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Doubly nonlinear equation involving p(x)-homogeneous
operators: local existence, uniqueness and global

behaviour.

Rakesh Aroraa, Jacques Giacomonia,∗, Guillaume Warnaulta

aLMAP, UMR E2S-UPPA CNRS 5142 Bâtiment IPRA, Avenue de l’Université F-64013
Pau, France

Abstract

In this work, we investigate the qualitative properties as uniqueness, regular-
ity and stabilization of the weak solution to the nonlinear parabolic problem
involving general p(x)-homogeneous operators:

q

2q − 1
∂t(u

2q−1)−∇. a(x,∇u) = f(x, u) + h(t, x)uq−1 in (0, T )× Ω;

u > 0 in (0, T )× Ω;

u = 0 on (0, T )× ∂Ω;

u(0, .) = u0 in Ω.

Thanks to the Picone’s identity obtained in [10], we prove new results about
comparison principles which yield a priori estimates, positivity and uniqueness
of weak solutions.

Keywords: Doubly nonlinear equation, Polytropic filtration equation,
Leray-Lions operator with variable exponent, stablization.

2010 Mathematics Subject Classification: 35K55, 35J62, 35K65, 35K67.

1. Introduction and main results

The study of various differential equations and variational problems with
variable exponent has significantly influenced mathematics in recent years. In-
deed, the mathematical problems associated with nonstandard p(x)-growth con-
ditions are fascinating in applications as the nonlinear elasticity theory and
non-Newtonian fluids models. In specific, the importance of investigating these
kinds of problems lies in modeling of various anisotropic features that occur in
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electrorheological flows, image restoration, filtration process in complex media,
stratigraphy problems and heterogeneous biological interactions.
In the literature, there are many works that explore the questions of existence
(local or global), regularity or behaviour of solutions for parabolic equations
with variable exponent, for example [1, 2, 3, 6, 10, 29, 30]. Prior investiga-
tions have implemented diverse approaches to study the elliptic and parabolic
problems with nonstandard growth. In [10, 30], the authors have followed the
semigroup approach, involving the semi-discretization in time method for p(x)-
Laplacian and Leray-Lions type operators. In [3], the Galerkin method is used
alternatively to prove the existence of weak solutions and similarly in [2, 6],
the authors have used perturbation methods. We further specify that global
properties of solutions as extinction in finite time, localization, blow-up in finite
time are also explored in [4, 5]. The existence of mild solutions of parabolic
equation and its stabilization properties are studied in [30] for p(x)-Laplacian
and in [29] for Leray-Lions type operators.
The original model of our equation is given by

∂tu−∇. (|∇(um)|p−2∇(um)) = 0 in (0, T )× Ω. (1.1)

For p = 2 and m > 1, (1.1) is well-known as the porous media equation. More
generally, for p > 1 and m > 0, (1.1) is known as the Polytropic Filtration Equa-
tions (P.F.E.) (see [41]). The physical background of P.F.E. can be explained
by considering the flow of compressible non-newtonian fluid in the homogeneous
isotropic rigid medium which satisfies:{

ε∂tu = −∇(u
−→
V ) Mass balance

P = P0u
m State equation

where u is the particle density of the fluid,
−→
V is the momentum velocity, P is

the pressure, m is the polytropic constant and P0 is the reference pressure and ε
is the porosity of the medium. Due to the influence of molecular and ion effects
in non-newtonian fluids, the linear Darcy’s law is no longer valid. Instead, we
have the nonlinear version of Darcy’s law:

µ
−→
V = −λ|∇P|p−1∇P

where µ is the viscosity of the fluid and λ is the permeability of the medium.
By combining the two last equations, we obtain an equivalent form of (1.1).
Depending upon the value of m and p, (1.1) is called as Slow Diffusion Equation
(S.D.E.) if p > 1 + 1

m and Fast Diffusion Equation (F.D.E.) if p < 1 + 1
m (for

more details see Chapter 2, [41]). A main difference between the two cases
is the existence of solutions with compact support for the S.D.E whereas the
occurrence of dead core type solutions can not occur for the F.D.E. due to the
infinite speed of perturbations propagation.
In the framework of Doubly Nonlinear Equations (D.N.E. for short) i.e. p 6= 2
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and m 6= 1, (1.1) is referred in the literature (for instance see [33]) as:

p ∈ (1, 2) p > 2
m ∈ (0, 1) Doubly singular Degenerate-singular
m > 1 Singular-degenerate Doubly degenerate

The D.N.E. have significant interests because they possess a wide spectrum of
applications for instance in fluid dynamics, soil science, combustion theory, reac-
tion chemistry (see [8, 9, 12, 13, 14, 21, 31, 35, 37, 38] and reference therein) and
for D.N.E. involving p-Laplacian operator, we refer to [23, 34, 40, 42]. The non-
homogeneous variant of the model (1.1) together with multivalued source/sink
terms can also be interpreted as the limiting case (when m → 1) of the cli-
mate Energy Balance Models (see [15, 16, 22]). Recently, the study of D.N.E.
involving variable exponent growth are getting into substantial attention: the
authors in [10] have studied a class of (1.1) involving the p(x)-laplacian using
time-discretization method. The authors in [18, 19] and [6, 7] have studied exis-
tence of solutions to D.N.E. using a nonlinear version of minimizing movement
method and Galerkin method respectively.
In the present paper, we study the existence, uniqueness and qualitative proper-
ties of the weak solutions of the following D.N.E. driven by a general quasilinear
operator of Leray-Lions type:

q

2q − 1
∂t(u

2q−1)−∇. a(x,∇u) = f(x, u) + h(t, x)uq−1 in QT ;

u > 0 in QT ;

u = 0 on Γ;

u(0, .) = u0 in Ω,

(DNE)

where T > 0, q > 1, QT
def
= (0, T )× Ω with Ω ⊂ RN , N ≥ 1 a smooth bounded

domain, Γ
def
= (0, T )× ∂Ω and h belongs to L∞(QT ).

The main difference of this work with the previous studies is the doubly non-
linear feature together combined to the broad class of considered Leray-Lions
type operators a. More precisely, problem (DNE) involves a class of variational
operators a : Ω× RN → R defined as, for any (x, ξ) ∈ Ω× RN :

a(x, ξ) = (aj(x, ξ))j
def
=

(
1

p(x)
∂ξjA(x, ξ)

)
j

=
1

p(x)
∇ξA(x, ξ)

where A : Ω × RN → R+ is continuous, differentiable with respect to ξ and
satisfies:

(A0) ξ → A(., ξ) is p(x)-homogeneous i.e. A(x, tξ) = tp(x)A(x, ξ), for any
t ∈ R+, ξ ∈ RN and a.e. x ∈ Ω

with p ∈ C1(Ω) satisfying

1 < p−
def
= min

x∈Ω
p(x) ≤ p(x) ≤ p+

def
= max

x∈Ω
p(x) <∞.

This class of operators a also satisfies ellipticity and growth conditions:
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(A1) For j ∈ J1, NK, aj(x, 0) = 0, aj ∈ C1(Ω×RN\{0})∩C(Ω×RN ) and there
exist two constants γ, Γ > 0 such that for all x ∈ Ω, ξ ∈ RN\{0} and
η ∈ RN :

N∑
i,j=1

∂aj
∂ξi

(x, ξ) ηiηj ≥ γ|ξ|p(x)−2|η|2;

N∑
i,j=1

∣∣∣∣∂aj∂ξi
(x, ξ)

∣∣∣∣ ≤ Γ|ξ|p(x)−2.

Remark 1.1. The assumption (A1) gives the convexity of ξ 7→ A(x, ξ) and
growth estimates, for any (x, ξ) ∈ Ω× RN :

γ

p(x)− 1
|ξ|p(x) ≤ A(x, ξ) ≤ Γ

p(x)− 1
|ξ|p(x); |a(x, ξ)| ≤ C|ξ|p(x)−1; (1.2)

and, see [39], for any ξ, η ∈ RN and x ∈ Ω, there exists a constant γ0 > 0
depending on γ and p such that

〈a(x, ξ)− a(x, η), ξ − η〉 ≥ γ0

 |ξ − η|p(x) if p(x) > 2;
|ξ − η|2

(1 + |ξ|+ |η|)2−p(x)
if p(x) ≤ 2.

(1.3)

Moreover, the homogeneity assumption implies that A(x, ξ) = a(x, ξ).ξ for any
(x, ξ) ∈ Ω× RN .

Next, we impose the condition below to insure qualitative properties as regu-
larity and the validity of Hopf Lemma.

(A2) There exists C > 0 such that for any (x, ξ) ∈ Ω× RN\{0}:

N∑
i,j=1

∣∣∣∣ ∂ai∂xj
(x, ξ)

∣∣∣∣ ≤ C|ξ|p(x)−1(1 + | ln(|ξ|)|).

Remark 1.2. More precisely, from the condition (A2) we derive the Strong
Maximum Principle (see [43]) and the C1,α-regularity of weak solutions (see
Remark 5.3 in [26] and Remark 3.1 in [29]).

