

LIFE CYCLE INVENTORY OF FRENCH FISHERIES: AGRIBALYSE FOR SEA PRODUCTS

Thomas Cloâtre ¹, Delphine Ciolek ¹, Vincent Colomb ², <u>Joël Aubin ³</u>

1: CNPMEM, Paris, France

2: ADEME, Angers, France

3: INRA, Rennes, France

Joel.aubin@inra.fr

t.cloatre@comite-peches.fr

OUTLOOK

Introduction

- 1) Building framework- scenarios
 - 1) Organisation
 - 2) Getting the stake-variables
 - 3) Getting the framework- scenarios
- 2) Outputs: the generated scenarios
 - 1) 7 scenarios out of the DESIRABLE's scope
 - 2) 9 scenarios on artisanal scale
 - 3) 7 scénarios on an industrial scale
- 3) Conclusion

ICV PÊCHE PROJECT

A co-constructed project to improve the environmental impact of French fishery sector

Objectives:

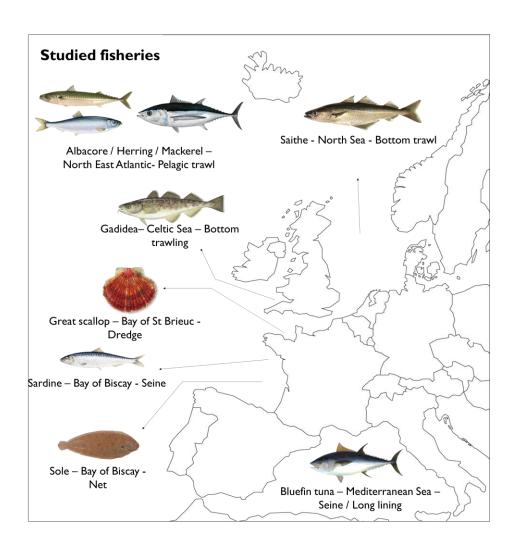
- improve knowledge and methods for environmental impact assessment of fishery products using LCA
- produce Life Cycle Inventories of representative products of French fisheries to include them in the AGRIBALYSE® database

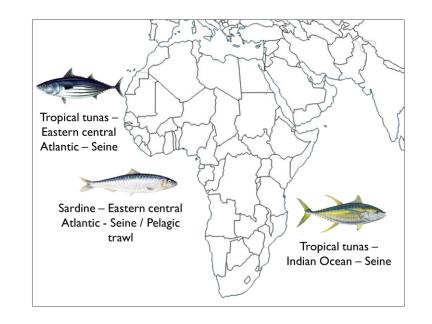
15 Partners:

- Representives of fishermen organizations
- Scientists from INRA and IRD
- engineering consultants

Financers:

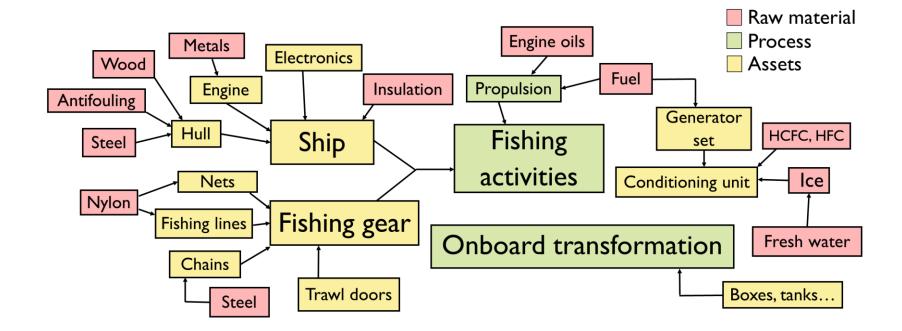
- **ADEME**
- France Filière Pêche





STUDIED FISHERIES

16 Triplets: species - fishing gear - fishing area



LCA SCOPE AND BONDARIES

Objective: Follow the PEF recommendations and ILCD framework

- Craddle to gate
- FU: 1 ton of landed product
- Allocation between species : mass basis

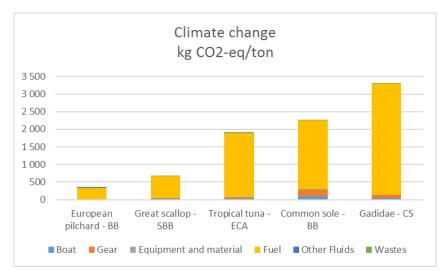


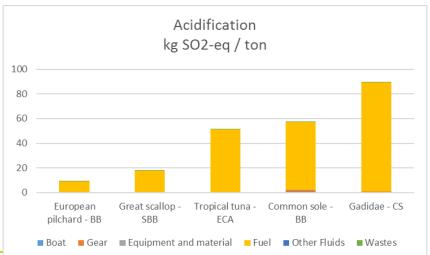
AS AN ILLUSTRATION: 5 TRIPLETS

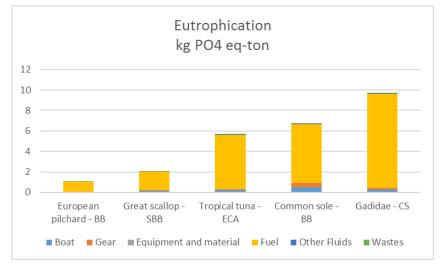
- European pilchard (Sardina pilchardus) fished in the Bay of Biscay by seine,
- Great scallop (*Pecten maximus*) harvested in Saint Brieuc Bay by dredge,
- Tropical tuna (Katsuwonus pelamis and Thunnus alalunga) fished in the Eastern-Central Atlantic sea by seine,
- Common sole (Solea solea) fished in the Bay of Biscay by trammel net

