I the vertices u0, u2, . . . , u2b−2, thus a set of b independent
vertices. However, we cannot add u2b because of the edge u0u2b. Instead, we can add to I the vertices
u2b+1, u2b+3, . . . , u4b−1, thus a set of b new vertices that are independent from each other as well as from the
first ones. Again, we have to jump the vertex u4b+1 and start from u4b+2. By applying this, we will select
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bab c such sets of b vertices, and then we can apply the same construction and add the a− bab cb last vertices
we need to have |I| = a (those last vertices will be called leftover vertices in the remainder of the proof).
This is depicted in Figure 1.

We now need to prove that I is an independent set. Note that the only thing that we need to prove is
that the index of the second-biggest-index neighbour of u0 is greater than the index of the last vertex that
we selected. Indeed, we selected the sets in such a way that all vertices are independent from each other
going forward.

The last vertex that is selected in I with our construction will have index:

imax =
⌊a
b

⌋
2b+

⌊a
b

⌋
+ 2

(
a−

⌊a
b

⌋
b
)
− 1− 1− r

with r = 1 if bab c =
a
b and r = 0 otherwise.

The bab c2b are the vertices selected in the bab c sets that are themselves separated from each other by one
supplementary vertex (thus the bab c); then the 2(a − bab cb) are the leftover vertices; and then we have to
subtract 1 for the last vertex (which does not count) and again substract 1 for the fact that the indices start
at 0. Finally, if bab c =

a
b , then there are no leftover vertices and thus we can substract 1 from the total.

Thus, we have imax = 2a + a
b − 2 − r ≤ 2a + a

b − 2. We only have to prove that imax < 4a − 2b since
this would prove that the last vertex that we selected has an index smaller than the second-biggest-index
neighbour of u0. There are two cases to consider:

1. If 2b ≥ a, then we have a
b ≤ 2. Since bab c ≤

a
b , we have imax ≤ 2a + bab c − 2 ≤ 2a + 2 − 2 = 2a.

Furthermore, since 2b < k
2 = 2a we have 4a− 2b > 2a. This implies that imax < 4a− 2b, proving that

I is an independent set.
2. If 2b < a, then imax ≤ 3a−2 since bab c ≤ a. Furthermore, 4a−2b > 4a−a = 3a, and thus imax < 4a−2b,

proving that I is an independent set.

Thus, I is an independent set of size a, and since every vertex has degree 4 we have
∑

v∈I d(v) = 4a = e
2 ,

and Proposition 4 implies that Ck,` is balanceable.

For the next three lemmas, we cannot construct an independent set I such that
∑

v∈I d(v) =
e
2 , since

all the degrees are 4 and e
2 is not a multiple of 4. We will instead prove that the vertices of Ck,` can be

partitioned in such a way that we can apply Theorem 3.

Lemma 17. Let k be an integer such that k ≡ 2 mod 4, and let ` be an odd integer with ` < k
2 . The circulant

graph Ck,` is balanceable.

Proof. Let k = 4a+ 2 and ` be an odd integer. We have two cases to consider.
First, we will prove that we can partition the vertices of Ck,` in two sets X and Y such that e(X,Y ) =

e
2 = 4a+2. We begin by setting X := {u0, u1}, which puts 6 edges between X and Y as long as no neighbour
of u0 or u1 is in Y . We now select a− 1 independent vertices that are not neighbours of u0 and u1 and put
them in X. Note that there are 4a− 6 vertices not neighbours of u0 and u1: 2a− 3 with an even index and
2a− 3 with an odd index. Thus, we can select a− 1 vertices of even index (without loss of generality), which
is always possible. Indeed, assume by contradiction that a− 1 > 2a− 3; then a < 2, i.e. k < 10, i.e. k = 6,
which is a contradiction since ` is odd, but ` > 1 and ` < k

2 = 3 so this case cannot occur. Since the a− 1
vertices we just added to X are independent, we have e(X,Y ) = 6 + 4(a− 1) = 4a+ 2. This construction is
depicted in Figure 2.

