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ARTICLE

Accuracy and responses of genomic selection on key traits

in apple breeding
Hélène Muranty1, Michela Troggio2, Inès Ben Sadok1, Mehdi Al Rifaı̈1, Annemarie Auwerkerken3, Elisa Banchi2, Riccardo Velasco2,
Piergiorgio Stevanato4, W. Eric van de Weg5, Mario Di Guardo2,5, Satish Kumar6, François Laurens1 and Marco C.A.M. Bink7

The application of genomic selection in fruit tree crops is expected to enhance breeding efficiency by increasing prediction accuracy,
increasing selection intensity and decreasing generation interval. The objectives of this study were to assess the accuracy of prediction
and selection response in commercial apple breeding programmes for key traits. The training population comprised 977 individuals
derived from 20 pedigreed full-sib families. Historic phenotypic data were available on 10 traits related to productivity and fruit external
appearance and genotypic data for 7829 SNPs obtained with an Illumina 20K SNP array. From these data, a genome-wide prediction
model was built and subsequently used to calculate genomic breeding values of five application full-sib families. The application
families had genotypes at 364 SNPs from a dedicated 512 SNP array, and these genotypic data were extended to the high-density level
by imputation. These five families were phenotyped for 1 year and their phenotypes were compared to the predicted breeding values.
Accuracy of genomic prediction across the 10 traits reached a maximum value of 0.5 and had a median value of 0.19. The accuracies
were strongly affected by the phenotypic distribution and heritability of traits. In the largest family, significant selection response was
observed for traits with high heritability and symmetric phenotypic distribution. Traits that showed non-significant response often had
reduced and skewed phenotypic variation or low heritability. Among the five application families the accuracies were uncorrelated to
the degree of relatedness to the training population. The results underline the potential of genomic prediction to accelerate breeding
progress in outbred fruit tree crops that still need to overcome long generation intervals and extensive phenotyping costs.
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INTRODUCTION
Developing new fruit tree cultivars is a time-consuming process for
two main reasons. First, the long juvenile phase delays the acquisi-
tion of phenotypic data that are necessary to identify genotypes
that will produce marketable fruits satisfying both farmer and con-
sumer demands.1 Second, breeding programmes are often orga-
nized in two or more successive steps. The initial large diversity step
involves phenotyping a large number of candidates over two or
three years at a single location. Those candidates presenting favour-
able characters are identified and enter the cultivar evaluation step
comprising extensive phenotypic evaluation over a longer period at
multiple contrasting locations. The early identification of promising
genotypes at the large diversity step would enable fruit tree bree-
ders to enhance genetic gain per year and react more efficiently to
changing demands by reducing breeding cycle length.2,3

Molecular markers have been developed to help fruit tree bree-
ders for early identification of interesting genotypes. Indeed, asso-
ciations between markers and genes underlying agronomic traits are
the basis for marker-assisted selection (MAS)4 which can be per-
formed on young seedlings as well as for selecting well-combining
parents. Similar to other crops,5 MAS has been applied to apple
breeding schemes manipulating few major genes including resist-
ance genes for scab, fire blight, mildew, aphids and genes involved
in fruit firmness or storability (see e.g. Baumgartner et al.6). However,
traditional MAS is ineffective when many genes of small effects are
segregating, and reliable markers have not been identified. In this

context, Meuwissen et al.7 proposed to skip the quantitative trait
locus (QTL) detection step in favour of using all available markers in
a genome-wide prediction approach termed genomic selection. In
genomic selection, a training population on which both phenotypic
and genotypic data are available is used to construct a prediction
model which is subsequently applied to estimate genomic breeding
values (GBVs) of individuals that only have genotypic data. Genomic
selection often targets additive genetic variation, i.e. estimation of
breeding values, but may also account for dominance or higher-
order genetic variances in order to estimate genotypic values.
Genomic selection could complement MAS for polygenic traits and
thus obviate the need of phenotyping at the large diversity step.
Genomic selection would strongly enhance breeding efficiency by
decreasing generation interval and increasing the accuracy of breed-
ing value estimates and selection intensity.