Concerning the conditions on the functions f and h, we assume:

(f0) f : Ω× R+ → R+ is a continuous function such that f(x, 0) ≡ 0 and f is
positive on Ω× R+\{0}.

(f1) For any x ∈ Ω, s 7→ f(x,s)
sq−1 is nonincreasing in R+\{0}.

and

(Hh) there exists h ∈ L∞(Ω)\{0}, h ≥ 0 such that h(t, x) ≥ h(x) for a.e in QT .
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The study of (DNE) is naturally concerned with the investigation of the follow-
ing associated parabolic problem:

vq−1∂t(v
q)−∇. a(x,∇v) = h(t, x)vq−1 + f(x, v) in QT ;

v ≥ 0 in QT ;

v = 0 on Γ;

v(0, .) = v0 in Ω.

(E)

We further prove that a weak solution of (E) is also a weak solution of (DNE).

By denoting W def
= W

1,p(x)
0 (Ω) (we refer to [24, 36] for the definitions and

properties of variables exponent Lebesgue and Sobolev spaces) and introduc-

ing weighted spaces with the notation δ(x)
def
= dist(x, ∂Ω):

L∞δ (Ω)
def
= {w : Ω→ R | measurable,

w

δ(.)
∈ L∞(Ω)}

endowed with the norm ‖w‖δ = supΩ

∣∣∣w(x)
δ(x)

∣∣∣ and for r > 0:

Mr
δ(Ω)

def
= {w : Ω→ R+ | measurable, ∃ c > 0,

1

c
≤ wr

δ(x)
≤ c},

we introduce the notion of weak solution of (E) as follows:

Definition 1.1. Let T > 0, a weak solution to (E) is any positive function
v ∈ L∞(0, T ;W) ∩ L∞(QT ) such that ∂t(v

q) ∈ L2(QT ) satisfying for any φ ∈
L2(QT ) ∩ L1(0, T ;W) and for any t ∈ (0, T ]∫ t

0

∫
Ω

∂t(v
q)vq−1φdxds+

∫ t

0

∫
Ω

a(x,∇v).∇φdxds

=

∫ t

0

∫
Ω

(h(s, x)vq−1 + f(x, v))φdxds

(1.4)

and v(0, .) = v0 a.e. in Ω.

Remark 1.3. In sense of Definition 1.1, a solution of (E) belongs to L∞(QT ),
hence q

2q−1∂t(v
2q−1) = vq−1∂t(v

q) ∈ L2(QT ) holds in weak sense and we deduce

the existence of a solution of (DNE).

Remark 1.4. Prototype examples of operators a satisfying (A0)-(A2) are given
below: for any (x, ξ) ∈ Ω× RN and p ∈ C1,β(Ω) by:

A(x, ξ) =

J∑
j=1

gj(x)

∑
i∈Pj

ξ2
i


p(x)
2


where (Pj)j∈J is a partition of J1, NK, gj ∈ C1(Ω) ∩C0,β(Ω) and gj(x) ≥ c > 0
for any j ∈ J .
In particular for A(x, ξ) = |ξ|p(x), (DNE) can be classified as S.D.E. if 2q < p−
and F.D.E. if 2q > p+.
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About the existence and properties of solutions of (E), we obtain

Theorem 1.1. Let T > 0 and q ∈ (1, p−). Assume A satisfies (A0)-(A2), f
satisfies (f0), (f1) and

(f2) The mapping x 7→ δ1−q(x)f(x, δ(x)) belongs to L2(Ωε) for some ε > 0

where Ωε
def
= {x ∈ Ω | δ(x) < ε}.

Then, for any h ∈ L∞(QT ) satisfying (Hh) and for any initial data v0 ∈
M1

δ(Ω) ∩W, there exists a unique solution in sense of Definition 1.1.
More precisely, we have:

(i) Let v, w be two weak solutions of (E) with respect to the initial data v0, w0 ∈
M1

δ(Ω) ∩W and h, g ∈ L∞(QT ) satisfying (Hh). Then, for any t ∈ [0, T ]:

‖(vq(t)− wq(t))+‖L2 ≤ ‖(vq0 − w
q
0)+‖L2 +

∫ t

0

‖(h(s)− g(s))+‖L2 ds. (1.5)

(ii) Assume in addition A satisfies, for any x ∈ Ω and for any ξ, η ∈ RN :

(A3) A(x, ξ−η2 ) ≤ ζ(x)(A(x, ξ)+A(x, η))1−s(x)
(
A(x, ξ) +A(x, η)− 2A(x, ξ+η2 )

)s(x)

where for any x ∈ Ω, s(x) = min{1, p(x)/2} and ζ(x) =
(
1− 21−p(x)

)−s(x)

if p(x) < 2 or ζ(x) = 1
2 if p(x) ≥ 2.

Then, v ∈ C([0, T ];W).

Remark 1.5. The above result can be generalized in case f(x, s)
def
= f̃(x, s) +

f̂(x, s) where f̃ satisfies (f1) and s → f̂(x,s)
sq−1 is Lipschitz with respect to the

second variable, uniformly in x ∈ Ω with constant ω > 0. Then if f satisfies
additionally (f0), (f2) and under same conditions for A and q, Theorem 1.1 still
holds, (1.5) being replaced by

‖(vq(t)− wq(t))+‖L2 ≤ eωt‖(vq0 − w
q
0)+‖L2 +

∫ t

0

eω(t−s)‖(h(s)− g(s))+‖L2 ds.

Similar results have been obtained in [23] in the case of the p−laplacian operator.

Remark 1.6. Prototype example of functions f satisfying (f0)-(f2) is given
by for any (x, s) ∈ Ω × R+, f(x, s) = g(x)δγ(x)sβ where g ∈ L∞(Ω) is a
nonnegative function, β ∈ [0, q − 1) and β + γ > q − 3

2 .

Remark 1.7. The condition (A3) reformulates the local form of Morawetz-type
inequality producing convergence properties.

In Theorem 1.1, the uniqueness of the solution in sense of Definition 1.1 is
obtained by the following theorem relaxing the assumptions on v0 and h. More
precisely, we show:
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Theorem 1.2. Let v, w be two solutions of (E) in sense of Definition 1.1 with
respect to the initial data v0, w0 ∈ L2q(Ω), v0, w0 ≥ 0 and h, h̃ ∈ L2(QT ).
Then, for any t ∈ [0, T ]:

‖vq(t)− wq(t)‖L2(Ω) ≤ ‖vq0 − w
q
0‖L2(Ω) +

∫ t

0

‖h(s)− h̃(s)‖L2(Ω) ds. (1.6)

Using a similar approach based on nonlinear accretive operators theory as in
[11, 29, 30], we introduce Tq : D(Tq) ⊂ L2(Ω)→ L2(Ω) be the operator with the
parameter q defined by

Tqu = −u(1−q)/q
(
∇. a(x,∇(u1/q)) + f(x, u1/q)

)
and the associated domain

D(Tq) = {w : Ω→ R+ | measurable, w1/q ∈ W ∩ L2q(Ω), Tqw ∈ L2(Ω)}.

Based on the accretive property of Tq in L2(Ω) (see Theorem 2.2 and Corollary
2.2) and additional regularity on initial data, we obtain the following stabiliza-
tion result for the weak solutions to (E):

Theorem 1.3. Under the assumptions of Theorem 1.1, let v be the weak solu-
tion of (E) with the initial data v0 ∈M1

δ(Ω)∩W. Assume that h ∈ L∞([0,+∞)×
Ω) satisfying (Hh) on [0,+∞)× Ω and there exists h∞ ∈ L∞(Ω) such that

t1+η‖h(t, .)− h∞‖L2 = O(1) at infinity for some η > 0. (1.7)

Then, for any r ∈ [1,∞)

‖vq(t, .)− vqstat‖Lr → 0 as t→∞

where vstat is the unique solution of associated stationary problem with the po-
tential h∞ ∈ L∞(Ω).

Remark 1.8. The stabilization in L∞-norm appeals new estimates linked to the
T -accretivity of the operator Tq in L∞ and in L1 (see Remark 1.6 and Theorem
2.1 in [17] and Theorem 1.18 in [32]).

Remark 1.9. In Theorem 1.3, we noticed that v0 ∈ M1
δ(Ω) ∩W implies vq0 ∈

D(Tq)
L2

(see Proposition 2.11 in [20]).

The current work extends significantly results contained in [10] which only
apply to the p(x)-Laplace operator. We also prove in the present paper new
stabilization results for (DNE). To this aim, we borrow the Picone’s identity
obtained in [10] that we recall in the next result:

Theorem 1.4 (Picone’s identity). Let B : Ω × RN → R be a continuous and
differentiable function satisfying (A0) such that ξ 7→ B(x, ξ) is strictly convex for
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any x ∈ Ω. Let u, v ∈ L∞(Ω) belonging to V̇ r+
def
= {w : Ω→ (0,+∞) | w 1

r ∈ W}
for some r ≥ 1. Then, for any x ∈ Ω

1

p(x)
∇ξB(x,∇(u1/r)).∇

(
v

u
r−1
r

)
≤ B

r
p(x) (x,∇(v1/r)) B

(p(x)−r)
p(x) (x,∇(u1/r))

where the inequality is strict if r > 1 or u
v 6≡ const. > 0.