Now, denote Ck,` by G, its vertex-set by V and its edge-set by E. We will prove that we can partition V in
two setsW and V \W such that e(G[W ]) = e

2 = 4a+2. Note that two adjacent vertices in V \W independent
from all other vertices in V \W put 7 edges in E \E(G[W ]). We will construct V \W by selecting two pairs
of adjacent vertices independent from each other, and a− 3 independent vertices that will not be neighbours
of the four vertices previously selected. Thus, we will have e− e(G[W ]) = 2× 7 + 4(a− 3) = 4a+ 2, and thus
e(G[W ]) = 4a+ 2. There are three cases to consider.

First, assume that k = 10, the only graph to consider is C10,3. In this case, we cannot construct the sets
as explained above (since 2× 7 = 14 > 10 = e

2 ). However, by setting W = {u0, u1, u2, u3, u4, u5, u6}, there
are 10 edges in G[W ], so this case is covered.
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Figure 1: A depiction of the proof of Lemma 16 on C40,8. The vertices that we selected in I are in black, and the out-edges of I
are bolded.

Then, assume that ` = 3 and k > 10. We put u0, u1, u5 and u6 in V \W . There are k − 13 = 4a − 11
vertices that are neither those nor neighbours of those: 2a− 5 with an even index and 2a− 6 with an odd
index. Thus, we can select a − 3 independent vertices with an even index, which is always possible since
a− 3 > 2a− 5 if and only if a < 2, i.e. k < 10, which cannot occur as discussed previously. This implies that
we have e− e(G[W ]) = 4a+ 2. This construction is depicted on the left-hand side of Figure 3.

Finally, assume that ` > 3 and k > 10. We put u0, u1, u3 and u4 in V \W . There are k − 15 = 4a− 13
vertices that are neither those nor neighbours of those: 2a− 6 with an even index and 2a− 7 with an odd
index. Thus, we can select a− 3 independent vertices with an even index, which is always possible. Indeed,
assume by contradiction that a − 3 > 2a − 6, then a < 3, i.e. k < 14; the case k = 6 has been discussed
previously, and the case k = 10 cannot occur either since this would imply ` = 5 = k

2 , a contradiction. This
implies that we have e− e(G[W ]) = 4a+ 2. This construction is depicted on the right-hand side of Figure 3.

Altogether, this allows us to invoke Theorem 3, and thus to conclude that the circulant graph C4a+2,` is
balanceable when ` is odd and ` < 2a+ 1.

Lemma 18. Let k be an integer such that k ≡ 2 mod 4. The circulant graph Ck,2 is balanceable if and only
if k 6= 6.

Proof. This proof contains two parts: first, we will prove that C6,2 is not balanceable; then, we will prove
that C4a+2,2 is balanceable when a > 1.

First, assume that k = 6. We will prove that there is no subset of vertices W such that e(G[W ]) = 6.
First, note that W cannot possibly be empty or all the vertices. Taking this into account, Table 2 shows
possible sets for different sizes of W as well as e(G[W ]) in each case (the possible sets are up to renaming
vertices). Since no set W gives e(G[W ]) = 6, Theorem 3 implies that C6,2 is not balanceable.

Now, assume that a > 1, we will prove that C4a+2,2 is balanceable. The proof is similar to the proof of
Lemma 17.
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Figure 2: A depiction of the first case of the proof of Lemma 17 on C38,9. The vertices that we selected in X are in black, and
the edges between X and Y are bolded.

|W | 1 2 3 4 5
Possible

vertices in W
→ e(G[W ])

u0 → 0
u0, u1 → 1
u0, u2 → 1
u0, u3 → 0

u0, u1, u2 → 3
u0, u1, u3 → 2
u0, u2, u4 → 3

u0, u1, u2, u3 → 5
u0, u1, u2, u4 → 5
u0, u1, u3, u4 → 4

u0, . . . , u4 → 8

Table 2: Possible sets W of vertices of C6,2 (up to renaming the vertices), and the value of e(G[W ]) for each of them.