Most genomic selection studies in plants have been conducted
on annual crops such as maize,8–13 barley14 and wheat,15 where
inbred lines are the main focus of selection. A few studies on per-
ennial outbreeding plants have been published, particularly on
forest trees,16–19 switchgrass,20 oil palm,21 Japanese pear22 and
apple.23 These studies used simulations and/or cross-validation, in
a defined set of plant material genotyped at high density and phe-
notyped in a common set of environments, to evaluate accuracy of
genomic selection. An exception is the work of Asoro et al.24 who
compared the results of genomic selection to phenotypic selection
and MAS after two selection cycles for the improvement of b-glucan
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concentration in oats. Based on random cross validation on seven
full-sib (FS) families, Kumar et al.23 reported high accuracies of
genomic selection, between 0.67 and 0.89, for six fruit quality traits
in apple, and concluded that genomic selection is a credible
alternative to conventional selection for these traits. Applicability
and success of genomic selection to other traits and to designs
commonly used by commercial fruit breeders have not yet been
reported.

The purpose of this study was to assess the prospects of genomic
selection in current apple breeding populations for 10 culling traits
that are related to productivity and fruit external appearance.
Individuals that do not perform well for culling traits are eliminated
prior to any harvest. Genomic selection could provide accurate
estimated breeding values of these traits so that breeders could
skip phenotypic evaluation. This is the first study in fruit crops
where GBVs are calculated for individuals that do not belong to
the training population but to additional material developed and
studied by breeders. Accuracy of genomic prediction was esti-
mated by comparing predicted GBV and phenotypic data of
application individuals. Realized selection differential was assessed
on the basis of phenotypic differences between individuals with the
highest and lowest GBV in a large full-sib family. The influence of
factors such as trait heritability and relatedness between applica-
tion and training populations on accuracy of genomic prediction
was evaluated. The composition of the training population in rela-
tion to accuracy of prediction and impact of genomic prediction of
culling traits on improving breeding scheme efficiency were dis-
cussed.

MATERIAL AND METHODS

Plant material
The training population, developed in the EU-funded HiDRAS pro-
ject25 for Pedigree Based QTL analysis,26 consisted of 20 full-sib (FS)
families with a total of 977 individuals. These FS families were
obtained from breeding programmes from four research institutes
(INRA, France; JKI, Germany; UNIBO and LFW, Italy) at the start of the
HiDRAS project (see e.g. Kouassi et al.27 for more details) and
resulted from crosses among 24 parents (Supplementary Table
S1) which were related to each other via common ancestors. The
parents, intermediate ancestors and founders (individuals with
unknown ancestors) were included in pedigree data.

The application population consisted of five FS families
developed within two European apple breeding programmes,
Novadi and Better3Fruit, located in France and Belgium respect-
ively. A total of 1390 individuals from these five families were used
in this study, the family size ranged from 109 to 662 (Table 1). The
application families resulted from crosses between nine parents
where one parent (313) was involved in two crosses (Table 1). Out
of the nine parents, five were also the parents of progenies in the
training population (Supplementary Table S1). The pedigree rela-
tionships among the parents and FS families of the training and
application populations were abundant and were visualized with
Pedimap software28 as shown in Supplementary Fig. S1.

Trait phenotypes
Phenotypic data for the training population were available from the
HiDRAS project and were partly described by Kouassi et al.27 The
individuals of the training population were each evaluated at one
location managed by the involved research institutes, and data
were collected during at least two seasons over a period of three
years, from 2003 to 2005. The individuals were not replicated. Our
study focused on culling traits, which are scored before or at har-
vest. Productivity-related traits namely pre-harvest dropping and
fruit cropping were assessed along with external appearance traits
such as fruit size, per cent of russet, fruit cracking, attractiveness and
four components of skin colour, ground colour, over-colour, per
cent over-colour and type of colour. All traits were visually scored
on an ordinal scale (1–5, Supplementary Table S2). Twenty-nine
reference genotypes (Supplementary Data 1, not part of training
population) were scored in all locations and were used to adjust
phenotypic data for location and year effects (similar to Bink et al.29).
As in Bink et al.,29 the best linear unbiased predictions (BLUPs) of
genotypic effects of the individuals in the training population were
used as phenotypes for the development of genome-wide predic-
tion model.