We point out that the general form of operators requires to exploit sharply the
Picone’s identity. In this regard, the integrability of the quotient in this one
forces conditions of regularity or behaviours in the choices of test functions.
Another important part of our work is to study the convergence of the weak
solution to a steady state. To this goal, our approach is to use the semigroup
theory. Due to the general class of operators, additional technical computa-
tions are needed and performed with the help of the above Picone’s identity.
In our knowledge, the study of solutions of D.N.E involving the class of p(x)-
homogeneous operators are not discussed so far in literature. So, in this context
all results brought in this work are completely new. With both autonomous
and non-autonomous terms and the large class of considered operators, (DNE)
covers a large spectrum of physical situations. In our study, we also provide
new strong maximum principle and weak comparison principle in frame of the
large class of operators a.
Turning to the layout of the paper: in section 2, we study a problem related to
the parabolic problem (E) establishing existence and uniqueness results (Theo-
rem 2.1-2.2, Corollary 2.1-2.2). In section 3 we then prove Theorem 1.1. Pre-
cisely, we prove Theorems 3.1 concerning the existence of a weak solution in
sense of Definition 1.1 by semi-discretization in time method. Then the subsec-
tion 3.2 yields the proof of Theorem 1.2 and Corollary 3.1 giving the uniqueness
using Picone’s identity and Theorem 3.3 establishes the regularity of solutions
and then completes the proof of Theorem 1.1. Finally in section 4, we estab-
lish Theorem 1.3 via a classical argument of semigroup theory. In Appendix
AppendixA, we state in the framework of general class of operators a weak
comparison principle, strong maximum principle and regularity results.

2. Elliptic problem related to D.N.E.

In this section, we study a class of elliptic problem related to D.N.E. in order
to prove Theorem 1.1. First we start with a direct application of Theorem 1.4
which provides a comparison principle, uniform estimates and uniqueness.

Lemma 2.1. Let A : Ω× RN → R be a continuous and differentiable function
satisfying (A0) with a(x, ξ) = 1

p(x)∇ξA(x, ξ) such that ξ → A(x, ξ) is strictly

convex for any x ∈ Ω. Then, for r ∈ [1, p−), for any w1, w2 ∈ W ∩ L∞(Ω) two
positive functions and for any x ∈ Ω

a(x,∇w1).∇
(
wr1 − wr2
wr−1

1

)
+ a(x,∇w2).∇

(
wr2 − wr1
wr−1

2

)
≥ 0. (2.1)

If the equality occurs in (2.1), then w1 ≡ w2 in Ω.
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Proof. Let w1, w2 ∈ W ∩ L∞(Ω) such that w1, w2 > 0 in Ω. Then Theorem 1.4
yields

Ar/p(x)(x,∇w1)A(p(x)−r)/p(x)(x,∇w2) ≥ a(x,∇w2).∇
(

wr1
wr−1

2

)
.

Then, by using Young inequality and the equality A(x, ξ) = a(x, ξ).ξ, we obtain

a(x,∇w2).∇
(
w2 −

wr1
wr−1

2

)
≥ r

p(x)
(A(x,∇w2)−A(x,∇w1)). (2.2)

Reversing the role of w1 and w2:

a(x,∇w1).∇
(
w1 −

wr2
wr−1

1

)
≥ r

p(x)
(A(x,∇w1)−A(x,∇w2))

and adding the above inequalities we obtain (2.1) and the rest of the proof
follows from Theorem 5.2 in [29].

2.1. L∞-potential

In this subsection, we study the following associated elliptic problem:
v2q−1 − λ∇. a(x,∇v) = h0v

q−1 + λf(x, v) in Ω ;

v ≥ 0 in Ω ;

v = 0 on ∂Ω ,

(2.3)

where h0 ∈ L∞(Ω) and λ is a positive parameter. The notion of weak solution
of (2.3) is defined as follows:

Definition 2.1. A weak solution of (2.3) is any nonnegative and nontrivial

function v ∈ X
def
= W ∩ L2q(Ω) such that for any φ ∈ X∫

Ω

v2q−1φdx+ λ

∫
Ω

a(x,∇v).∇φdx =

∫
Ω

h0v
q−1φdx+ λ

∫
Ω

f(x, v)φdx. (2.4)

The first theorem gives the existence and the uniqueness of the weak solution
of (2.3).

Theorem 2.1. Assume that A satisfies (A0)-(A2) and f satisfies (f0) and (f1).
Then, for any q ∈ (1, p−), λ > 0 and h0 ∈ L∞(Ω)\{0}, h0 ≥ 0, there exists a
weak solution v ∈ C1(Ω) ∩M1

δ(Ω) to (2.3).
Moreover, let v1, v2 be two weak solutions to (2.3) with h1, h2 ∈ L∞(Ω)\{0},
h1, h2 ≥ 0 respectively, we have with the notation t+

def
= max{0, t}:

‖(vq1 − v
q
2)+‖L2 ≤ ‖(h1 − h2)+‖L2 . (2.5)
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Proof. Define the energy functional J on X:

J (v) =
1

2q

∫
Ω

v2q dx+ λ

∫
Ω

A(x,∇v)

p(x)
dx− 1

q

∫
Ω

h0(v+)q dx

− λ
∫

Ω

F (x, v) dx

(2.6)

where F (x, t) =

∫ t+

0

f(x, s)ds.

Note from (f0)-(f1) that there exists C > 0 large enough such that for any
(x, s) ∈ Ω× R+

0 ≤ f(x, s) ≤ C(1 + sq−1). (2.7)

By (1.2) and (2.7), J is well defined, continuous on X and we have

J (v) ≥ ‖v‖qL2q

(
c1‖v‖qL2q − c2

)
+ ‖v‖W

(
c3‖v‖p−−1

W − c4
)

where the constants do not depend on u. Thus we deduce that J is coercive on
X. Therefore we affirm that there exists v0 ∈ X a global minimizer of J .
Noting that, with the notation t− = t+ − t,

J (v0) ≥ J (v+
0 ) +

1

2q

∫
Ω

(v−0 )2q dx+ λ

∫
Ω

A(x,∇v−0 )

p(x)
dx ≥ J (v+

0 )

we deduce v0 ≥ 0. Let φ ∈ C1
c (Ω) be a nonnegative and nontrivial function,

thus for any t > 0
J (tφ) ≤ tq(c1tq + c2t

p−−q − c3)

where the constants are independent of t and c3 > 0 since h0 6≡ 0. Hence for t
small enough, J (tφ) < 0 and since J (0) = 0, we deduce v0 6≡ 0. The Gâteaux
differentiability of J insures that v0 satisfies (2.4).
From Proposition AppendixA.2, we deduce v0 ∈ L∞(Ω) and Theorem 1.2 in
[26] provides the C1,α(Ω)-regularity of v0 for some α ∈ (0, 1).
By (f0) and (f1), f satisfies lims→0+ f(x, s)s1−2q = ∞ uniformly in x ∈ Ω,
hence Lemma AppendixA.1 implies v0 ∈M1

δ(Ω).
Finally, let v1, v2 ∈ M1

δ(Ω) be two weak solutions of (2.3) with respect to h1

and h2 respectively. Namely, for any φ, Ψ ∈ X, we have∫
Ω

v2q−1
1 φdx+ λ

∫
Ω

a(x,∇v1).∇φdx =

∫
Ω

h1v
q−1
1 φdx+ λ

∫
Ω

f(x, v1)φdx

and∫
Ω

v2q−1
2 Ψ dx+ λ

∫
Ω

a(x,∇v2).∇Ψ dx =

∫
Ω

h2v
q−1
2 Ψ dx+ λ

∫
Ω

f(x, v2)Ψ dx.

10



Subtracting above expressions by taking φ =
(
v1 − vq2

vq−1
1

)+

and Ψ =
(
v2 − vq1

vq−1
2

)−
then by (f1) and Lemma 2.1, we obtain∫

Ω

((vq1 − v
q
2)+)2 dx ≤

∫
Ω

(h1 − h2)(vq1 − v
q
2)+ dx

≤ ‖(h1 − h2)+‖L2(Ω)‖(vq1 − v
q
2)+‖L2

from which (2.5) follows.

Remark 2.1. In the proof of Theorem 2.1, condition (f1) is not optimal to
obtain the existence of a minimizer and to apply Lemma AppendixA.1. Indeed
define a more general condition on f

(f ′1) lim sups→+∞
f(x,s)

sp−−1 < γΛp± uniformly in x ∈ Ω

where p± := p−
p+(p+−1) and Λ−1 def

= (sup‖u‖W=1(‖u‖Lp− (Ω)))
p− , condition (f ′1)

is a sufficient condition to obtain the existence of a weak solution of (2.3).
Moreover, to apply Lemma AppendixA.1 we assume in addition that f satisfies:

(f ′′1 ) lim infs→0+
f(x,s)
s2q−1 > 1 uniformly in x ∈ Ω.