First, we will prove that we can partition the vertices of C4a+2,2 in two sets X and Y such that
e(X,Y ) = 4a+ 2. For this, we set X1 = {u0, u3, . . . , u3(a−2)}, X2 = {u4a−1, u4a}, and X = X1 ∪X2. It is
easy to see that X1 is an independent set and that no vertex in X2 is adjacent to a vertex in X1 (since we have
a > 1⇒ 4a− 3 > 3a− 2 > 3(a− 2)). Thus, we have e(X,Y ) = e(X1, Y ) + e(X2, Y ) = 4(a− 1) + 6 = 4a+ 2.

Then, as in the proof of Lemma 17, assume that a = 2, i.e. k = 10. If we setW = {u0, u1, u2, u3, u4, u6, u8},
then we have e(G[W ]) = 10. This, with the previous point (that applies if a = 2), proves that C10,2 is
balanceable. Assume now that a > 2. Let V1 = {u0, u3, . . . , u3(a−4)} (if a = 3 then we set V1 = ∅),
V2 = {u4a−6, u4a−5} and V3 = {u4a−2, u4a−1}; then set W = V \ (V1 ∪ V2 ∪ V3). It is easy to see that V1 is
an independent set and that no vertex in V2 (resp. V3) is adjacent to a vertex in V1 or V3 (resp. V1 or V2),
since we have a > 2⇒ 4a− 8 > 3a− 6 > 3(a− 4). Thus, we have e− e(W ) = 4(a− 3) + 14 = 4a+ 2, which
implies e(G[W ]) = 4a+ 2.

The above constructions allow us to invoke Theorem 3, which implies that C4a+2,2 is balanceable.

Lemma 19. Let k be an integer such that k ≡ 2 mod 4, and let ` be an even integer such that ` > 2. The
circulant graph Ck,` is balanceable.

Proof. Let k = 4a+ 2 and ` = 2b. The proof for this lemma is a mix of the proofs for Lemmas 16 and 18: we
will use the structure we constructed in the proof for Lemma 16 and add either one or two independent edges
to it, modifying the structure to keep everything independent from each other.
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Figure 3: A depiction of the second case of the proof of Lemma 17 on C38,3 and C38,9. The vertices that we selected in V \W
are in black, and the edges outside of G[W ] are bolded.

First, we construct X in two steps. We begin by creating a set X1 by applying the same construction
than in the proof of Lemma 16 (so several sets of `

2 vertices at distance 2 along the outer cycle from each
other, each set being separated from the others by another vertex): a total of a− 1 such vertices are added
to X1. Then, let X2 := {u4a−1, u4a}. Now, we need X1 and X2 to be independent from each other, so if a
vertex in X1 is adjacent to a vertex in X2 (this can happen to at most one vertex), we remove it from X1

and add to this set the next vertex in the construction described in the proof of Lemma 16 (we may start a
new set this way). This is depicted on the left-hand side of Figure 4. The last vertex that is selected in X1

with our construction will have index:

imax ≤ 2a+
⌊a
b

⌋
− 2 + 3− 2.

That is, the same maximum index than in the proof of Lemma 16, but with two corrections: +3 may happen
since we could start a new set by shifting the neighbour of either u4a−1 or u4a (this gives us +2, and may
give us an additional +1 if the vertex we shift creates a new set), and −2 since we only need a− 1 vertices in
X1 (instead of the a from the proof of Lemma 16). Now, we need to prove that this last index is less than
4a− 1− `.