For the application population, the same traits as in the training
population were scored at harvest, except that skin colour was
assessed as attractiveness of colour and not as the four component
traits scored in the training population. Phenotypic data for the
application population were collected, without replication, in
2013 at two sites, i.e. two families in Seiches (FR) and three families
in Rillaar (BE), all managed by the involved apple breeders of Novadi
and Better3Fruit, respectively.

Table 1. Accuracy of prediction for the 10 traits within the application families, and means of these correlations over families and over different
sets of traits (all: Mean_10Traits; attractiveness, fruit cropping, fruit size and per cent russet: Mean_4Traits) and mean length by family of 95%
confidence intervals of these correlations.

Family name AF1_Da66 AF2_Pi63 AF3_31Fu AF4_31Ga AF5_33Br

Parent 1 ‘Dalinette’ ‘Pinova’ 313 313 338

Parent 2 X-6681 X-6398 ‘Fuji’ ‘Gala’ ‘Braeburn’

mean

Family size 662 172 269 109 178

Attractiveness 0.21 0.18 0.35 0.19 0.14 0.21

Fruit cropping 0.08 0.09 0.02 0.19 0.03 0.08

Fruit size 0.26 0.19 0.08 0.33 0.25 0.23

Per cent russet 0.18 0.21 0.38 0.30 -0.06 0.20

Fruit cracking 20.09 20.05 0.13 20.02 0.07 0.01

Pre-harvest dropping 0.02 20.06 20.02 20.02

Per cent over colour 0.31 0.22 0.50 0.46 0.36 0.37

Over colour 0.34 0.17 0.44 0.49 0.32 0.35

Ground colour 20.03 0.12 0.09 20.05 0.17 0.06

Type of colour 20.06 0.00 20.25 20.23 20.14 20.14

Mean_10Traits 0.13 0.13 0.18 0.16 0.11

Mean_4Traits 0.18 0.17 0.21 0.25 0.09

mean length conf_interval 0.16 0.29 0.23 0.37 0.29

Accuracy and responses of genomic selection in apple

H Muranty et al

2

Horticulture Research (2015) � 2015 Nanjing Agricultural University



Marker genotypes
The genotypic data of the training population and their progenitors
were obtained from a FruitBreedomics experiment on Pedigree
Based Analyses by using the Illumina 20K SNP array30. This same
experiment provided SNP data on two additional FS families,
‘Telamon’ 3 ‘Braeburn’ (162 individuals) and ‘Jonathan’ 3 ‘Prima’
(25 individuals), that were used to improve genotype imputation
(see below and Supplementary Table S1). These two latter families
did not have phenotypes for the studied traits. This experiment also
provided genetic linkage maps, which included a total of 15.8K
mapped SNP markers,30 of the training and additional families.
Subsequently, a set of 7651 SNP markers passed the filtering criteria
on absence of null-alleles, disturbing additional SNP at the probe
set, and genotyping interference from paralogous loci, thus show-
ing robust performance across this germplasm (Van de Weg & Di
Guardo, personal communication). The across-families integrated
map of these 7651 SNP markers was used here (version of July 4
2014).

Twenty-four individuals from the five application families were
genotyped with the 20K SNP array following the standard Illumina
protocol detailed in the study of Chagné et al.31 to check parent–
offspring consistency and to help phasing the markers in the
imputation step (see below).

All 1390 individuals of the five application families were geno-
typed with an array of 512 SNPs using the QuantStudio 12K Flex
Real-time PCR system and OpenArray technology (Life
Technologies, Carlsbad, CA, USA). These 512 SNPs were a subset
of the 15.8 K mapped SNPs. Details on SNP selection process are
given in Supplementary Data 2, and the positions of the selected
SNPs on the genetic map are shown in Supplementary Fig. S2.
Samples consisting in 10 ng DNA were mixed with 2.5 ml of
TaqMan OpenArray Genotyping Master Mix (Life Technologies,
Carlsbad, CA, USA) in a 384-well plate. Samples were subsequently
loaded onto the OpenArray plate using the QuantStudio 12K Flex
OpenArray AccuFill System. Following PCR, allelic discrimination
results were analysed using the TaqMan Genotyper software v.
1.2 (Life Technologies, Carlsbad, CA, USA).