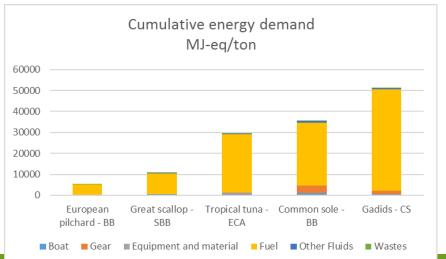
Gadids (Merlangius merlangus, Gadus morhua, Melanogrammus aeglefinus) fished in the Celtic Sea by benthic trawl

LIFE CYCLE INVENTORY

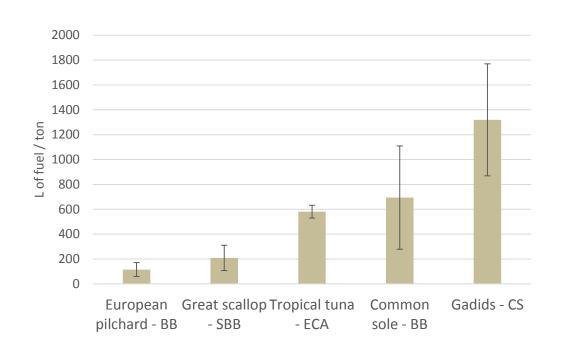



- Survey of 20-30 fishermen per triplet during 2016-2018
- Landings 2011-2015
- Use of national database on landing and bycatch





IMPACT ASSESSMENT FOR 1 TON OF LANDED FISH



FUEL CONSUMPTION

CHOICE OF BIOTIC IMPACTS FOR FISHERIES

Several types of impacts of fishery on marine ecosystem:

- on fish stocks by resource harvesting
- on habitats specifically benthos
- on species equilibrium and trophic chains
- On marine biodiversity

Indicators:

- Availability in littérature
- Sensitivity
- Equity (relevant for all types of fishery)
- Availability of data
- LCA compliant

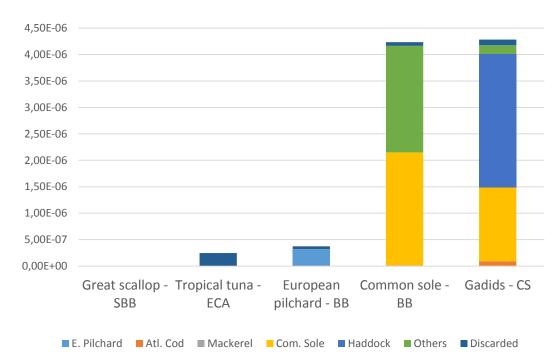
Selected with scientists and fishery representatives

PRESSURE ON FISH STOCKS

I _{Stocks} = (Fish mass X CF + Discarded mass X CF)/Fish mass

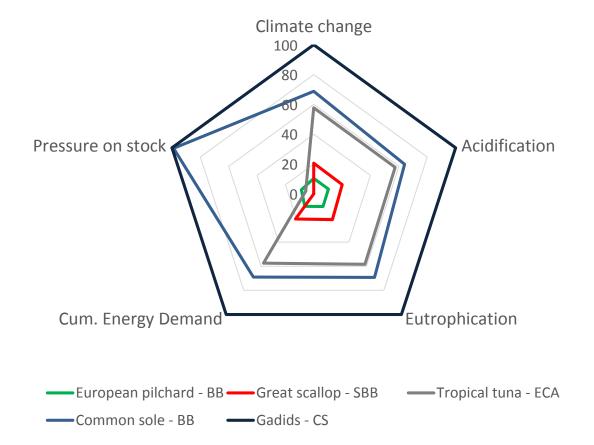
$$\mathsf{CF} = \left(\frac{\mathsf{F}}{\mathsf{F}_{\mathsf{MSY}}} - 1\right) \cdot \frac{1}{\mathsf{B}}$$

F: Pressure on fish stock


MSY: Maximum Sustainable Yield

B: Biomass

Based on littérature :


Emanuelson A., Ziegler F., Pihl L., Sköld M. & Sonesson U., 2014. Accounting for overfishing in life cycle assessment: New impact categories for biotic resource u se. International Journal of Life Cycle Assessment. 19(5). pp 1156-1168. 13 p. Froese, R., Demirel, N., Coro, G., Kleisner, K.M., Winker, H. 2017. Estimating fis heries reference points from catch and resilience. Fish and Fisheries. 18, 506-52 6.

Hélias, A., Langlois, J., Fréon, P., 2018. Fisheries in life cycle assessment: Operational factors for biotic resources depletion. Fish and Fisheries. In press.

IMPACT COMPARISON

COMMENTS

LCA Food 2018

General Trends

- More fuel consumption with benthic trawling
- Less environmental impact for monospecific pelagic fisheries (pilchard)
- The consumable protein yield shoud be taken into account (Scallops)
- Plurispecific artisanal fisheries have higher pressure on stocks

Limits

Precise data on landings is difficult to obtain

By-catches and discarded are difficult to evaluate and statistics are scarce

Other impacts on marine ecosystem should be implemented

CONCLUSION

- A first experiment on French fisheries achieved
- A constructive dialogue between the partners to build perspectives for fisheries
- Tools for data collection, a methodological report with details on practices, are availabale for further LCA studies
- A database to be implemented in the national Agribalyse database
- A new project to better analyse and exploit data

THANK YOU FOR YOUR ATTENTION

