Bowen Yi 
email: b.yi@outlook.com
  
Romeo Ortega 
email: ortega@lss.supelec.fr
  
Houria Siguerdidjane 
email: houria.siguerdidjane@centralesupelec.fr
  
Juan E Machado 
email: juan.machado@l2s.centralesupelec.fr
  
Weidong Zhang 
email: wdzhang@sjtu.edu.cn
  
On Generation of Virtual Outputs via Signal Injection: Application to Observer Design for Electromechanical Systems

Keywords: Signal Injection, Observer Design, Nonlinear Systems, Electromechanical Systems

, where it is shown that the signal injection may be used to generate a new high frequency component of the systems output that can be used for state observation or controller design. A key step for the success of this technique is the implementation of a filter to reconstruct this virtual output from the measurement of the overall systems output. The main contribution of this paper is to propose a new filter with guaranteed convergence properties that outperforms the classical designs. The method is applied to a general class of electromechanical systems, and its performance is assessed via simulations and experiments on the benchmark example of a 1-dof magnetic levitation system.

Introduction

Many high-performance controller design techniques for nonlinear systems rely on the availability of the systems state. In many practical applications, the installation of sensors is stymied by cost and technological considerations. Observer design can then be invoked to reconstruct the state via input and output measurements. It is clear, however, that the system must satisfy some observability property for the success of this approach, see e.g., [START_REF] Besançon | Nonlinear Observers and Applications[END_REF][START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF]. In the case when the latter is not satisfied, it is still possible to extract additional information from the system via probing signal injection-that is a well-established technique widely used in several applications.

A typical example is the estimation of position in electrical motors, which are non-observable at zero speed [START_REF] Glumineau | Observability property of AC machines[END_REF][START_REF] Marino | Induction Motor Control Design[END_REF]. It is well-known that injecting a high frequency signal in the voltage and measuring the output current it is possible to generate a reasonable estimate of the rotor angle [START_REF] Holtz | Sensorless control of induction machines: With or without signal injection[END_REF][START_REF] Nam | AC Motor Control and Electric Vehicle Application[END_REF][START_REF] Vas | Sensorless Vector and Direct Torque Control[END_REF]. Indeed, due to existence of rotor saliency and/or flux saturation, the injected signal at the voltage induces a decomposition of the measured current into a low and a high frequency component, from knowledge of the latter it is possible to recover the rotor angle, which is a necessary information for high performance controller design. Clearly, a key step for the successful application of this technique is the identification of the high frequency component of the current, a task that is typically accomplished with a combination of linear time-invariant (LTI) high-pass filters and low-pass filters [START_REF] Nam | AC Motor Control and Electric Vehicle Application[END_REF].

Another example of practical interest is magnetic levitation (MagLev) systems, where position control of the levitated object is of paramount importance and existing position sensors are expensive and unreliable. The interested reader is referred to [START_REF] Glück | A novel robust position estimator for selfsensing magnetic levitation systems based on least squares identification[END_REF][START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF][START_REF] Mizuno | Stability analysis of self-sensing magnetic bearing controllers[END_REF] for a review of the existing literature on sensorless control of MagLev systems reported in the control community and to [START_REF] Ranjbar | Estimation of airgap length in magnetically levitated systems[END_REF][START_REF]Magnetic Bearings: Theory, Design and Application to Rotating Machinery[END_REF] for results found in applications literature.

The main contribution of this paper is to propose a new filtering technique to identify the high frequency component of the output induced by the signal injection, which is applicable for general nonlinear systems. Instrumental for our developments is the use of the mathematical formalism proposed in the recent interesting paper [START_REF] Combes | Adding virtual measurements by signal injection[END_REF] where, invoking second order averaging theory [START_REF] Sanders | Averaging Methods in Nonlinear Dynamical Systems[END_REF], it is shown that injecting a periodic high-frequency signal in the systems input generates an output consisting of the sum of a low and a high frequency component-the first one corresponding to the output of the systems average dynamics and the second one called virtual output. A sliding-window filtering technique to identify the virtual output is then proposed in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF], which is used to design an (augmented) output-feedback control law. See also [START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF] where a slight extension of this technique is used to enlarge the domain of applicability of the parameter estimation-based observer proposed in [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF].

The filter design technique proposed in this paper relies on the following two key observations. First, that the task of reconstructing the virtual output can be recast as a problem of estimation of parameters in a linear regression model. 1 Second, the observation that the particular form of the regressor can be exploited to apply the dynamic regressor extension and mixing (DREM) estimator proposed in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF], with some suitable operators that, on one hand, generate extended regressor and, on the other hand, guarantee the excitation conditions needed for exponential parameter convergence. Three significant advantages of the proposed filter are, first, that the exponential stability property makes the filter robust, a property that should be contrasted with the sensitivity to measurement noise observed for the sliding-window filter of [START_REF] Combes | Adding virtual measurements by signal injection[END_REF]. Second, that due to the fact that the filter implementation relies on the use of linear time-varying (LTV) filters, it has a very simple practical implementation. Third, the new filter has a clear connection with the standard approach of high-pass/low-pass filtering universally adopted in practice, simplifying in this way the communication with the applied community.