Genotypic data curation
The TaqMan OpenArray (512 SNPs) genotypic data resulted in 364
SNPs that could be reliably scored in the application population.
These 364 SNPs were checked for Mendelian segregation errors and
frequency of observed recombination events using the FlexQTL
software29 (www.flexqtl.nl). The additional curation on the 15.8K
SNPs (see previous paragraph) introduced a substantial mismatch
between the 364 SNPs scored with the TaqMan array and the 7651
robust SNPs, i.e. 178 out of the 364 SNPs were not considered as
robust. The genotypic data on these 178 ‘‘non-robust’’ SNPs for the
training population were added to those on the 7651 robust SNPs
to enhance the accuracy of imputation in the application popu-
lation. Positions of the robust and non-robust SNPs scored with
the TaqMan array are shown in Supplementary Fig. S2.

The resulting matrix of genotypic data comprised 7829 SNPs on
2661 individuals. The 1271 individuals genotyped with the 20K
array had sporadically missing data, and 1390 individuals from
the application FS families had substantially (.95%) missing data.

SNP genotype imputation
The imputation of genotypic scores for missing SNP data was done
in two steps by using AlphaImpute software,32 which uses pedigree,
linkage and linkage disequilibrium information. In both steps,
default values were used for all software parameters except for
the windows sizes to account for the number of SNPs in the data
set (values for CoreAndTailLengths and CoreLengths ranged
between 100 and 300 SNPs, and between 50 and 200 SNPs, respect-
ively). In the first step, AlphaImpute was applied to the families of

the training population, their progenitors, the two additional FS
families and the 24 individuals of the application FS families, all
genotyped with the 20K array. In the second step, AlphaImpute
was applied to the 1390 individuals of the application families util-
izing the completed data from the first step as reference.

Variance components and heritability
To estimate the heritability of the 10 traits, the phenotypic data
were first adjusted for fixed effects, i.e. year and location effects
using all available data. Then a linear mixed model
(Supplementary Data 3) was used to estimate the additive (s2

a )
and residual (s2

e ) variance components using only individuals of
the training population. Narrow-sense heritability for each of the

10 traits was estimated as h2~
s2

a

s2
azs2

e
Estimates of variance com-

ponents were obtained with the R package breedR.33,34

The pedigree-based relationship matrix was obtained with the R
package pedigree35 and the mean pedigree-based relatedness
between each application family and the training population was
calculated.

Genomic relatedness
Genomic relatedness between application population and training
population were computed using the imputed genotypic data. The
matrix of genotypic data (X) with individuals of the training and
application population in columns and SNPs in rows was first stan-
dardized using means and standard deviations of genotypic data
computed for each SNP in the training population. Then the geno-
mic relationship matrix (G) was computed as

G~
W’W

p

where W is the standardized version of the matrix X, and p is the
number of SNPs.36

Because of the standardization, the mean of the elements of G
pertaining to the pairwise relatedness of an individual of the
application population to all individuals of the training population
was expected to be zero.37 Following Clark et al.,38 three fractions of
the training population were considered to summarize the related-
ness of application individuals and families to the training popu-
lation. The top 10 relatedness of each application individual was
calculated as the mean of the 10 highest values among the ele-
ments of G corresponding to the relatedness of an application
individual to the individuals of the training population. Likewise,
the top 5% and 25% relatedness of each application individual to
the training population were calculated. Subsequently, the top 10,
top 5% and top 25% relatedness of each application family to the
training population was calculated as the mean of these variables
within each family.