Remark 2.2. Inequality (2.5) implies the uniqueness of the solution in the
sense of Definition 2.1. Moreover to obtain (2.5), we use more precisely φ, ψ
belong to L∞δ (Ω) ∩W. The uniqueness can be also obtained by using Theorem
AppendixA.1.

Remark 2.3. For q = 1, (2.3) becomes{
v + λT1 = h0 in Ω ;

v = 0 on ∂Ω.
(2.8)

For any h0 ∈ L∞(Ω) and for any f ∈ L∞(Ω × R) satisfying (f1) with q = 1,
following the proof of Theorem 2.1, we get the existence of a unique weak so-
lution v0 ∈ W ∩ L2(Ω) (not necessary nonnegative) in sense of Definition 2.1
with φ ∈ W ∩ L2(Ω).
Moreover, choosing as test function φ = (v0±M)+ where M = ‖h0‖L∞+‖f‖L∞ ,
we deduce v0 ∈ L∞(Ω) and hence for any λ > 0, R(I + λT1) = L∞(Ω).
Moreover, let v1 and v2 be two solutions to (2.8) with h1, h2 ∈ L∞(Ω) respec-
tively, we get from (1.3) and (f1): for any ` : R 7→ R Lipschitz and nondecreas-
ing function such that `(0) = 0:∫

Ω

(T1v1 − T1v2)`(v1 − v2) dx ≥ 0.

Thus, by section I.4. in [32], T1 is T -accretive in L1(Ω) namely for any h1, h2 ∈
L∞(Ω) and respectively v1, v2 the solutions to (2.8), we have

‖(v1 − v2)+‖L1 ≤ ‖(h1 − h2)+‖L1 .
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Finally, using Remark 1.6 in [17], T1 is T -accretive in Lm(Ω), for any m ∈
[1,∞] i.e

‖(v1 − v2)+‖Lm ≤ ‖(h1 − h2)+‖Lm , m ∈ [1,∞].

We point out that T -accretivity of Tq, for q > 1, in L2(Ω) is equivalent to∫
Ω

(Tqv1 − Tqv2)`(v1 − v2) dx ≥ 0

with the fixed choice `(t) = t+.

In the way of Remark 2.3, Theorem 2.1 implies existence, uniqueness and ac-
cretivity results for the perturbed problem induced by the operator Tq:

Corollary 2.1. Assume A satisfies (A0)-(A2) and f verifies (f0) and (f1).
Then, for any q ∈ (1, p−), λ > 0 and h0 ∈ L∞(Ω)\{0}, h0 ≥ 0, there exists a
unique solution u ∈ C1(Ω) of

u+ λTqu = h0 in Ω;

u > 0 in Ω;

u = 0 on ∂Ω.

(2.9)

Namely, u belongs to V̇ q+ ∩M
1/q
δ (Ω) and satisfies:∫

Ω

uψ dx+λ

∫
Ω

a(x,∇(u
1
q )).∇(u

1−q
q ψ)−f(x, u

1
q )u

1−q
q ψ dx =

∫
Ω

h0ψ dx (2.10)

for any ψ such that

|ψ|1/q ∈ L∞δ (Ω) and
|∇ψ|
δq−1(.)

∈ Lp(x)(Ω). (2.11)

Moreover, if u1 and u2 be two solutions of (2.9) corresponding to h1 and h2

respectively, then

‖(u1 − u2)+‖L2 ≤ ‖(u1 − u2 + λ(Tqu1 − Tqu2))+‖L2 . (2.12)

Proof. Define the energy functional E on V̇ q+ ∩ L2(Ω) as E(u) = J (u1/q) where
J is defined in (2.6).
Let v0 is the weak solution of (2.3) and the global minimizer of (2.6). We set

u0 = vq0. Then, u0 belongs to V̇ q+ ∩M
1/q
δ (Ω).

Let ψ satisfying (2.11). Then there exists t0 > 0 such that for t ∈ (−t0, t0),
u0 + tψ > 0. Hence we have E(u0 + tψ) ≥ E(u0) for any t ∈ (−t0, t0). Using
Taylor expansion, dividing by t and passing to the limit as t → 0 we deduce
that u0 verifies (2.10).

Consider ũ ∈ V̇ q+ ∩M
1/q
δ (Ω) another solution satisfying (2.10). Thus ṽ = ũ1/q

verifies (2.4) for φ ∈ L∞δ (Ω) ∩ W. By Remark 2.2, we deduce ṽ = v0 and the
uniqueness of the solution of (2.9). Finally (2.12) follows from (2.5).
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2.2. Extensions for L2-potential

We now generalize existence results of subsection 2.1 for h0 ∈ L2(Ω) by approx-
imation method.

Theorem 2.2. Assume A satisfies (A0)-(A2) and f verifies (f0) and (f1).
Then, for any q ∈ (1, p−), λ > 0 and h0 ∈ L2(Ω)\{0}, h0 ≥ 0, there exists
a positive weak solution v ∈ X of (2.3) in the sense of Definition 2.1. More-

over, if h0 ∈ Lr(Ω) for some r > max
{

1, Np−

}
, v ∈ L∞(Ω) and v is unique.

Proof. Consider hn ∈ C1
c (Ω), hn ≥ 0 which converges to h in L2(Ω). By

Theorem 2.1, for any n ≥ 1, define vn ∈ C1,α(Ω) ∩ M1
δ(Ω) as the unique

positive weak solution of (2.3) with h0 = hn.
For any s > 1 and a, b ≥ 0, observe that

|a− b|2s ≤ (as − bs)2. (2.13)

Hence (2.5) implies, for any n, p ∈ N∗:

‖(vn − vp)+‖L2q ≤ ‖(vqn − vqp)+‖qL2 ≤ ‖(hn − hp)+‖qL2 .

Thus we deduce that (vn) converges to v in L2q(Ω) and (vqn) converges to vq in
L2(Ω).
Note that the limit v does not depend to the choice of the sequence (hn) by
(2.5). So define in particular, for any n ∈ N∗, hn = min{h, n}. By (2.5), we
deduce that (vn) is nondecreasing and for any n ∈ N∗,

v(x) ≥ vn(x) ≥ v1(x) ≥ cδ(x) > 0 a.e. in Ω, (2.14)

for some c independent of n.
From (1.2), (2.7) and using Hölder inequality, equation (2.4) with φ = vn be-
comes

λγ

p+ − 1

∫
Ω

|∇vn|p(x) dx ≤
∫

Ω

a(x,∇vn).∇vn dx

≤ c (‖vn‖qL2q (‖hn‖L2 + 1) + ‖vn‖L2q )

≤ c (‖v‖qL2q (sup
n∈N
‖hn‖L2 + 1) + ‖v‖L2q )

for some c independent on n. Hence we deduce that (vn) is uniformly bounded
in W and vn converges weakly to v in W (up to a subsequence).
Now taking φ = vn − v in (2.4), we obtain as n→∞∣∣∣∣∫

Ω

f(x, vn)(vn − v) dx

∣∣∣∣+

∣∣∣∣∫
Ω

hnv
q−1
n (vn − v) dx

∣∣∣∣+

∣∣∣∣∫
Ω

v2q−1
n (vn − v) dx

∣∣∣∣→ 0

which infers

∫
Ω

a(x,∇vn).∇(vn − v) dx→ 0.

Since vn ⇀ v in W, we deduce that:∫
Ω

(a(x,∇vn)− a(x,∇v)).∇(vn − v) dx→ 0.
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Thus we infer that ∫
Ω

|∇(vn − v)|p(x) dx→ 0 as n→∞. (2.15)

Indeed we split Ω into two parts: Ωl = {x ∈ Ω : p(x) ≤ 2} and Ωu = {x ∈ Ω :
p(x) > 2}.
Since γ0 > 0, (1.3) implies (2.15) directly on Ωu. On Ωl, we get from the Hölder
inequality and (vn) bounded in W:∫

Ωl
|∇(vn − v)|p(x) dx

≤ c
∥∥∥∥ |∇(vn − v)|p(x)

(|∇v|+ |∇vn|)r(x)

∥∥∥∥
L

2
p(x) (Ωl)

‖(|∇v|+ |∇vn|)r(x)‖
L

2
2−p(x) (Ωl)

≤ c1
∥∥∥∥ |∇(vn − v)|p(x)

(|∇v|+ |∇vn|)r(x)

∥∥∥∥
L

2
p(x) (Ωl)

def
= c1N

≤ c1
(∫

Ωl

|∇(vn − v)|2 dx
(|∇v|+ |∇vn|)2−p(x)

dx

)p̂
where r(x) = p(x)(2−p(x))

2 , p̂ = min{1, p+2 } if N ≤ 1 and p̂ = p−
2 otherwise.

Hence from (1.3), we conclude (2.15) in Ωl and the convergence of (vn) to v in
W. Then by using dominated convergence Theorem and classical compactness
arguments, we obtain

a(x,∇vn)→ a(x,∇v) in
(
L

p(x)
p(x)−1

(Ω)
)N

.