In the second part of this paper we show how the new filtering technique can be applied to estimate the electrical coordinates of a general class of electro-mechanical systems (EMS), assuming that only the current and the voltage are measurable. This observation step is essential for the design of sensorless (also called self-sensing) controllers, which is a topic of great interest to the applied [START_REF] Choi | Robust adaptive sensorless control for permanent magnet synchronous motors[END_REF][START_REF] Holtz | Sensorless control of induction machines: With or without signal injection[END_REF][START_REF] Ranjbar | Estimation of airgap length in magnetically levitated systems[END_REF][START_REF]Magnetic Bearings: Theory, Design and Application to Rotating Machinery[END_REF] and the control theory [START_REF] Bernard | Convergence of gradient observer for rotor position and magnet flux estimation of permanent magnet synchronous motors[END_REF][START_REF] Combes | Adding virtual measurements by signal injection[END_REF][START_REF] Glück | A novel robust position estimator for selfsensing magnetic levitation systems based on least squares identification[END_REF][START_REF] Marino | Induction Motor Control Design[END_REF][START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF][START_REF] Mizuno | Stability analysis of self-sensing magnetic bearing controllers[END_REF][START_REF] Ortega | Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability[END_REF][START_REF] Verrelli | Nonlinear tracking control for sensorless permanent magnet synchronous motors with uncertainties[END_REF] communities. Indeed, it is widely recognized that in motors, as well as MagLev systems, the key step to observe the mechanical coordinates is the reconstruction of the electrical coordinates, i.e., fluxes and charges. The new observer is applied to the optical switch and the one-degree-of-freedom (1-dof) MagLev systems, with illustrative experiments carried out for the latter.

The remainder of the paper is organized as follows. Section 2 gives some preliminaries on the analysis techniques of [START_REF] Combes | Adding virtual measurements by signal injection[END_REF] and the DREM estimator of [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. The main result of the paper, namely a new filter to reconstruct the virtual output, is presented in Section 3. In Section 4 we apply this filter to a class of EMS, which includes the practical examples discussed in Section 5, where we present a detailed discussion, including experimental evidence, of its application for the critically important case of a 1-dof MagLev system. The paper is wrapped-up with concluding remarks and future research directions in Section 6.

Caveat. An abridged version of this paper was reported in [START_REF] Yi | An adaptive observer for sensorless control of the levitated ball using signal injection[END_REF].

Notation. t is an exponentially decaying term with a proper dimension. I q is the q-dimensional identity matrix. det{A} and adj{A} represent the determinant and the adjunct matrix of a square matrix A. The Laplace transform symbol s is used also to denote the derivative operator d dt . For an operator H acting on a signal we use the notation H[•](t), when clear from the context, the argument t is omitted. O is the uniform big O symbol, that is, f (z, ε) if and only if |f (z, ε)| ≤ Cε for a constant C independent of z and ε. All mappings are assumed smooth enough. We define the operator ∇ := (∂/∂x) .

Preliminaries

In this section we briefly review the two main tools used for the development of the proposed virtual output filter.

Signal injection and virtual outputs

Let us first recall some results on the signal injection method proposed in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF]. Consider the nonlinear system

ẋ = f (x) + g(x)u, y = h(x), (1) 
where x ∈ R n , y ∈ R m , and u ∈ R p . To generate the virtual output we apply the following input to the system

u = u C + s b , s b = s t ε b, (2) 
where u C is the plants nominal input, typically the output of the controller, and s b is a high-frequency signal, with s(•) a 1-periodic, zero mean function, ε ∈ (0, 1) is a small constant, and b ∈ R p is a free constant "scaling" vector. A key result of the signal injection method in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF], which is established by second-order averaging analysis, is as follows. See also [START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF] for the multi-input case with application to parameter estimation-based observer design.

Proposition 1. Consider the system (1), [START_REF] Andrieu | On the existence of a Kazantzi-Kravaris-Luenberger observer[END_REF] where u C is a signal such that all state trajectories are bounded. There exists ε * > 0, such that ∀ε ∈ (0, ε * ],

2 x = x + εSg(x)b + O(ε 2 ), (3) 
is satisfied, where

S(t) := S 0 t ε , S 0 (t) := t 0 s(τ )dτ - 1 0 σ 0 s(τ )dτ dσ, (4) 
and x is generated as ẋ = f (x) + g(x)u C with x(0) = x(0), assuming 1 0 σ 0 s(τ )dτ dσ = 0. Furthermore, we have the identity

y = ȳ + εSy v + O(ε 2 ), (5) 
where

ȳ := h(x), y v := ∇h (x)g(x)b. (6) 
Notice that if we substitute t = 0 into (3)-( 4), it is easy to see that 1 0 σ 0 s(τ )dτ dσ = 0 is a necessary condition for x(0) = x(0). Hence, the last term in the primitive function S 0 (•) disappears.

The next step in the signal injection method is to estimate, from the measurement of y, the virtual output y v . To simplify the notation, and with some obvious abuse of notation, in the sequel we omit the clarification that the averaging analysis only ensures the existence of an upper bound on ε such that (5) holds, and we simply assume that ε is small enough.

Dynamic regressor extension and mixing

DREM is a novel approach for estimation of the parameters in a regression model proposed in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. The main feature of DREM is that it allows to generate q scalar regression models, where q is the dimension of the unknown parameter vector. In this way, parameter convergence is guaranteed without the standard persistency of excitation (PE) assumption 3 on the regressor, which is necessary in classical gradient or least-squares estimators [START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF].

The main result of DREM for linear regressions is summarized in the following proposition.

Proposition 2. [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF] Consider the q-dimensional linear regression

c = φ θ, (7) 
where c ∈ R and φ ∈ R q are known, bounded functions of time and θ ∈ R q is a vector of unknown, constant parameters. Introduce a linear, single-input q-output, L ∞ -stable operator H : L ∞ → L q ∞ , and define the signals

C ∈ R q and Φ ∈ R q×q as C(t) := H[c](t), Φ(t) := H[φ 1 ](t) | . . . | H[φ q ](t) .
The gradient-descent estimator 4θi = γ i ∆(C i -∆ θi ), i ∈ {1, 2, . . . , q}, with adaptation gains γ i > 0, and the signals ∆ ∈ R and C ∈ R q defined as ∆ := det{Φ} and C := adj{Φ}C, guarantees • (element-wise parametric error monotonicity) The estimation error θ := θ -θ satisfies

| θi (t b )| ≥ | θi (t a )|, ∀ t a ≥ t b ≥ 0;
• (condition for parameter convergence)

lim t→∞ θi (t) = 0 ⇐⇒ ∆ / ∈ L 2 .
Moreover, if ∆ is PE then the parameter convergence is exponential.