Genomic prediction
The BayesCp method,39 as implemented in GS3 software (Legarra
et al., 2011, http://snp.toulouse.inra.fr/,alegarra), was used to
estimate GBVs. In this method, the parameter p can be interpreted
as the proportion of SNPs that truly affect the trait. Likewise the
distribution of estimated SNP effects may reveal information on the
genetic architecture of the trait. Once the prediction model
(Supplementary Data 3) was established based on the training
population, the GBVs in the application population, ĝ , were esti-
mated.

Accuracy of predictions and realized selection differential
The accuracy of genomic predictions was calculated as the correla-
tion between the GBV ĝ and the phenotypic scores in the applica-
tion population. Pearson correlations were used for all traits and
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Spearman rank correlations for traits with highly skewed distribu-
tions. Accuracy was calculated separately within the five application
families due to confounding with locations. As shown in the
Appendix, the accuracy calculated in this way is expected to be
proportional to the square root of narrow sense heritability. The
correlations were calculated with the function cor.test in R soft-
ware,34 which also provided estimates for the asymptotic confid-
ence intervals (based on Fisher’s z-transformation) for Pearson
correlations.

The realized selection differential within each application family
was estimated as the difference in mean phenotypic scores
between the individuals with the highest GBV and the individuals
with the lowest GBV. The significance of these differentials was
assessed via a Student’s t-test. We selected 50 individuals from both
tails of the distribution of GBVs, which equated to selected fractions
of 7.5% in case of the largest application family, AF1-Da66, which
comprised 662 individuals (Table 1). A directional realized selection
differential was also estimated as the difference in mean phenotype
of the individuals with the most favourable GBV and all individuals
within each application family.

Note that the trait colour was scored in the application families
as attractiveness of colour, while it was scored as four components,
i.e. ground colour, over-colour, per cent over-colour and type of
colour in the training population. We calculated accuracy of colour

predictions using the four components correlated to the same pheno-
typic scores (on attractiveness of colour). Likewise, we calculated rea-
lized selection differential as the difference in mean phenotypic scores
for attractiveness of colour between the selected extreme individuals
for GBV calculated for the four components of colour.

RESULTS

Distribution of trait phenotypes
In the training population the distributions of phenotypes (5 geno-
typic BLUP values) varied greatly among the 10 traits considered in
this study (Figure 1). The skewness was high and negative for fruit
cracking, moderate and negative for per cent of russet and pre-
harvest dropping and moderate and positive for type of colour
and over-colour. The distributions of the other traits were almost
symmetrical. These differences between traits were also present in
the distributions of residuals in the quantile–quantile plots
(Supplementary Fig. S3). Due to the pre-adjustment for year and
site effects, the range of phenotypes was slightly increased, [0–6]
for all traits. However, for fruit cracking, the highest phenotypic
value was just above 4, which exemplified the highly negatively
skewed distribution.

The distributions of phenotypes varied greatly among traits and
between the five application families (Figure 1). Highly asymmetric

Figure 1. Within-training population distribution of genotypic BLUP (upper row) and within-family distribution of phenotypic data (five lower
rows) for traits scored at harvest. Variances are indicated. Non-plotted distributions correspond either to a trait not scored in a family (pre-harvest
dropping in AF1_Da66 and AF2_Pi63 families) or, for colour, to components not scored in application families.
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distributions were observed for fruit cracking, pre-harvest dropping
and per cent of russet (except the AF1_Da66 family) and showed
the highest frequency in the first, highly desired, class. The distribu-
tions for the other traits were almost symmetric, but with narrow
ranges as the extreme scores (1 and 5) were hardly present for fruit
size in all families and for attractiveness of colour in AF1_Da66 and
AF2_Pi63 families. The phenotypic variances in the application
population varied greatly over families and over traits, from 0.035
for fruit cracking in AF2_Pi63 family to 1.7 for colour in AF4_31Ga
family.