If ` ≥ a, then we can check that we will always have imax = 2a − 3 < 2a − 2 < 4a − 1 − ` since
` < k

2 = 2a + 1. Indeed, we will put in X1 first the b − 1 vertices u0, u2, . . . , u`−4, then the a − b vertices
u`−1, u`+1, . . . , u`+2(a−b)−3 (which is always possible since ` ≥ a). The last index will thus always be
`+ 2(a− b)− 3 = 2a− 3.

Assume now that ` < a. Since ` > 2, we have b ≥ 2 and thus bab c ≤ b
a
2 c ≤

a
2 + 1. Thus, imax ≤

2a+ bab c − 1 ≤ 2a+ a
2 + 1− 1 = 5a

2 < 3a ≤ 4a− 1− `.
Hence, in this construction, X1 and X2 are independent from each other, and by setting X = X1 ∪X2 we

have e(X,Y ) = 6 + 4(a− 1) = 4a+ 2.
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Now, as in the proof of Lemma 17, we have to deal with the case of C10,4. In this case, by setting
W := {u0, u1, u2, u4, u5, u6, u8}, we have e(G[W ]) = 10.

Finally, for k ≥ 14, we construct V \W by applying the same construction than in the proof of Lemma 16.
Let V1 be a set of a − 3 vertices constructed this way, then let either V2 = {u4a−4,4a−3} (if ` > 4) or
V2 = {u4a−7, u4a−6} (if ` = 4), and V3 = {u4a−1, u4a}. Again, we shift the potential vertices in V1 adjacent
to a vertex in V2 or V3 (at most 2 such vertices), and thus the highest index we can reach is:

imax ≤ 2a+
⌊a
b

⌋
− 2 + 6− 6.

The +6 comes from the two potential shifts, and the −6 from the fact that we select a− 3 vertices instead of
a. We now need to verify that imax < 4a− i− ` for i ∈ {4, 7} (depending on the value of `). We have three
cases to check:

1. If ` = 4, then imax ≤ 2a+ ba2 c− 2; and 4a− 7− ` = 4a− 11. Now, if a > 6 then since ba2 c ≤
a
2 it is easy

to check that imax ≤ 2a+ a
2 − 2 < 4a− 11. We need to check that imax < 4a− 11 in the remaining

cases:
(a) If a = 3, then we have V1 = ∅ so no contradiction arises;
(b) If a = 4, then we have imax = 0 and 4a− 11 = 5 so no contradiction arises;
(c) If a = 5, then we have imax = 3 and 4a− 11 = 9 so no contradiction arises;
(d) If a = 6, then we have imax = 5 and 4a− 11 = 13 so no contradiction arises.
Thus, if ` = 4, then imax < 4a− 7− `.

2. If ` ≥ a, then we can check that we will always have imax = 2a − 5 and 4a − 4 − ` ≥ 2a − 4 since
` < k

2 = 2a+ 1. Indeed, we will put in V1 first the b− 3 vertices u0, u2, . . . , u`−8 as well as u`−4, then
the a− b− 1 vertices u`−1, u`+1, . . . , u`+2(a−b)−5 (which is always possible since ` ≥ a). The last index
will thus always be `+ 2(a− b)− 5 = 2a− 5.

3. If ` > 4 (thus b > 2) and ` < a, then since bab c <
a
2 we have imax ≤ 2a + bab c − 2 < 5a

2 − 2; and
4a − 4 − ` > 3a − 4. Now, we know that a > ` > 4, so it is easy to check that 5a

2 − 2 < 3a − 4, and
thus, that imax < 4a− 4− `.

All those cases prove that V2 and V3 are independent from V1. By setting V \W = V1 ∪ V2 ∪ V3, we have
e− e(G[W ]) = 14 + 4(a− 3) = 4a+ 2, and thus e(G[W ]) = 4a+ 2.

Those two constructions, depicted in Figure 4, allow us to invoke Theorem 3, which implies that C4a+2,`

is balanceable when ` is even and ` > 2.