The elements of the operator H may be simple, exponentially stable LTI filters of the form H i (s) =

α i s+β i , with α i = 0, β i > 0. Another option of interest is delay operators, that is [H i (•)](t) := (•)(t -d i ),
where d i > 0. See [START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF] for the case of general LTV operators and the connection of DREM with Luenberger functional observers. 3 We recall that a bounded vector signal φ ∈ R q is said to be PE if there exist δ > 0 and T > 0 such that t+T t φ(τ )φ (τ )dτ ≥ δI q for all t ≥ 0.

A New Procedure to Reconstruct y v

In this section, we give the main result of this note, namely, a DREM-based filter to reconstruct the virtual output y v .

A linear regressor viewpoint

The first step to apply DREM is to obtain the linear regression model. For, we make the key observation that there exists a time-scale separation between the probing signal S that, by definition, has a high frequency, and the signals ȳ and y v . This motivates us to view (5) as an LTV regression perturbed by a small term O(ε 2 ). Whence, we write (5) as

y = φθ + O(ε 2 ) θ = θ 1 θ 2 := ȳ εy v ∈ R 2m , φ := I m S(t)I m ∈ R m×2m , (8) 
with y the measurable signal, and φ and θ playing the roles of known regressor and (slowly time-varying) parameters to be estimated.

Generation of a linear regressor for θ 2 only

Although it is possible to show that φ is PE and, consequently, apply a gradient estimator to the linear regression [START_REF] Choi | Sensorless control of IPMSM based on regression model[END_REF], transient performance can be improved observing that we are interested in reconstructing only y v , i.e., only the estimation of θ 2 is of interest. To achieve this end, we need to construct a new linear regression where only the parameter θ 2 appears, which is possible following the DREM methodology, with suitably chosen operators.

Similarly to [START_REF] Combes | Adding virtual measurements by signal injection[END_REF][START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF] we consider the use of the weighted zero-order hold (WZOH) operator Z w , which is parameterized by w > 0 and, acting on an input signal v, is defined as

χ(t) = v(t), Z w [v](t) = 1 w χ(t) -χ(t -w) . (9) 
The lemma below describes the action of the WZOH operator on the signal (5).

Lemma 1. [START_REF] Combes | Adding virtual measurements by signal injection[END_REF] Consider the signal (5) and the operator Z w given in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF]. Then,

Z w [y](t) = ȳ(t - w 2 ) + O(ε 2 ) (10) 
holds for any w = nε with positive integer n.

In words, Lemma 1 shows that with the WZOH operator we can extract from y the signal ȳ, with a delay of ω 2 . Now, from [START_REF] Borja | A constructive procedure for energy shaping of port-Hamiltonian systems[END_REF] we see that the action of a delay operator D d , with parameter d > 0,

D d [v](t) = v(t -d) (11) 
on y yields

D d [y](t) = ȳ(t -d) + εS(t -d)y v (t -d) + O(ε 2 ). (12) 
The desired linear regression for θ 2 only is given in the following fact, whose proof is established from direct inspection of ( 10) and [START_REF] Glück | A novel robust position estimator for selfsensing magnetic levitation systems based on least squares identification[END_REF]. 

Y (t) := D d [y](t) -Z 2d [y](t), (13) 
with the operators Z 2d and D d defined in (9) (with w = 2d) and ( 11), respectively. Then,

Y (t) = S(t -d)θ 2 (t -d) + O(ε 2 ). (14) 
We make the important observation that the role of the regressor in ( 14) is played by the scalar signal S, which is "rich" by construction. More precisely, it satisfies

t+ 1 ε t S 2 (τ )dτ ≥ δ 0 , (15) 
for all t ≥ 0 and some δ 0 > 0.

It is interesting to note that the regressor ( 14) can also be obtained applying verbatim the DREM procedure outlined in Proposition 2 with the L ∞ -stable operator H := col(D d , Z 2d ). For the sake of clarity, we have opted to present the alternative derivation of ( 14) given above.

DREM-based virtual output estimator

We are in position to propose the main result of the paper, that is a DREM-based filter to identify the virtual output y v from [START_REF] Borja | A constructive procedure for energy shaping of port-Hamiltonian systems[END_REF]. To present the proposition we need the following. Assumption 1. There exists a constant c v , independent of ε, such that | ẏv | ≤ c v , where y v is given in [START_REF] Bobtsov | State observers for sensorless control of magnetic levitation systems[END_REF]. Proposition 3. Consider the system (1)-( 2) with bounded state trajectories verifying Assumption 1. Define the virtual output estimator

θ2 = γS(t) Y (t) -S(t) θ2 , ŷv = 1 ε θ2 , (16) 
where γ > γ ε is a tuning gain for some γ > 0, S is given in (4), Y in (13), and Z 2d , D d , are defined in ( 9) and [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], respectively, with d = ε. Then, for any c v there always exists ε globally guaranteeing

lim t→∞ |ŷ v (t) -y v (t)| ≤ O(ε) (exp.). ( 17 
)
Proof 1. Define the error signal θ2 := θ2 -εy v .

Notice that-because of the periodicity of S-with the choice d = ε, ( 14) is equivalent to

Y (t) = S(t)θ 2 (t -d) + O(ε 2 ).
Replacing the latter in [START_REF] Khalil | Nonlinear Systems[END_REF], and invoking Lemma 1 and Assumption 1, we get

θ2 = -γS(t)[S(t)( θ2 (t) -θ 2 (t -d)) + O(ε 2 )] + ε ẏv . ( 18 
)
For the second term on the right-hand side of [START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF], noting the tininess of ε > 0 and using the Taylor expansion element-by-element we have

θ 2 (t -d) = θ 2 (t) -θ2 (t)d + O(ε 2 ) = θ 2 (t)-ẏv (t)ε 2 + O(ε 2 ).
For any c v we can always find ε ∈ (0, 1)

to guarantee | ẏv (t)|ε 2 ≤ c v ε 2 = O(ε 2 ). The equation (18) becomes θ2 = -γS 2 (t) θ2 + γ∆ 1 + ∆ 2 . ( 19 
)
with