Distributions of SNP effects
The distributions of estimated SNP effects in the prediction model
varied greatly among traits (Figure 2). More than half of the SNP
effects were very close to zero (i.e. less than 1024) for per cent over-
colour and over-colour. The distributions of SNP effects were more
dispersed for the other traits. The relative SNP effects extended to
very large values for per cent over-colour and over-colour, i.e. larger
than 0.3, and also quite large values for attractiveness and per cent
of russet, i.e. larger than 0.1, whereas the range of relative SNP
effects for fruit cracking was very narrow, extending only to
0.0034 (Figure 2). The estimated probability (p) of marker inclusion

in the prediction model varied between 0.007 (over-colour) and
0.397 (ground colour). Furthermore, between 3.7% (fruit size) and
7.0% (fruit cracking) of the markers included in the prediction mod-
els were actually genotyped in the application families rather than
imputed.

Accuracy of genomic prediction
Accuracy of predicting phenotypic scores was very low or negative
when distributions of traits were very narrow or when these were
highly skewed in the training or application populations. This was
most apparent for fruit cracking and pre-harvest dropping in all
families and per cent of russet in AF5_33Br family (Table 1). For
these traits, the Spearman and Pearson correlations were in the
same ranges (not shown). Accuracies ranged from 0.02 to 0.38
when distributions on traits were almost symmetrical, setting apart
the colour components (Table 1). The low accuracies for fruit crop-
ping correspond to a flat distribution of relative SNP effects which
extended to a small value (less than 0.0069, Figure 2). By contrast,
the higher accuracies for attractiveness, fruit size and per cent of
russet correspond to distributions where some of the relative SNP
effects were above 0.078 (Figure 2). The accuracies were close to 0
or negative for ground colour and type of colour and were

Figure 2. Distributions of absolute values of SNP effects relative to phenotypic standard deviation in the training population. Plots were
truncated at 0.01 on the x-axis, and the highest absolute value of relative SNP effects for the trait is indicated when truncated. Variable p̂ is
the proportion of SNPs included in the genomic prediction model.
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moderate or high for over-colour and per cent over-colour, e.g. 0.50
for per cent over-colour in AF3_31Fu family (Table 1). These results
suggest that attractiveness of colour is more strongly associated
with over-colour and per cent over-colour than with the other two
colour traits. Also, the moderate to high accuracies for over-colour
and per cent over-colour corresponded to flat distributions of rela-
tive SNP effects with a large proportion of effects close to 0 and
some extending up to 0.3 or higher. Comparison of the mean accu-
racy across all traits versus the four traits with almost symmetric
phenotypic distribution (see Figure 1) indicate the strong influence
of the phenotypic distribution of ordinal traits in the application
families on accuracy of prediction. The 95% confidence intervals on
the correlations were shorter for the larger families, i.e. varying from
0.16 in AF1_Da66 family (n 5 662) to 0.37 in AF4_31Ga family (n 5
109) (Table 1). The lengths of the confidence intervals were rather
constant within families (not shown).

Accuracy and heritability
In the training population, the narrow sense heritability of traits
varied from 0.03 to 0.67 for fruit cracking and per cent over-colour,
respectively. As expected, there was a clear positive trend between
heritability and prediction accuracy, which was significant (P ,1%)
either considering all traits or considering the four symmetrically
distributed traits (Figure 3). Obviously, this trend is mostly due to
the fact that we calculated accuracy of predicting phenotypic
scores and not genotypic values (see Appendix). Note that estima-
tion of the heritability in the application population would have
been more appropriate, but it was less meaningful here because
data of only two or three un-replicated families were available per
location.

Genomic relatedness between application and training
populations
Top 10, top 5% and top 25% relatedness between the application
families and the training population varied in quite narrow ranges
(Table 2). The ranking of the families was the same for the top 10
and top 5% relatedness and different from the ranking for top 25%
relatedness and pedigree-based relatedness, which were also dif-

ferent from each other. The standard deviations of these related-
ness within application families increased from top 25% to top 10
relatedness and was often close to 10% of the mean (Table 2). At the
individual level, genomic relatedness between individuals of the
application population and individuals of the training population
varied between 20.31 and 0.59. The highest genomic relatedness
were observed between individuals that shared a parent and thus
individuals from one application family often had their most closely
related individuals in one or a few training families. The levels of
highest genomic relatedness for individuals of the AF5_33Br family
were lower than those for individuals of the other families (refer to
Supplementary Fig. S4).