Together, Lemmas 13 to 19 prove the validity of Theorem 12, which fully characterizes which of the
circulant graphs are balanceable and which are not.

4. Balanceability of grids

In this section, we study the balanceability of grid graphs. In particular, we study rectangular and
triangular grids.

4.1. Rectangular grids
Let Gk,` be the rectangular grid graph with k vertices per row and ` vertices per column. It is easy to see

that Gk,` has k(`− 1) + (k − 1)` = 2k`− (k + `) edges, and this number is even if and only if k and ` have
the same parity.

Theorem 20. Let k and ` be two integers such that k, ` > 1. If k and ` have the same parity, then Gk,` is
balanceable.

Proof. In the grid graph Gk,` with vertex-set V and edge-set E, vertices can have degree two, three or four.
The repartition is as follows:
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Figure 4: A depiction of the proof of Lemma 19 on C38,8. On the left-hand side, the vertices in X are bolded, as well as the
edges between X and Y . On the right-hand side, the vertices in V \W are bolded, as well as the edges outside G[W ].

• 4 vertices of degree two (the corners);

• 2(k − 2) + 2(`− 2) = 2(k + `)− 8 vertices of degree three (the sides);

• k`− 2(k + `) + 4 vertices of degree four (the inside).

It is well-known that
∑

v∈V d(v) = 2|E|. We want to find an independent set of vertices I such that∑
v∈I d(v) =

|E|
2 . To do this, we can select one fourth of the vertices in every degree set. There are several

cases.

Case 1: If k and ` are even, then we can select 1 vertex of degree two, k+`
2 − 2 vertices of degree three, and

k`
4 −

k+`
2 + 1 vertex of degree four. It is always possible to select those vertices such that they induce an

independent set, since there is an independent set containing half the vertices of Gk,`, and in particular half
the corners, half of the sides and half of the inside. By applying Proposition 4, Gk,` is balanceable.

Case 2: If k and ` are odd, and k + ` is not a multiple of 4, then we can select 1 vertex of degree two,
k+`
2 − 3 vertices of degree three, and k`+7

4 − k+`
2 vertices of degree four. Again, it is always possible to

select those vertices such that they induce an independent set (by the same argument than the previous
case). Furthermore, k` + 7 is a multiple of 4: by noting k = 2a + 1 and ` = 2b + 1, we have k` + 7 =
4ab+ 2a+ 2b+ 1 + 7 = 4ab+ 8 + (2a+ 2b) = 4ab+ 8 + (k + `− 2), and the fact that k + ` is not a multiple
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of 4 implies that (k + `− 2) is. We will thus have:∑
v∈I

d(v) = 2 + 3

(
k + `

2
− 3

)
+ 4

(
k`+ 7

4
− k + `

2

)
= 2 + 3

k + `

2
− 9 + k`+ 7− 4

k + `

2

= k`− k + `

2

=
|E|
2

Proposition 4 then implies that Gk,` is balanceable.

Case 3: If k and ` are odd, and k + ` is a multiple of 4, then we can select 2 vertices of degree two,
k+`
2 − 3 vertices of degree three, and k`+5

4 − k+`
2 vertices of degree four. Again, it is always possible to

select those vertices such that they induce an independent set (by the same argument than the previous
case). Furthermore, k` + 5 is a multiple of 4: by noting k = 2a + 1 and ` = 2b + 1, we have k` + 5 =
4ab+ 2a+ 2b+ 1 + 5 = 4ab+ (2a+ 2b+ 6) = 4ab+ (k + `+ 4). We will thus have:∑

v∈I
d(v) = 4 + 3

(
k + `

2
− 3

)
+ 4

(
k`+ 5

4
− k + `

2

)
= 4 + 3

k + `

2
− 9 + k`+ 5− 4

k + `

2

= k`− k + `

2

=
|E|
2

Proposition 4 then implies that Gk,` is balanceable.

All possible cases have been covered, and thus if k and ` have the same parity, then the rectangular grid
Gk,` is balanceable.