∆ 1 := -S(t) 2 ẏv ε 2 + S(t) 2 + S(t) O(ε 2 ) ∆ 2 := ε ẏv satisfying ||∆ 1 || ∞ ≤ c ε 2 for some c > 0.
We define a new time scale τ as dτ dt = γ, in which the error dynamics [START_REF] Meisel | Principles of Electromechanical Energy Conversion[END_REF] becomes

d θ2 dτ = -S 2 1 γ τ θ2 + ∆ 1 + 1 γ ∆ 2 . ( 20 
)
We notice that the last term satisfies

1 γ ∆ 2 ∞ ≤ 1 γ c v ε 2
due to γ > γ ε with γ independent of ε. Recalling [START_REF] Jebai | Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model[END_REF], the origin of the unperturbed part of (20), i.e., d θ2 dτ = -S 2 ( τ γ ) θ2 , is exponentially stable. Using the converse Lyapunov theorem [START_REF] Khalil | Nonlinear Systems[END_REF]Theorem 4.14], and carrying-out some basic perturbation analysis [16, Lemma 9.2], we complete the proof.

Discussion

The following remarks are in order. R1 The virtual output filters in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF][START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF] compute estimates by averaging in a (finite) moving horizon [t -nε, t] the observation error. The new filter [START_REF] Khalil | Nonlinear Systems[END_REF] provides an alternative closed-loop approach, which is similar to defining a moving average in infinite-time interval. We present some comparisons among these designs by simulations in Section 5. R2 Consider the output with measurement noise, that is,

y = ȳ + εSy v + O(ε 2 ) + ξ, (21) 
where ξ represents high-frequency measurement noise. Increasing ε or the norm of b can increase the signal-to-noise ratio, but at the price of degrading estimation accuracy. Similar remarks were made in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF][START_REF] Petrović | Sensitivity analysis of injection-based position estimation in PM synchronous motors[END_REF], carrying out power spectral density analysis in the stochastic framework and sensitivity analysis in frequency domain, respectively. In [START_REF] Yi | A new signal injection-based method for estimation of position in salient permanent magnet synchronous motors[END_REF] this tradeoff has been observed in some experimental evidence on motors, which is also the case for the experiments on the 1-dof MagLev system presented in Section 5. Also, notice that we can re-write the estimator [START_REF] Khalil | Nonlinear Systems[END_REF] as

ẏv = γ S(t)[Y (t) -εS(t)ŷ v ],
where the tuning gain is γ := γ ε without affecting the analysis, hence avoiding the division by the small parameter ε in the computation of ŷv .

R3

In Proposition 1, we require that γ > 1 ε γ for some γ > 0 independent of ε. For such a case, the parameter γ has very limited effects on the ultimate accuracy in the presence of measurement noises, but only assigns the convergence speed. To show this, we write the filtered signal, via the filter

(D d -Z 2d )[•], of ξ in (21) as ξ f , yielding Y (t) = S(t -d)θ 2 (t -d) + ξ f + O(ε 2
). Due to the BIBO property of D d and Z 2d , the vector ξ f is also bounded. Hence, the error dynamics [START_REF] Meisel | Principles of Electromechanical Energy Conversion[END_REF] reads

d θ2 dτ = -S 2 1 γ τ θ2 + S 1 γ τ ξ f + ∆ 1 + 1 γ ∆ 2 . ( 22 
)
Following the proof in [27, Proposition 1], we are able to construct a strict Lyapunov function V (•) for the dynamics θ2 = -S 2 (•) θ2 , and then calculate its derivative in the τ time scale. It implies that θ2 , equivalently εŷ v , converges to the invariant set

Ω := x ∈ R m |x| ≤ k 1 S(t)ξ f ∞ + k 2 ε 2 + 1 γ k 3 ε 2 with k i > 0 (i = 1, 2, 3) independent of ε.
It is clear that the accuracy, determined by the set Ω, hardly changes with different γ > γ ε . R4 Using the Laplace transform, the relationship (13) may be represented in the frequency domain as Y (s) = G d (s)y(s), where we defined the transfer function

G d (s) := e -ds + 1 2ds e -2ds -1 .
It is shown in [START_REF] Yi | A frequency domain interpretation of signal injection methods for salient PMSMs[END_REF][START_REF] Yi | A new signal injection-based method for estimation of position in salient permanent magnet synchronous motors[END_REF] that, for small d > 0, this transfer function is a high-pass filter-with respect to the frequency content of the signals of interest. This provides the connection between the proposed filter and the classical filtering techniques widely used in applications [START_REF] Holtz | Sensorless control of induction machines: With or without signal injection[END_REF][START_REF] Nam | AC Motor Control and Electric Vehicle Application[END_REF]. R5 A block diagram realization of the proposed filter is given in Fig. 1, where we defined the LTV operator ŷv = G grad [Y ](t) to represent [START_REF] Khalil | Nonlinear Systems[END_REF]. It is clear, then, that the computational burden required for the practical implementation of the proposed filter is negligible. 

- + + 1 " Y ŷv G d (s) G grad 1 s °- 1 2ds (1 ¡ e ¡2ds ) _ μ2 μ2 y e ¡ds

S(t)

An Observer of Fluxes and Charges in EMS

In this section we illustrate the application of the new filter to a general class of EMS and use the estimated virtual output to design an observer of its fluxes and charges, that is the states of the energy storing capacitive and inductive elements, which are usually not available for measurement. Equipped with the latter it is often possible to design an observer for the mechanical coordinates, which are essential for the implementation of sensorless control, in which we assume that only currents and voltages, are measurable by sensors. See [START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF] where flux observers, without signal injection, for EMS-with magnetic energy only-are proposed, and [START_REF] Bobtsov | State observers for sensorless control of magnetic levitation systems[END_REF] where full state observers, also without signal injection, for MagLev systems are developed.