Finally passing to the limit in (2.4) satisfied by vn and applying the dominated
convergence Theorem, we obtain v is a weak solution of (2.3). The regularity
arises from Proposition AppendixA.2.

Next result is the extension of Corollary 2.1 for L2-potential.

Corollary 2.2. Assume A satisfies (A0)-(A2) and f verifies (f0) and (f1).
Then, for any q ∈ (1, p−), λ > 0 and h0 ∈ L2(Ω) ∩ Lr(Ω)\{0} for some r >
max{1, Np− }, h0 ≥ 0, there exists a solution u of (2.9). Namely, u belongs to

V̇ q+∩L∞(Ω) and satisfies (2.10) for any ψ verifying (2.11) and there exists c > 0
such that u(x) ≥ cδq(x) a.e. in Ω.

Proof. Noting that the existence of a weak solution v0 ∈ L∞(Ω) of (2.3) for
h ∈ L2(Ω), can be obtained by global minimization method as in Theorem 2.1,
we deduce from Theorem AppendixA.1 that the solution obtained by Theorem
2.2 is a global minimizer.
Then we follow the same scheme as the proof of Corollary 2.1. We consider the
functional energy E defined on V̇ q+ ∩ L2(Ω). We set u0 = vq0. Then, u0 belongs

to V̇ q+ ∩ L∞ and (2.14) implies u0(x) ≥ cδq(x) a.e. in Ω.
Take ψ satisfying (2.11), then for t small enough, E(u0 + tψ) ≥ E(u0). From
classical arguments, we deduce that u0 verifies (2.10).
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3. Parabolic problem related to D.N.E.

In this section, we prove Theorems 1.1 by dividing the proof into three
main steps: existence, uniqueness and regularity of weak solution. The proof of
Theorem 1.1 (i) follows from the proof of Theorem 1.5 in [10] using Lemma 2.1,
Theorem 2.2 and Corollary 2.2. Thus we omit the proof.

3.1. Existence of a weak solution

In light of Remark 1.3 and improving Theorem 1.4 in [10] to p(x)-homogeneous
operator, we consider the problem (E) with v0 ∈M1

δ(Ω) ∩W.

Theorem 3.1. Under the assumptions of Theorem 1.1, there exists a solution
v to (E) in sense of Definition 1.1. Furthermore v belongs to C([0, T ];Lr(Ω))
for any r ≥ 1 and there exists C > 0 such that, for any t ∈ [0, T ]:

1

C
δ(x) ≤ v(t, x) ≤ Cδ(x) a. e. in Ω. (3.1)

Proof. The sketch of the proof is classical and in particular we follow the proof
of Theorem 1.4 in [10]. However, for the convenience of the readers, we give
the entire proof due to the general form setting of the operator a which requires
technical computations. We proceed in several steps:
Step 1: Semi-discretization in time of (E)
Let n? ∈ N∗ and set ∆t = T/n?. For n ∈ J0, n?K, we define tn = n∆t and for
(t, x) ∈ [tn−1, tn)× Ω :

h∆t
(t, x) = hn(x)

def
=

1

∆t

∫ tn

tn−1

h(s, x)ds.

Thus ‖h∆t‖L∞(QT ) ≤ ‖h‖L∞(QT ) and let ε > 0, then by density, there ex-
ists a function hε ∈ C1

0 (QT ) such that ‖hε − h‖L2(QT ) ≤ ε. Since hε is uni-
formly continuous, we infer that (hε)∆t

→ hε in L2(QT ) and by observing that
‖(hε)∆t

− h∆t
‖L2(QT ) ≤ ‖hε − h‖L2(QT ), we have

‖h∆t
− h‖L2(QT ) ≤‖h∆t

− (hε)∆t
‖L2(QT ) + ‖(hε)∆t

− hε‖L2(QT )

+ ‖hε − h‖L2(QT )

≤2‖hε − h‖L2(QT ) + ‖(hε)∆t
− hε‖L2(QT ) ≤ 3ε

for ∆t small enough. We then conclude that h∆t
→ h in L2(QT ).

Applying Theorem 2.1 with λ = ∆t, h0 = ∆th
n + vqn−1, we define the implicit

Euler scheme,
(
vqn − v

q
n−1

∆t

)
vq−1
n −∇. a(x,∇vn) = hnvq−1

n + f(x, vn) in Ω ;

vn ≥ 0 in Ω ;

vn = 0 on ∂Ω ,

(3.2)
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where, for all n ∈ J1, n?K, vn ∈ C1(Ω) ∩M1
δ(Ω) is the weak solution in sense of

Definition 2.1 .
Step 2: Sub- and supersolution
In this step, we establish the existence of a subsolution w and a supersolution
w of a suitable equations such that vn ∈ [w,w] for all n ∈ J0, n?K.
As in Theorem 2.1, we prove, for any µ > 0, there exists a unique weak solution,
wµ ∈ C1(Ω) ∩M1

δ(Ω), to
−∇. a(x,∇w) = µ(hwq−1 + f(x,w)) in Ω ;

w ≥ 0 in Ω ;

w = 0 on ∂Ω,

(3.3)

where h is defined in (Hh).
Let µ1 < µ2 and wµ1

, wµ2
be weak solutions of (3.3). Then,∫

Ω

a(x,∇wµ1
).∇φdx = µ1

∫
Ω

(hwq−1
µ1

+ f(x,wµ1
))φdx

∫
Ω

a(x,∇wµ2
).∇ψ dx = µ2

∫
Ω

(hwq−1
µ2

+ f(x,wµ2
))ψ dx.

Summing the above equations with φ =
(wqµ1

−wqµ2 )+

wq−1
µ1

and ψ =
(wqµ2

−wqµ1 )−

wq−1
µ2

, then

from (2.1) and (f1), we deduce (wµ)µ is nondecreasing. From Theorem 1.2 of
[26], we obtain for some α ∈ (0, 1)

‖wµ‖C1,α(Ω) ≤ C for µ ≤ µ0 (3.4)

with µ0 > 0 small enough and C = C(µ0, α). Therefore, (3.4) implies {wµ :

µ ≤ µ0} is uniformly bounded and equicontinuous in C1(Ω). Furthermore, from
Theorem AppendixA.2, we have that ‖wµ‖L∞ → 0 as µ→ 0. Applying Arzela-

Ascoli Theorem, we then obtain wµ → 0 in C1(Ω) as µ → 0. Then by Mean

Value Theorem, we choose µ small enough such that w
def
= wµ ∈ C1(Ω)∩M1

δ(Ω)
satisfies 0 < w ≤ v0.
Similarly, there exists wκ ∈ C1(Ω) ∩M1

δ(Ω) the weak solution of the following
problem:

−∇. a(x,∇w) = ‖h‖L∞(QT )w
q−1 + f(x,w) + κ in Ω ;

w ≥ 0 in Ω ;

w = 0 on ∂Ω .

(3.5)

By Theorem AppendixA.2 and by comparison principle, we have for κ large

enough that w
def
= wκ ≥ wκ ≥ v0 where wκ is the weak solution of (A.1).

Rewrite (3.2) as follows

v2q−1
n −∆t∇. a(x,∇vn) = ∆t

(
hnvq−1

n + f(x, vn)
)

+ vqn−1v
q−1
n .
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Since w ≤ v0 ≤ w and w, w are respectively a sub- and supersolution of the
above equation for n = 1, Theorem AppendixA.1 yields v1 belongs to [w,w] and
by induction vn ∈ [w,w] for any n ∈ J1, n?K.
Step 3: A priori estimates
Define the functions for n ∈ J1, n?K and t ∈ [tn−1, tn)

v∆t
(t) = vn and ṽ∆t

(t) =
t− tn−1

∆t
(vqn − v

q
n−1) + vqn−1

which satisfy

vq−1
∆t

∂tṽ∆t
−∇. a(x,∇v∆t

) = f(x, v∆t
) + hnvq−1

∆t
(3.6)

and by Step 2, there exists c > 0 independent of ∆t such that for any (t, x) ∈
QT

1

c
δ(x) ≤ v∆t

, ṽ
1/q
∆t
≤ cδ(x). (3.7)

In (3.2), summing from 1 to n′ ∈ J1, n?K and multiplying
vqn−v

q
n−1

vq−1
n

∈ X, Young’s

inequality implies

1

2

n′∑
n=1

∫
Ω

∆t

(
vqn − v

q
n−1

∆t

)2

dx+

n′∑
n=1

∫
Ω

a(x,∇vn).∇
(
vqn − v

q
n−1

vq−1
n

)
dx

≤ 2

n′∑
n=1

∆t‖hn‖2L2 + 2

n′∑
n=1

∆t

∥∥∥∥f(x, vn)

vq−1
n

∥∥∥∥2

L2

.