4.2. Triangular grids
Let Th be the (equilateral) triangular grid with h vertices on each side. It is easy to see that Th has

3(h−1)h
2 edges, and that this is even if and only if h mod 8 ∈ {0, 1, 4, 5}. We will prove that some triangular

grids are not balanceable, while others are.

Theorem 21. Let h be a positive integer such that h mod 8 ∈ {0, 1, 4, 5}. The triangular grid Th is balanceable
if and only if h mod 8 ∈ {0, 1}.

Proof. We prove two statements here: the non-balanceability of T8k+4 and T8k+5; as well as the balanceability
of T8k and T8k+1.

We will consider the vertices of Th row by row, starting from a single vertex at the top of the grid. The
vertex uji will be the ith vertex (starting from the left) in the jth row (starting from the top), so the top
vertex is u11, the second row contains u21 and u22, and so on. Note that the three corner vertices have degree 2,
the vertices on the sides of the grid have degree 4, and the vertices in the middle have degree 6; thus Th is
eulerian.

First, assume that h = 8k + 4. Then, |E(G)|
2 = 3(8k+3)(8k+4)

4 = 48k2 + 42k + 9 and thus is odd. Since Th
is eulerian, Proposition 8 implies that it is not balanceable. The reasoning is the same with h = 8k + 5, with
|E(G)|

2 = 48k2 + 54k + 15.
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Now, assume that h ∈ {8k, 8k + 1}. We will prove that there is an independent set I such that∑
v∈I d(v) =

|E(G)|
2 , and apply Proposition 4 to complete the proof. We define, for every row except the

first, second and last ones, two kinds of independent sets: we call A-set of the ith row the independent set
containing all vertices ui2j+1 for j ≥ 0; and we call B-set of the ith row the independent set containing all
vertices ui2j for j ≥ 1. Note that, if i is odd, then the A-set of the ith row contains two vertices of degree 4
and i−3

2 vertices of degree 6; and the B-set of the ith row contains i−1
2 vertices of degree 6. In the following,

we will call degree of an A-set (resp. B-set) the sum of the degrees of the vertices it contains.

Case 1: h = 8k. Note that in this case, |E(G)|
2 = 48k2 − 6k. We take the following vertices in I:

1. u11:
2. B-sets on rows 3 + 2i for i ∈ {0, . . . , k − 1};
3. A-sets on rows 3 + 2k, 3 + 2k + 2, . . . , h− 1.

This is depicted on the left-hand side of Figure 5.
Thus, I contains u11 which has degree 2, k B-sets which have degree 6(i+ 1) for i ∈ {0, . . . , k − 1}, and

3k − 1 A-sets which have degree 8 + 6i for i ∈ {k, . . . , 4k − 2}. Thus, we have:

∑
v∈I

d(v) = 2 +

k−1∑
i=0

6(i+ 1) +

4k−2∑
i=k

(8 + 6i)

= 2 +
6k(k + 1)

2
+ 8(4k − 2) +

6(4k − 2)(4k − 1)

2
− 8(k − 1)− 6(k − 1)k

2

= 48k2 − 6k

Case 2: h = 8k + 1. Note that in this case, |E(G)|
2 = 48k2 + 6k. If h = 1 then the result trivially holds since

G is the trivial graph. Otherwise, we take the following vertices in I:

1. u11;
2. A-sets on rows 3, 5, . . . , h− 2, from which we remove k vertices of degree 6 (this is always possible since

those A-sets will contain
∑4k−2

i=0 i = 8k2 − 6k + 1 vertices of degree 6, and k ≥ 1⇒ 8k2 − 6k + 1 > k);
3. uh1 , uh3 , . . . , uhh.