Model of the system and virtual outputs

In this subsection we present the mathematical model of the EMS considered in the section. For the sake of brevity, the presentation is quite succinct, the interested reader is referred to [START_REF] Meisel | Principles of Electromechanical Energy Conversion[END_REF][START_REF]Modeling and Control of Complex Physical Systems: The Port Hamiltonian Approach[END_REF] for more details on modelling of general EMS and to [START_REF] Nam | AC Motor Control and Electric Vehicle Application[END_REF][START_REF] Ortega | Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromehcanical Applications[END_REF] for the particular case of electric machines.

We consider multiport, electromechanical systems with magnetic and electric fields consisting of n L magnetic ports, n C electric ports and n M mechanical ports, as defined in [START_REF] Meisel | Principles of Electromechanical Energy Conversion[END_REF][START_REF]Modeling and Control of Complex Physical Systems: The Port Hamiltonian Approach[END_REF]. The port variables of the magnetic and electric ports are voltages and currents, denoted as

(v L , i L ) ∈ R n L × R n L and (v C , i C ) ∈ R n C × R n C , respectively. The mechanical port variables are (F E , q) ∈ R n M × R n M ,
where F E are the mechanical forces of electrical origin and q the (rotational or translational) velocities of the movable mechanical elements.

There are external electrical sources, through which electrical energy is supplied to the magnetic and electric elements. To simplify the notation, and without loss of generality, we assume that the electrical subsystem is "fully actuated" 5 , in the sense that there are n L voltage sources v L , and n C current sources i C -see Remark R6 below. There are also (electrical and mechanical) dissipation elements-which are assumed linear. The energy stored in the system consists of three components: magnetic energy stored in the inductances, electrical energy stored in the capacitors and mechanical energy stored by the movable part inertia. They are defined by the functions H L (λ, q), where λ ∈ R n L is the vector of flux linkages, H C (Q, q), where Q ∈ R n C is the vector of electrical charges and H M (q, p), where p ∈ R n M is the generalized momenta, respectively. The systems total energy function is given by H(Q, λ, q, p) := H C (Q, q) + H L (λ, q) + H M (q, p).

The constitutive relations of the elements are

v C = ∇ Q H C (Q, q) i L = ∇ λ H L (λ, q) F E = -∇ q [H L (λ, q) + H C (Q, q)] q = ∇ p H M (q, p),
where the minus sign in F E reflects Newton's third law. The equations of motion of the system can be described in port-Hamiltonian (pH) form [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] as

ẋ = F∇H + gu (23) 
y = g ∇H (24) 
with the state x := col(Q, λ, p, q), input and output signals

u := i C v L , y := R -1 C ∇ Q H C (Q, q) ∇ λ H L (λ, q) (25) 
and the constant, interconnection damping and input matrices

F :=     -R -1 C 0 0 0 0 -R L 0 0 0 0 0 I 0 0 -I -R M     , g :=     R -1 C 0 0 I 0 0 0 0     ,
where R L and R C are positive definite, dissipation matrices, and R M is a positive semidefinite mechanical dissipation matrix. The class of electromechanical systems described by ( 24) is quite large.

Notice that we have adopted as system output the so-called "natural output" [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF]. Given this definition of output signal the virtual output ( 6) is given as

y v = R -1 C ∇ 2 Q H C (Q, q)R -1 C b CE ∇ 2 λ H L (λ, q)b LE =: y vC y vL , (26) 
where, for ease of future reference, we introduced

b = col(b CE , b LE ), with b CE ∈ R n C and b LE ∈ R n L
free, scaling vectors and we partitioned y v .

Observer for electrical coordinates using y v

In this subsection, we design an observer for the electrical state x E := col(Q, λ) with the help of the virtual output y v , whose estimate is obtained with the filter [START_REF] Khalil | Nonlinear Systems[END_REF].

A key observation in the solution of the problem is that the derivative of x E is known. Indeed, from [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF] we have that

ẋE = -R E y + g E u, (27) 
where we defined R E := diag(R -1 C , R L ) and g E := diag(R -1 C , I). This stems from the fact that this derivative equals the voltage applied to inductors and the currents of capacitors that are the external sources to the system, hence measurable. This fact is a key property to design gradient-based observers [START_REF] Ortega | Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability[END_REF][START_REF] Ortega | A globally exponentially stable position observer for interior permanent magnet synchronous motors[END_REF], as well as parameter estimation-based observers [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF]. In order to derive our observer we make the additional assumption that the electrical energy terms are quadratic functions of the form

H C (Q, q) = 1 2 Q C -1 (q)Q, H L (λ, q) = 1 2 λ L -1 (q)λ, (28) 
where L(q) ∈ R n L ×n L and C(q) ∈ R n C ×n C are the positive-definite, inductance and capacitance matrices, respectively. For this class of energy functions, the natural output [START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF] and virtual output (26) take the simpler form

y = R -1 C C -1 (q)Q L -1 (q)λ , y v = R -1 C C -1 (q)R -1 C b CE L -1 (q)b LE , (29) 
with the partition y v := col(y vC , y vL ). To streamline the presentation of the observer we define the matrices

Y v := diag(y v C R C , y v L ), Ŷv := diag(ŷ v C R C , ŷ v L ) B E := diag(b CE , b LE ), ( 30 
)
where ŷv is obtained with the virtual output filter [START_REF] Khalil | Nonlinear Systems[END_REF].