(3.8)

Since vn ∈ [w,w] ⊂ M1
δ(Ω), (2.7) and (f2) insure that f(x,vn)

vq−1
n

is uniformly

bounded in L2(Ω) in ∆t. Hence, combining (1.2), (2.2) and (3.8), we deduce,
for any n′ ≥ 1:∫

Ω

c1|∇vn′ |p(x) − c2|∇v0|p(x)

p(x)
dx ≤

∫
Ω

q

p(x)
(A(x,∇vn′)−A(x,∇v0)) dx

≤
n′∑
n=1

∫
Ω

q

p(x)
(A(x,∇vn)−A(x,∇vn−1)) dx

≤
n′∑
n=1

∫
Ω

a(x,∇vn).∇
(
vqn − v

q
n−1

vq−1
n

)
dx ≤ c3

where the constants c1 = qγ
p+−1 and c2 = qΓ

p−−1 . The above inequality implies

that

(v∆t
) is bounded in L∞(0, T ;W) uniformly in ∆t (3.9)

and from (3.8), we deduce

(∂tṽ∆t) is bounded in L2(QT ) uniformly in ∆t. (3.10)
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Moreover, for t̃ =
t− tn−1

∆t
, we have

∇(ṽ
1
q

∆t
) =

(
t̃+ (1− t̃)

(
vn−1

vn

)q) 1−q
q

(
t̃∇vn + (1− t̃)

(
vn−1

vn

)q−1

∇vn−1

)
.

Hence we deduce from (3.9) and Step 2 that

(ṽ
1/q
∆t

) is bounded in L∞(0, T ;W) uniformly in ∆t. (3.11)

Furthermore using (2.13), (3.10) implies

sup
[0,T ]

‖ṽ1/q
∆t
− v∆t

‖2qL2q(Ω) ≤ sup
[0,T ]

‖ṽ∆t
− vq∆t

‖2L2(Ω) ≤ o∆t
(1). (3.12)

Gathering (3.9)-(3.12), up to a subsequence, v∆t
, ṽ

1/q
∆t

∗
⇀ v in L∞(0, T ;W) as

∆t → 0.
From (3.7) and (3.10) we deduce that (ṽ∆t

)∆t
is equicontinuous in C([0, T ];Lr(Ω))

for any r ∈ [1,+∞). Moreover, from (2.13), we also deduce that (ṽ
1/q
∆t

)∆t is uni-
formly equicontinuous in C([0, T ];Lr(Ω)) for any r ∈ [1,+∞). Thus, by Arzela
Theorem, we get up to a subsequence that for any r ∈ [1,+∞)

ṽ∆t
→ vq in C([0, T ];Lr(Ω)) and v∆t

→ v in L∞(0, T ;Lr(Ω)), (3.13)

hence (3.7) implies (3.1). From (3.10) and (3.13), we obtain

∂tṽ∆t
→ ∂t(v

q) in L2(QT ). (3.14)

Step 4: v satisfies (1.4)
From (3.13) and (3.14), we have as ∆t → 0+∣∣∣∣∫

QT

vq−1
∆t

(v∆t − v)∂tṽ∆t dxdt

∣∣∣∣+

∣∣∣∣∫
QT

hnvq−1
∆t

(v∆t − v) dxdt

∣∣∣∣→ 0

and from (f0), (3.7) and (3.13), we obtain∫
QT

f(x, v∆t
)(v∆t

− v) dxdt→ 0 as ∆t → 0+.

Then, multiplying (3.6) to (v∆t
− v) and passing to the limit, we obtain∫

QT

a(x,∇v∆t
).∇(v∆t

− v) dxdt→ 0 as ∆t → 0+.

Since v∆t

∗
⇀ v in L∞(0, T ;W) and from the above limit, we conclude∫
QT

(a(x,∇v∆t)− a(x,∇v)).∇(v∆t − v) dxdt→ 0 as ∆t → 0+.

18



By (1.3) and classical compactness arguments, we get

a(x,∇v∆t
)→ a(x,∇v) in (Lp(x)/(p(x)−1)(QT ))N . (3.15)

Now, we pass to the limit in (3.6). First we remark that (vq−1
∆t

) converges to

vq−1 in L2(QT ). Indeed (2.13) and (3.12)-(3.13) imply as ∆t → 0:

‖vq−1
∆t
− vq−1‖

2q
q−1

L2(QT ) ≤ C
∫
QT

|vq−1
∆t
− vq−1|

2q
q−1 dxdt

≤ C
∫
QT

|vq∆t
− vq|2 dxdt

≤ C sup
[0,T ]

(
‖vq∆t

− ṽ∆t
‖2L2 + ‖ṽ∆t

− vq‖2L2

)
→ 0.

Hence plugging (3.10) and Step 1, we have in L2(QT ):

vq−1
∆t

∂tṽ∆t → vq−1∂t(v
q) and h∆tv

q−1
∆t
→ hvq−1.

Thus, we deduce, for any φ ∈ L2(QT ) as ∆t → 0+:∣∣∣∣∫
QT

(
vq−1

∆t
∂tṽ∆t

− vq−1∂t(v
q)
)
φdxdt

∣∣∣∣+ ∣∣∣∣∫
QT

(
h∆t

vq−1
∆t
− hvq−1

)
φdxdt

∣∣∣∣→ 0.

(3.16)
Furthermore from (2.7) and (3.7), (f(x, v∆t)φ) is uniformly bounded in L2(QT )
in ∆t and by (3.13) we have f(x, v∆t)φ → f(x, v)φ a.e in QT (up to a subse-
quence). Then, by dominated convergence Theorem we obtain∫

QT

f(x, v∆t)φdxdt→
∫
QT

f(x, v)φdxdt as ∆t → 0. (3.17)

Finally gathering (3.15)-(3.17), we conclude that v satisfies (1.4) by passing to
the limit in (3.6) for any φ ∈ L2(QT ) ∩ L1(0, T ;W).

3.2. Uniqueness

Proof of Theorem 1.2. Let ε ∈ (0, 1), we take

φ =
(v + ε)q − (w + ε)q

(v + ε)q−1
and Ψ =

(w + ε)q − (v + ε)q

(w + ε)q−1
(3.18)

both belonging to L2(QT ) ∩ L1(0, T ;W), in∫ t

0

∫
Ω

∂t(v
q)vq−1φdxds+

∫ t

0

∫
Ω

a(x,∇v).∇φdxds

=

∫ t

0

∫
Ω

h(s, x)vq−1φdxds+

∫ t

0

∫
Ω

f(x, v)φdxds,∫ t

0

∫
Ω

∂t(w
q)wq−1ψ dxds+

∫ t

0

∫
Ω

a(x,∇w).∇ψ dxds

=

∫ t

0

∫
Ω

h̃(s, x)wq−1ψ dxds+

∫ t

0

∫
Ω

f(x,w)ψ dxds
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and summing the above equalities, we obtain Iε = Jε where

Iε =

∫ t

0

∫
Ω

(
∂t(v

q)vq−1

(v + ε)q−1
− ∂t(w

q)wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds

+

∫ t

0

∫
Ω

a(x,∇(v + ε)).∇
(

(v + ε)q − (w + ε)q

(v + ε)q−1

)
dxds

+

∫ t

0

∫
Ω

a(x,∇(w + ε)).∇
(

(w + ε)q − (v + ε)q

(w + ε)q−1

)
dxds

and

Jε =

∫ t

0

∫
Ω

(
hvq−1

(v + ε)q−1
− h̃wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds

+

∫ t

0

∫
Ω

(
f(x, v)

(v + ε)q−1
− f(x,w)

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds.

First we consider Iε. Since w
w+ε ,

v
v+ε ≤ 1 and v, w ∈ L∞(QT ), we have∣∣∣∣∂t(vq)vq−1

(v + ε)q−1
− ∂t(w

q)wq−1

(w + ε)q−1

∣∣∣∣|(v + ε)q − (w + ε)q| ≤ C(|∂t(vq)|+ |∂t(wq)|)

where C depends on the L∞ norm of v and w and is uniform on ε ∈ (0, 1).
Moreover, as ε→ 0(

∂t(v
q)vq−1

(v + ε)q−1
− ∂t(w

q)wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q)→ 1

2
∂t(v

q − wq)2

a.e. in QT . Then dominated convergence Theorem and Lemma 2.1 give

lim
ε→0

Iε ≥
1

2

∫ t

0

∫
Ω

∂t(v
q − wq)2 dxds.

In the same way for Jε, dominated convergence Theorem implies∫ t

0

∫
Ω

(
hvq−1

(v + ε)q−1
− h̃wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds

→
∫ t

0

∫
Ω

(h− h̃)(vq − wq) dxds.

Moreover Fatou’s Lemma gives

lim inf
ε→0

∫ t

0

∫
Ω

f(x, v)

(v + ε)q−1
(w + ε)q dxds ≥

∫ t

0

∫
Ω

f(x, v)

vq−1
wq dxds,

lim inf
ε→0

∫ t

0

∫
Ω

f(x,w)

(w + ε)q−1
(v + ε)q dxds ≥

∫ t

0

∫
Ω

f(x,w)

wq−1
vq dxds.