This is depicted on the right-hand side of Figure 5.
Thus, I contains u11 which has degree 2, 4k − 1 A-sets which have degree 8 + 6i for i ∈ {0, . . . , 4k − 2},

from which we remove k vertices of degree 6 thus removing 6k, and the vertices selected on the last row
(4k − 1 of degree 4 and two of degree 2). Thus, we have:

∑
v∈I

d(v) = 2 +

4k−2∑
i=0

(8 + 6i)− 6k + 4(k − 1) + 2 + 2

= 2 + 8(4k − 1) +
6(4k − 2)(4k − 1)

2
− 6k + 16k

= 48k2 + 6k

Thus, we have proved that if h mod 8 ∈ {0, 1}, then Th is balanceable; and that if h mod 8 ∈ {4, 5}, then
Th is not balanceable. This completes the proof of Theorem 21.

12



Figure 5: The independent set I such that
∑

v∈I d(v) =
|E(G)|

2
for T8 (on the left) and T9 (on the right). Vertices in I are filled

in black, and the out-edges of I are thick.

5. Conclusion

In this paper, we extended the study of balanceable graphs initiated in [1], and used the characterization
of balanceable graphs given by Theorem 3 to state weaker but more practical conditions for balanceability
and non-balanceability. However, the question of how hard is the characterization of Theorem 3 remains open.
Note that this theorem states that a graph is balanceable if and only if it contains both a cut crossed by
half of its edges and an induced subgraph containing half of its edges. In particular, the problem of deciding
whether a graph has a cut crossed by exactly half of its edges is a variant on the problem Exact-Cut (which
asks whether a graph contains a cut crossed by exactly k edges), which is NP-complete:

Proposition 22. Let G be a graph and k a positive integer. The problem of deciding whether G contains a
cut crossed by exactly k edges is NP-complete.

Proof. The problem Exact-Cut is trivially in NP: a certificate will be a partition (X,Y ) and the verifier will
simply count the edges with one endpoint in X and the other in Y , which can be done in polynomial time.

We use a reduction from Simple-Max-Cut, which asks whether an unweighted graph contains a cut
crossed by at least k edges, and was proved to be NP-complete by Garey, Johnson and Stockmeyer [4]. Let
(G(V,E), k) be an instance of Simple-Max-Cut. We let G′ = G ∪K1,|E| (that is, the disjoint union of G
and a star with |E| leaves) and k′ = k + |E|. The instance (G′, k′) of Exact-Cut is equivalent to (G, k) for
Simple-Max-Cut. Indeed, if there is a cut (X,Y ) crossed by ` edges (with ` ≥ k) in G, then we can take
the same cut in the G component of G′, and add k + |E| − ` leaves of K1,|E| to X (which is always possible
since k ≤ ` ≤ |E|) and any remaining leaves as well as the central vertex of the star to Y , obtaining a cut
crossed by exactly k + |E| edges. Conversely, if there is a cut crossed by exactly k + |E| edges in G′, then at
most |E| of those edges can be found in the star, so at least k are found in G, and we can use the same cut
for Simple-Max-Cut.

However, note that the restriction of Simple-Max-Cut to k = |E|
2 has a trivial answer since there exists a

polynomial algorithm giving a cut crossed by at least half the edges of a graph [5]. Nonetheless, it seems that
guaranteeing a cut crossed by exactly half of the edges would remain difficult. This is one of the two possible
angles to tackle the problem of the computational complexity of balanceability by using the characterization
given by Theorem 3, the other one being the existence of an induced subgraph containing exactly half the
edges of the graph. Since both of those problems seem to be difficult on their own, we conjecture that the
problem of balanceability is NP-complete.

13



Conjecture 23. The problem of deciding whether a given graph is balanceable is NP-complete.

In this paper, we also studied the balanceability of the circulant graphs and of the rectangular and
triangular grids, for which we fully characterized those that are balanceable and those that are not. Other
graph classes that could be interesting to study are cubic graphs, as well as not necessarily regular classes
such as k-trees, outerplanar, or even planar graphs.
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