Proposition 4. Consider the EMS [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF] with energy function [START_REF] Peterson | Extremum seeking control for soft landing of an electromechanical valve actuator[END_REF], input signal (2), bounded state trajectories and the natural and virtual outputs [START_REF] Petrović | Sensitivity analysis of injection-based position estimation in PM synchronous motors[END_REF]. Define the observer

ẋE = -R E y + g E u + γ Ŷ v B E y -Ŷv xE , (31) 
where Ŷv and B E are given in [START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF] and γ > 0 is a tuning gain. If Y v is PE, we then have

lim t→∞ |x E (t) -x E (t)| = O(ε).
Proof 2. From ( 29), [START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF] and the definition of x E we get the linear regression in unknown

x E B E y = Y v x E , (32) 
where we have used

B E y = b CE 0 0 b LE R -1 C C -1 (q)Q L -1 (q)λ = b CE R -1 C C -1 (q)Q b LE L -1 (q)λ ,
and

Y v x E = y vC R C 0 0 y vL Q λ = (R -1 C C -1 (q)R -1 C b CE ) R C Q (L -1 (q)b CE ) λ ,
as well as invoking that R C and L(q) are positive definite. Substituting [START_REF] Sanders | Averaging Methods in Nonlinear Dynamical Systems[END_REF] in [START_REF] Ranjbar | Estimation of airgap length in magnetically levitated systems[END_REF], and using [START_REF] Ortega | A globally exponentially stable position observer for interior permanent magnet synchronous motors[END_REF],

yields ẋE = -γ Ŷ v Y v x E -Ŷv xE
, where we defined the observation error xE := xE -x E . This equation can be written in the form

ẋE = -γY v Y v xE + ξ, (33) 
where, invoking [START_REF] Marino | Induction Motor Control Design[END_REF] and boundedness of all signals, the disturbance term verifies lim t→∞ |ξ(t)| ≤ O(ε). The proof is completed recalling that, under the PE assumption, the unperturbed error equation ( 33) is exponentially stable [START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF] and using standard perturbation arguments.

Discussion

The following remarks are in order. R6 The class of systems for which the observer of Proposition 4 is applicable, can be extended in several directions. First, the assumption of "fully actuated" electrical coordinates was introduced only to simplify the notation. In the "underactuated" case, i.e., rank(g) < dim(x E ), two additional, input selecting, tall, constant matrices appear in the definition of the input matrix g, they can be "removed" with a suitable selection of the scaling vector b, without affecting the results. Second, with some additional calculations it is possible to consider magnetic energy functions of the form

H L (λ, q) = 1 2 [λ -µ(q)] L -1 (q)[λ -µ(q)],
where µ(q) represents the flux linkages due to permanent magnets. For the cases considering magnetic saturation or mutual capacitance/inductance, it is possible to construct a nonlinear regressor on x E instead of (32), thus a locally convergent observer would be obtained. R7 We have worked out the details of an even more general case, namely the EMS shown in Fig. 2. This system is studied in [START_REF] Meisel | Principles of Electromechanical Energy Conversion[END_REF] [Exercise 3-14, pp. 146], where it is assumed that the capacitance and inductance depend, not only on the mechanical position q ∈ R 2 , but in the capacitor voltage and the inductor current. Hence, the electrical energy functions H C (q 1 , Q) and H L (q 2 , λ) are of the form

H C = Q 0 λ(Q , q 1 )dQ , H L = λ 0 Q(λ , q 2 )dλ . with Q = c 1 c 2 + c 3 q 1 λ3 , λ = (l 1 + l 2 q 2 
2 ) Q3 . Unfortunately, in this case the regression form [START_REF] Sanders | Averaging Methods in Nonlinear Dynamical Systems[END_REF] is nonlinear in x E -a case that can still be handled with the proposed method. R8 As shown in the derivations above, the mechanical dynamics plays no role in the solution of the problem of observation of the electrical coordinates. Of course, it is essential to reconstruct q and p from the electrical coordinates-this task is carried out, for completeness, in the examples of the next section. See also [START_REF] Bobtsov | State observers for sensorless control of magnetic levitation systems[END_REF][START_REF] Ortega | A globally exponentially stable position observer for interior permanent magnet synchronous motors[END_REF][START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF].

M 1 M 2 i C v L + G 1 K v C i L R 2 q 1 q 2 Q Figure 2:
An electromagnetic-field device

Examples

In this section we apply the result of Proposition 4 to two physical examples. For the sake of completeness we also give observers for the mechanical coordinates.

Micro electromechanical optical switch

The first example is the micro electromechanical optical switch system [START_REF] Borja | A constructive procedure for energy shaping of port-Hamiltonian systems[END_REF]. This system has only electric-field energy, and its dynamics is described by [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF] with

n L = 0, n C = n M = 1, that is,   Q q ṗ   =   -1 R C 0 0 0 0 1 0 -1 -R M   ∇H +   1 R C 0 0   u,
and the total energy

H(Q, q, p) = 1 2m p 2 + a 1 2 q 2 + a 2 4 q 4 + 1 2C(q) Q 2 ,
where m > 0 is the mass of the actuator, a 1 , a 2 > 0 are the spring constants, C(q) = c 1 (q + c 0 ) and c 0 , c 1 > 0 are the capacitance parameters. A physical constraint is q > 0. The output is the voltage in the capacitor y = v C = 1 c 1 (q+c 0 ) Q, and the virtual output, with b = 1, is

y v = 1 R C c 1 (q+c 0 )
. Note that from the virtual output we can directly recover q. The linear regressor (32) takes, then, the form

1 R C y = y v Q, (34) 
with the state Q to be estimated. A full state observer design is given below, and we assume that a simple projection operator of ŷv has been adopted, but omitted for brevity, to guarantee ŷv = 0.

Proposition 5. For the micro electromechanical optical switch model, the observer

Q = - 1 R C y + 1 R C u + γ ŷv 1 R C y -ŷv Q q = 1 R C c 1 • ŷv -c 0 ṗ = -a 1 q -a 2 q3 + 1 2c 1 (q + c 0 ) 2 Q2 - R M m p. (35) 
with γ > 0 guarantees

lim t→∞ col( Q, q, p) = O(ε), (exp.)
with the observation errors Q := Q -Q, q := q -q, p := p -p.