Hence gathering the three last limits and from (f1), we obtain

lim inf
ε→0

Jε ≤
∫ t

0

∫
Ω

(h− h̃)(vq − wq) dxds.
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Since Iε = Jε, we conclude using Hölder inequality that for any t ∈ [0, T ]

1

2

∫ t

0

∫
Ω

∂t(v
q − wq)2 dxds ≤

∫ t

0

‖h− h̃‖L2(Ω)‖vq − wq‖L2(Ω) ds

and by Grönwall Lemma (Lemma A.4 in [20]) we deduce (1.6).

Hence we conclude the uniqueness of the solution in sense of Definition 1.1 in
Theorem 1.1:

Corollary 3.1. Let v be a solution of (E) in sense of Definition 1.1 with the
initial data v0 ∈ L2q(Ω), v0 ≥ 0 and h ∈ L2(QT ). Then, v is unique.

From Theorem 3.1 and Corollary 3.1, we deduce the existence result for the
parabolic problem involving the operator Tq:
Theorem 3.2. Under the assumptions of Theorem 1.1, for any u0 such that

u
1/q
0 ∈M1

δ(Ω) ∩W, there exists a unique weak solution u ∈ L∞(QT ) of
∂tu+ Tqu = h in QT ;

u > 0 in QT ;

u = 0 on Γ;

u(0, .) = u0 in Ω,

(3.19)

in the sense that:

• u1/q belongs to L∞(0, T ;W), ∂tu ∈ L2(QT );

• there exists c > 0 such that for any t ∈ [0, T ], 1
c δ
q(x) ≤ u(t, x) ≤ cδq(x)

a.e. in Ω;

• u satisfies, for any t ∈ [0, T ]:∫ t

0

∫
Ω

∂tuψ dxds+

∫ t

0

∫
Ω

a(x,∇u1/q).∇(u
1−q
q ψ) dxds

=

∫ t

0

∫
Ω

f(x, u1/q)u
1−q
q ψ dxds+

∫ t

0

∫
Ω

h(s, x)ψ dxds,

(3.20)

for any ψ such that

|ψ|1/q ∈ L∞(0, T ;L∞δ (Ω)) and
|∇ψ|
δq−1(·)

∈ L1(0, T ;Lp(x)(Ω)). (3.21)

Moreover, u belongs to C([0, T ];Lr(Ω)) for any r ∈ [1,+∞).

Proof. Let v be the weak solution of (E) in sense of Definition 1.1 obtained by
Theorem 3.1. Then, setting in (1.4) u = vq and choosing φ = ψ

vq−1 with ψ
satisfying (3.21), we get the existence of a solution of (3.19).
Let us consider the uniqueness issue: let ũ be another solution of (3.19). We
set ṽ = ũ1/q and taking ψ = vq−1φ with φ ∈ L∞(0, T ;L∞δ (Ω)) ∩ L1(0, T ;W)
in (3.20), we obtain that ṽ verifies (1.4) with the additional condition φ ∈
L∞(0, T ;L∞δ (Ω)). Since v, ṽ verify (3.1), the test functions defined in (3.18)
with v and ṽ belong to L∞(0, T ;L∞δ (Ω)). Hence (1.6) holds and we conclude
the uniqueness.
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3.3. Regularity of weak solution

Theorem 3.3. Under the assumptions of Theorem 1.1, assume in addition A
satisfies (A3). Then, v the weak solution of (E) obtained by Theorem 3.1 belongs
to C([0, T ];W).

Proof. The proof is similar as the proof of Theorem 1.1, Step 4 in [29]. However,
the nonlinear term in time implies a specific approach in the computations.
Hence for the reader’s convenience, we include the complete proof.
We have v ∈ L∞(0, T ;W)∩C([0, T ];Lp−(Ω)) and p ∈ C1(Ω), Theorem 8.4.2 in
[24] yields W ⊂ Lp−(Ω) with compact embedding. So we deduce t 7→ v(t) is
weakly continuous in W.

Moreover, we consider the mapping K(v) =
∫

Ω
A(x,∇v)
p(x) dx defined in W. The

convexity of A implies that K is weakly lower semicontinuous. Thus for any
t0 ∈ [0, T ], we have

K(v(t0)) ≤ lim inf
t→t0

K(v(t)). (3.22)

In (3.2), summing from n′ to n′′ and multiplying by
vqn−v

q
n−1

vq−1
n

∈ X, we obtain

n′′∑
n=n′

∫
Ω

∆t

(
vqn − v

q
n−1

∆t

)2

dx+

n′′∑
n=n′

∫
Ω

a(x,∇vn).∇
(
vqn − v

q
n−1

vq−1
n

)
dx

=

n′′∑
n=n′

∫
Ω

hn(vqn − v
q
n−1) dx+

n′′∑
n=n′

∫
Ω

f(x, vn)

vq−1
n

(vqn − v
q
n−1)dx.

As in Step 4 of the proof of Theorem 3.1, after using Lemma 2.1 we pass to
the limit as n→∞ and we get: for t ∈ [t0, T ]∫ t

t0

∫
Ω

∂t(v
q)2 dxds+ qK(v(t)) ≤

∫ t

t0

∫
Ω

h∂t(v
q) dxds+ qK(v(t0))

+

∫ t

t0

∫
Ω

f(x, v)

vq−1
∂t(v

q) dxds.

(3.23)

Taking lim sup in (3.23) as t→ t+0 and by (3.22) we deduce

lim
t→t+0

K(v(t)) = K(v(t0))

and hence we get the right-continuity of K.

Now, for t > t0, let η ∈ (0, t− t0). We multiply (E) by τηv =
vq(.+ η, .)− vq

ηvq−1
∈

L2(QT )∩L1(0, T ;W) and integrate over (t0, t)×Ω and hence by using Theorem
1.4 and Young inequality, we obtain:∫ t

t0

∫
Ω

vq−1∂t(v
q)τηv dxds+

q

η

∫ t

t0

K(v(s+ η))−K(v(s)) ds

≥
∫ t

t0

∫
Ω

hvq−1τηv dxds+

∫ t

t0

∫
Ω

f(x, v)τηv dxds.

(3.24)
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Since v ∈ L∞(0, T ;W) and K is right-continuous in W, by dominated conver-
gence Theorem, we have as η → 0+

1

η

∫ t0+η

t0

K(v(s)) ds→ K(v(t0)) and
1

η

∫ t+η

t

K(v(s)) ds→ K(v(t)).

Then (3.24) yields,∫ t

t0

∫
Ω

∂t(v
q)2 dxds+ qK(v(t)) ≥

∫ t

t0

∫
Ω

h∂t(v
q) dxds+ qK(v(t0))

+

∫ t

t0

∫
Ω

f(x, v)

vq−1
∂t(v

q) dxds.

From (3.23), we have the equality for any t, t0 ∈ [0, T ] in the above inequality
and we deduce the left-continuity of K.
By (A3), the proof of corollary A.3 in [28] holds by considering K as the semi-
modular. Then, we deduce that ∇v(t) converges to ∇v(t0) in Lp(x)(Ω)N as
t→ t0 and hence v ∈ C([0, T ];W).

4. Stabilization

4.1. Stationary problem related to (E)

In the aim of studying the behaviour of global solution of the problem (E)
as t→∞, we consider the following problem

−∇. a(x,∇v) = b(x)vq−1 + f(x, v) in Ω;

v ≥ 0 in Ω;

v = 0 on ∂Ω,

(S)

where b ∈ L∞(Ω). The notion of weak solution of (S) is defined as follows:

Definition 4.1. A weak solution to (S) is any nonnegative function v ∈ W ∩
L∞(Ω), v 6≡ 0 such that for any φ ∈ W, v satisfies∫

Ω

a(x,∇v).∇φdx =

∫
Ω

bvq−1φdx+

∫
Ω

f(x, v)φdx. (4.1)

Theorem 4.1. Assume that A satisfies (A0)-(A2) and (f0) and (f1) hold. Then,
for any q ∈ (1, p−), b ∈ L∞(Ω)\{0}, b ≥ 0, there exists a unique weak solution
v ∈ C1(Ω) ∩M1

δ(Ω) to (S).

Proof. Consider the energy functional L defined on W such that

L̃(v) =

∫
Ω

A(x,∇v)

p(x)
dx− 1

q

∫
Ω

b(v+)q dx−
∫

Ω

F (x, v) dx

where F is defined as in (2.6). By following the same arguments as in Theorem
2.1, we deduce the existence of nonnegative global minimizer v0 to L and the
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Gâteaux differentiability of L̃ implies v0 satisfies (4.1).
Combining Proposition AppendixA.1 and Theorem 4.1 in [27] , we deduce
v0 ∈ L∞(Ω). Then by Theorem 1.2 of [26], we obtain, v0 ∈ C1,α(Ω) for some
α ∈ (0, 1). From Lemma AppendixA.1, we deduce v0 > 0 and v0 belongs to
M1

δ(Ω).
Let ṽ0 another solution of (S). As previously, we deduce that ṽ0 ∈ C1,α(Ω) ∩
M1

δ(Ω).