Proof 3. Replacing [START_REF]Magnetic Bearings: Theory, Design and Application to Rotating Machinery[END_REF] in the first equation of ( 35) yields the error equation

Q = -γy 2 v Q + O(ε).
Since q > 0, we have that y v > 0, ensuring the exponential convergence of Q to a small neighborhood of the origin. Also, notice that lim t→∞ q(t) -q(t) = O(ε). Now, given the fact that

ṗ = -a 1 q -a 2 q 3 + 1 2c 1 (q + c 0 ) 2 Q 2 - R M m p,
the third equation in ( 35) may be written as

ṗ = - R M m p + t + O(ε).
This completes the proof.

Levitated ball: Simulation and experimental results

The dynamics of classical 1-dof MagLev ball is described by the pH system [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF] with n C = 0, n L = n M = 1, and the Hamiltonian

H(λ, q, p) = mGq + p 2 2m + λ 2 2L(q) ,
where m > 0 is the mass of the ball, G is the gravity constant and the inductor is assumed of the form L(q) = k c-q , with c > 0 and q ∈ (-∞, c). The full dynamics is given by

  λ q ṗ  =   -R 0 0 0 0 1 0 -1 0   ∇H +   1 0 0   u.
The output signal is the current in the inductance, that is,

y = i L = λ k (c -q), (36) 
and the virtual output is y v = c-q k . Notice that, similarly to the previous example, from the virtual output we can directly recover the ball position q.

Adaptive observer design

In this subsection, we address the more challenging problem of adaptive state observation for this system, namely, with the parameters m, c and k known, but R unknown.

Before presenting the resistance estimator we recall the physical constraints q ∈ (-∞, c). As expected, we impose this constraint also to its estimate, 6 hence

y v = q -c < 0, ŷv < 0. ( 37 
)
To simplify the notation in the sequel we introduce a change of coordinate for the position and, denote x := col(λ, 1 k (c -q), p), for which we have the following adaptive observer. Proposition 6. Consider the 1-dof MagLev system. Assume i L is PE. Then, the adaptive observer

Ṙ = γ R φ R Y R -φ R R ẋ1 = -Ry + u -γ λ (y -ŷv x1 ) ż = - γ p km z + 1 2k x2 1 + γ 2 p km y v -mG x2 = ŷv x3 = z-γ p ŷv , (38) 
where

v1 = -av 1 + au v2 = -av 2 + a y ŷv φR = -aφ R + ay Y R = -v 1 + a y ŷv -av 2 , (39) 
with a, γ R , γ λ , γ p > 0, guarantees

lim t→∞ R(t) = O(ε), lim t→∞ x(t) = O(ε), (exp.),
where we defined the parameter estimation and state observation errors R := R -R and x := x -x, respectively.

Proof 4. 7 From ( 36) and [START_REF] Bobtsov | State observers for sensorless control of magnetic levitation systems[END_REF] we have that λ = y yv , which is well defined in view of [START_REF] Vas | Sensorless Vector and Direct Torque Control[END_REF]. Computing the derivative with respect to time yields

d dt y y v = -Ry + u.
Applying to the equation above the LTI filter a s+a yields

as s + a y y v - a s + a u = -R a s + a y + t , (40) 
As shown in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF], without loss of generality, the term t is neglected in the sequel. Notice now that ( 39) is a state realization of the filters

Y R = as s + a y y v - a s + a u , φ R = - a s + a y . (41) 
From ( 40) and [START_REF] Yi | A frequency domain interpretation of signal injection methods for salient PMSMs[END_REF] we get the linear regression Y R = Rφ R , which upon replacement in the first equation of [START_REF] Verrelli | Nonlinear tracking control for sensorless permanent magnet synchronous motors with uncertainties[END_REF], yields

Ṙ = -γ R φ 2 R R,
where we defined the resistance estimation error R := R -R. Exponential convergence to zero follows invoking the PE assumption of y, which ensures φ R is also PE [START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF].

We proceed now to analyze the behavior of the state observer. From the second equation of ( 38), we get ẋ1 = -γ λ (y -y v x1 ) + Ry = -γ λ y 2 v x1 + Ry.

From [START_REF] Vas | Sensorless Vector and Direct Torque Control[END_REF] we see that the unperturbed dynamics is exponentially stable and, moreover, y is bounded. Using these two properties and the fact that lim t→∞ R(t) = 0 (exp.) proves that lim t→∞ x1 (t) = 0 (exp.). The proof is completed noting, after some lengthy but straightforward calculations, that for x 3 we get the error equation ẋ3 = -

γ p km x3 + 1 2k (x 1 + x 1 )x 1 ,
and recalling that the term in parenthesis in the right hand side is bounded.

Discussion

The following remarks are in order. R9 The electromagnetic valve actuator is another magnetic-field EMS extensively used in industry [START_REF] Peterson | Extremum seeking control for soft landing of an electromechanical valve actuator[END_REF] for which the observer of Proposition 6 can be directly applied. R10 We make the important observation that it is possible to show that the MagLev system, with the output y given in [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF], does not satisfy the observability rank condition [Section 1.2.1][4], therefore it is not uniformly differentially observable.

R11

The assumption that i L is PE is not restrictive at all. Actually it is possible to show that this condition can be transferred to the control u. 8 Now roughly speaking, since u defined in (2) contains an additive (high-frequency) term that is PE, the condition that u is PE will almost always be satisfied. R12 The observer presented above is a Kasantzis-Kravaris-Luenberger (KKL) observer, see [START_REF] Andrieu | On the existence of a Kazantzi-Kravaris-Luenberger observer[END_REF]. An alternative to this is a standard Luenberger observer

ż1 = - 1 km z 2 + c 1 (x 2 -z 1 ) ż2 = 1 2k x2 1 -mG + c 2 (x 2 -z 2 ) x3 = z 2 ,
with c 1 > 0 and c 2 > 0. However, the order of such a design is higher than that of the KKL observer. Moreover, as shown in Subsection 5.2.3 it was observed in simulations that the KKL observer outperforms the Luenberger one and is easier to tune.

Simulations

In this subsection, the performance of the observer (38) for the MagLev system, together with the estimator for virtual output [START_REF] Khalil | Nonlinear Systems[END_REF], are validated via computer simulations conducted with Matlab/Simulink. The parameters used in the simulation are given in Table 1. The new design is compared, via simulations, with the ones in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF][START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF]. In both simulations and experiments, the desired equilibrium is ( √ 2kmg, q , 0), with q taken as a pulse train, and with the initial states ( √ 2kmg, 0, 0). For a fair comparison with other designs, parameters are tuned to guarantee that the performance at the transient 8 The details of this proof are omitted for brevity. [START_REF] Ortega | Putting energy back in control[END_REF], that is:

u C = -Ri -K p 1 α (λ -λ ) + (q -q ) - α m + K p p,
with K p = 200.7 and α = 33.4. To make simulations more realistic, we add measurement noise in the current i, which is generated with the "band-limited white noise" block with the noise power 10 -10 and sample time 10 -3 s. The parameters in the proposed observer are selected as b = 1, ε = 1/300, a = 500, γ = 3.5 × 10 8 , γ R = 500, γ λ = 8000, γ p = 30, R(0) = 2, and the other initial states were selected as zero. The parameters of the design in [START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF] are selected as n = 10, ε = 1/300, α = 0.01, γ = 50, and the parameters in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF] are selected as n = 10, ε = 1/300. The excitation periodic function is selected as sinusoidal function. Simulation results in Matlab/Simulink are shown in Figs. 34, where ŷv , λ, q, p and R denote the results from the proposed design, ŷ1 v , λ1 and q1 denote the one from the design in [START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF], and ŷ2 v is the virtual output estimation from [START_REF] Combes | Adding virtual measurements by signal injection[END_REF]. As expected, the new design is less sensitive to measurement noise due to its structure, and also, the steady-state observation are of O(ε) accuracy. Besides, the KKL observer outperforms the Luenberger one, whose estimate is written as pL . We then test a sensorless version of the IDA-PBC law with the same parameters as those above. We observe in Fig. 5 that the position has a significant regulation error in the first second, which is due to the initial inaccurate estimation of R. However, the remaining transients are satisfactory.

Experiments

Some experiments have been conducted on the experimental set-up shown in Fig. 6, which is located at the Départment d'Automatique, CentraleSupélec. The proposed adaptive observer was tested in closed-loop with the well-tuned backstepping-plus-integral controller u 0 = R(c -q)|Υ| 1 2 sign(Υ) -K i u I uI = q -q , u I (0) = 0, with Υ(q, p) = 2 k mg γ 1 (p -p ) -γ 2 m(q -q ) , K i = 1, γ 1 = 340 and γ 2 = 3. The parameters in the observer are taken as A 0 = 1.5, ε = 1/33, d = 10ε, a = 10 and γ = 4 × 10 5 , γ R = 50, γ λ = 8000, γ p = 20.

The responses are shown in Figs. 78, where we also give the position estimate q * from the design in [START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF]. Unfortunately, the device is only equipped with sensors for position and current. Hence, we can only compare the position estimate with its measured values, as well as the flux linkage estimate with its desired equilibrium. Again, we verify the accuracy and the robustness of the new observer in the presence of measurement noise. Fig. 9 gives the position estimates with different probing frequencies. It illustrates that a higher frequency yields a higher accuracy, but at the price of a more jittery response. 

Conclusions

In this work we present a new filter for the estimation of the virtual outputs generated with the signal injection technique of [START_REF] Combes | Adding virtual measurements by signal injection[END_REF]. The proposed filter has a closed-loop structure, providing some robustness to measurement noise and parameter uncertainty. We apply the new design to the sensorless observation problem of a class of EMS. The method is illustrated with two examples-the optical switch and the 1-dof MagLev system, with experiments being conducted for the latter. Some problems that are being currently investigated are the following.

• In [START_REF] Bobtsov | State observers for sensorless control of magnetic levitation systems[END_REF][START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF] observers for EMS, that do not rely on signal injection, have been proposed. It would be interesting to compare the performance of both approaches and, eventually, combine them in an effective way. In particular, using the signal injection when the signal excitation level is low.

A mixed scheme like this has recently been proposed for motors in [START_REF] Choi | Sensorless control of IPMSM based on regression model[END_REF][START_REF] Ortega | A globally exponentially stable position observer for interior permanent magnet synchronous motors[END_REF].

• The 1-dof MagLev system is a benchmark of electromechanical systems. We are currently investigating the application of the new observer to other electromechanical systems-in particular, electrical motors.

• Although we analyze the effects of probing frequencies from the theoretical viewpoint, as pointed out in Remark R2 there are many practical considerations that must be taken into account before claiming it to be an operational technique.
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Table 1 :

 1 Parameters of MagLev systems: Simulation (First Column) and Experiments (Second Column)

	Ball mass [kg]	0.0844 0.0844
	Gravitational acceleration [m/s 2 ]	9.81	9.81
	Resistance [Ω]	2.52 10.615
	Position (c) [m]	0.005 0.0079
	Inductance constant (k) [µH•m] 6404.2 49950

See[START_REF] Forte | Robust nonlinear regulation: Continuous-time internal models and hybrid identifiers[END_REF] where a similar "identification-based" approach is pursued within the context of robust output regulation.

When the closed-loop system under the feedback u = u C (x) is asymptotically stable, (3) is true in the time interval [0, ∞); in the general case, it is true in [0, O( 1 ε )).

For brevity, the clarification i ∈ {1, 2, . . . , q} is omitted in the sequel.

The dimension of the electrical coordinate is equal to the one of the input. The terminology "full actuation" is borrowed from the literature on mechanical systems.

This can easily be done adding a projection operator to the second equation in (16), but is omitted for brevity.

We give the sketch of the proof in the nominal case ŷv = y v . The full proof can be obtained via perturbation analysis, which can be found in[START_REF] Yi | An adaptive observer for sensorless control of the levitated ball using signal injection[END_REF].
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