We choose
vq0 − ṽ

q
0

vq−1
0

and
ṽq0 − v

q
0

ṽq−1
0

as test functions in (4.1) satisfied by v0 re-

spectively ṽ0, then adding the both equations we deduce from Lemma 2.1 and
(f1): ∫

Ω

a(x,∇v0).∇

(
vq0 − ṽ

q
0

vq−1
0

)
+ a(x,∇ṽ0).∇

(
ṽq0 − v

q
0

ṽq−1
0

)
dx = 0.

Applying once again Lemma 2.1, we obtain v0 = ṽ0.

Hence we obtain using the same way of the proof of Corollary 2.1:

Corollary 4.1. Under the conditions of Theorem 4.1, there exists a unique
solution u of the following problem

Tqu = b in Ω;

u > 0 in Ω;

u = 0 on ∂Ω.

(4.2)

Namely, u belongs to V̇ q+ ∩M
1/q
δ (Ω) and satisfies, for any ψ such that (2.11):∫

Ω

a(x,∇u1/q).∇(u
1−q
q ψ) dx−

∫
Ω

f(x, u1/q)

u(q−1)/q
ψ dx =

∫
Ω

bψ dx.

4.2. Proof of Theorem 1.3

Proof of Theorem 1.3. We consider two cases:
Case 1: h ≡ h∞.
We introduce the family {S(t); t ≥ 0} onM1/q

δ (Ω)∩V̇ q+ defined as w(t) = S(t)w0

where w is the solution obtained by Theorem 3.2 (and Theorem 3.1) of
∂tw + Tqw = h∞ in QT ;
w > 0 in QT ;
w = 0 on Γ;
w(0, .) = w0 in Ω.

(4.3)

Thus {S(t); t ≥ 0} defines a semigroup onM1/q
δ (Ω)∩ V̇ q+. Indeed the uniqueness

and properties of solution of (3.19) imply for any w0,

S(t+ s)w0 = S(t)S(s)w0, S(0)w0 = w0 (4.4)
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and from (3.13) the map t→ S(t)w0 is continuous from [0,∞) to L2(Ω).
Note that v = (S(t)w0)1/q is the solution of (E) in the sense of Definition 1.1

with h = h∞ and the initial data w
1/q
0 .

Let T > 0 and v be the solution of (E) obtained by Theorem 3.1 with h ≡ h∞
and the initial data v0, hence we get u(t) = v(t)q = S(t)u0 with u0 = vq0.
Let w = wµ be the solution of (3.3) and w = wκ be the solution of (3.5). Then,
w, w ∈ M1

δ(Ω) and for µ small enough and κ large enough, w is a subsolution
and w a supersolution of (S) with b = h∞ such that w ≤ v0 ≤ w.
We define u(t) = S(t)wq and u(t) = S(t)wq the solutions to (4.3). So u and
u are obtained by the iterative scheme (3.2) with v0 = w and v0 = w. Hence,
by construction the map t→ u(t) is nondecreasing, the map t→ u(t) is nonin-
creasing and (1.5) insures for any t ≥ 0,

wq ≤ u(t) ≤ u(t) ≤ u(t) ≤ wq a. e. in Ω. (4.5)

We set u∞ = limt→∞ u(t) and u∞ = limt→∞ u(t). Then from (4.4), the conti-
nuity in L2(Ω) and monotone convergence theorem, we get in L2(Ω):

u∞ = lim
s→∞

S(t+ s)(wq) = S(t)( lim
s→∞

S(s)(wq)) = S(t)u∞

and analogously we have u∞ = S(t)u∞. We deduce u∞ and u∞ are solutions

of (4.2) with b = h∞ and by uniqueness, we have ustat
def
= u∞ = u∞ where ustat

is the stationary solution of perturbed parabolic problem (4.2). Therefore from
(4.5) and dominated convergence Theorem, we obtain

‖u(t)− ustat‖L2 → 0 as t→∞.

Finally, using (4.5) and interpolation inequality ‖.‖r ≤ ‖.‖θ∞‖.‖1−θ2 , we conclude
the above convergence for any r ≥ 1.
Case 2: h 6≡ h∞.
From (1.7), for any ε and for some η′ ∈ (0, η), there exists t0 > 0 large enough
such that for any t ≥ t0:

t1+η′‖h(t, .)− h∞‖L2 ≤ ε.

Let T > 0 and v be the solution of (E) obtained by Theorem 3.1 with h and

the initial data v0 = u
1/q
0 and we set u = vq.

Since v satisfies (3.1), we can define ũ(t) = S(t + t0)u0 = S(t)u(t0). Then, by
(1.5) and uniqueness, we have for any t > 0:

‖u(t+ t0, .)− ũ(t, .)‖L2 ≤
∫ t

0

‖h(s+ t0, .)− h∞‖L2 ds ≤ ε

tη
′

0

≤ ε.

By Case 1, we have ũ(t)→ ustat in L2(Ω) as t→∞. Therefore, we obtain

‖u(t)− ustat‖L2 → 0 as t→∞

and by using interpolation inequality we conclude the proof of Theorem 1.3.
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AppendixA. Additional results

In this section, we give extensions of technical results for the class of operator
A or for some boundary value problems.
We begin by extending Theorem 4.3 in [10] using Lemma 2.1. Then, we obtain
the comparison principle:

Theorem AppendixA.1. Assume A satisfies (A0)-(A2) and f satisfies (f0)
and (f2). Let v, v ∈ X∩L∞(Ω) be nonnegative functions respectively subsolution
and supersolution to (2.3) for some h ∈ Lr(Ω), r ≥ 2, h ≥ 0. Then v ≤ v.

The proof is similar as the proof of Theorem 1.2 where the sub- and supersolution
do not need to belong to M1

δ(Ω). The proof is very similar and we omit it. In
the next theorem, we extend Lemma 2.1 of [25] and Lemma 3.2 of [29] for
p(x)-homogeneous operators.

Theorem AppendixA.2. Assume A satisfies (A0)-(A2). Let λ > 0 and wλ ∈
W ∩ C1,α(Ω) be the positive weak solution of{

−∇. a(x,wλ) = λ in Ω;

wλ = 0 on ∂Ω.
(A.1)

Then, there exists λ∗ > 0 such that wλ satisfies

• for any λ ≥ λ∗, ‖wλ‖L∞(Ω) ≤ C1λ
1/(p−−1) and wλ(x) ≥ C2λ

1
p+−1+ε δ(x)

for some ε ∈ (0, 1);

• for λ < λ∗, ‖wλ‖L∞(Ω) ≤ C3λ
1/(p+−1)

where the constants depend upon p+, p−, N, Ω and α. Moreover if λ1 < λ2 then
wλ1 ≤ wλ2 .

Now we state a Strong and Hopf maximum principle for variable exponent p(x)-
homogeneous operators and theirs proof follows from Lemma 3.3 and 3.4 in [10].

Lemma AppendixA.1. Let α, β be two measurable functions such that 1 <
β− ≤ β+ < α− ≤ α+ < ∞. Let h, l ∈ L∞(Ω) be nonnegative functions, h > 0
and k : Ω × R+ → R+ and A satisfies (A0)-(A1). Consider u ∈ C1(Ω) a
nonnegative and nontrivial solution to{

−∇. a(x,∇u) + l(x)uα(x)−1 = h(x)uβ(x)−1 + k(x, u) in Ω ;

u = 0 on ∂Ω .

If lim inf
t→0+

k(x, t)t1−α(x) > ‖l‖L∞ uniformly in x ∈ Ω, then u is positive in Ω.

Furthermore, if Ω satisfies the interior ball condition for any x ∈ ∂Ω, then
∂u
∂~n (x) < 0 where ~n is the outward unit normal vector at x.

We state a slight extension of Proposition A.1 in [10] and Proposition A.2 in
[29].
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Proposition AppendixA.1. Let q ∈ [1, p−). Assume A satisfies (A0)-(A2)
and u ∈ X satisfying for any Ψ ∈ X:∫

Ω

a(x,∇u).∇Ψ dx =

∫
Ω

huq−1Ψ dx

where h ∈ L2(Ω) ∩ Lr(Ω) with r > max{1, Np− }. Then u ∈ L∞(Ω).

Proposition AppendixA.2. Under the assumptions of Proposition AppendixA.1,
consider u ∈ X a nonnegative function satisfying, for any Ψ ∈ X, Ψ ≥ 0:∫

Ω

u2q−1Ψ dx+

∫
Ω

a(x,∇u) · ∇Ψ dx ≤
∫

Ω

(f(x, u) + huq−1)Ψ dx

where f verifies for any (x, t) ∈ Ω×R+, |f(x, t)| ≤ c1+c2|t|s(x)−1 with s ∈ C(Ω)
such that for any x ∈ Ω, 1 < s(x) < p∗(x) and h ∈ L2(Ω) ∩ Lr(Ω) with
r > max{1, Np− }. Then u ∈ L∞(Ω).

The proofs of above results follow the proofs of Theorem 4.1 in [27] and Propo-
sition A.1 in [10].
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