Accuracy and genomic relatedness
The relationship between accuracy of prediction and genomic or
pedigree-based relatedness varied over traits and over measures of
relatedness (Table 3). There was no association for most traits
except a significant association for per cent of russet and mean
top 25% relatedness. For attractiveness, fruit cropping, per cent of
russet and over-colour, the correlation increased when increasing
the number of highest values considered to calculate the mean
relatedness, e.g. from 0.55 for top 10 relatedness to 0.68 for top
25% relatedness for attractiveness.

Realized selection differential
The realized selection differential in the (large) AF1_Da66 family
was between 0.6 and 0.9 and highly significant for four traits (i.e.
attractiveness, fruit size, over-colour and per cent over-colour,
Figure 4). Conversely, it was almost absent, i.e. between 20.1
and 0.3, for the other traits (Figure 4, Supplementary Table S3).

Figure 3. Effect of narrow sense heritability on accuracy of prediction.
Points and vertical lines represent the mean and range in accuracy
over families, respectively. In blue, the four symmetrically distributed
traits (attractiveness, fruit cropping, fruit size and per cent of russet),
in black, the two highly skewed traits (fruit cracking and pre-harvest
dropping) and in red the four colour components compared to attrac-
tiveness of colour. The blue and green lines represent linear regres-
sions without intercept of mean accuracy as a function of square root
of heritability on the four symmetrically distributed traits and all traits,
respectively.

Table 2. Marker-based relatedness (mean and standard deviation
within family) and pedigree-based relatedness estimates of the five
full-sib families of the application population to the
training population.

AF1_Da66 AF2_Pi63 AF3_31Fu AF4_31Ga AF5_33Br

Top 10 0.39 (0.040) 0.35 (0.027) 0.36 (0.037) 0.31 (0.032) 0.17 (0.028)

Top 5% 0.31 (0.030) 0.29 (0.020) 0.30 (0.030) 0.26 (0.027) 0.13 (0.019)

Top 25% 0.14 (0.014) 0.17 (0.013) 0.18 (0.014) 0.16 (0.016) 0.08 (0.008)

Pedigree-

based

0.11 0.19 0.16 0.22 0.03

Table 3. Correlations between family-averaged relatedness estimates
and accuracy of prediction for the 10 traits for different measures
of relatedness.

Top 10a Top 5%a Top 25%a Pedigree-based

Attractiveness 0.55 0.59 0.68 0.27

Fruit cropping 0.21 0.23 0.27 0.65

Fruit size 20.26 20.31 20.42 20.01

Per cent russet 0.76 0.82 0.96b 0.80

Fruit cracking 20.44 20.37 20.10 20.25

Pre-harvest dropping 0.25 0.25 0.23 20.28

Per cent over colour 20.11 20.06 0.17 0.12

Over colour 0.01 0.03 0.16 0.15

Ground colour 20.58 20.54 20.40 20.45

Type of colour 0.15 0.09 20.16 20.14

a The top 10, top 5% and top 25% relatedness of each individual of the application

population to the training population was calculated as the mean of the 10, 5% or

25% highest values among the elements of G corresponding to the relatedness of

this individual to the individuals of the training population.
b This value of correlation was significant, whereas all others were not significant.
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The directional realized selection differential was significant for the
same traits in the AF1_Da66 family (Supplementary Table S4).
The traits with significant responses also had the highest accuracy
estimates, ranging between 0.21 and 0.34 in AF1_Da66 family
(Table 1). The significant response for attractiveness for example
implies that out of the 50 individuals with the highest GBV, none
had the lowest phenotypic score of 1. Likewise, only one of the 50
individuals with the lowest GBV received a score of 4, and none the
highest score of 5 (Figure 4). Similar trends were observed for fruit
size, over-colour and per cent over-colour, but for these traits, very
few individuals received the extreme scores of 1 or 5. By contrast,
the responses for per cent of russet and fruit cropping were not
significant and individuals with the highest and the lowest GBV
received the lowest score of 1. Most application individuals with
the extreme phenotypic scores for these four traits were in the
middle of the distributions of GBV, i.e. neither belonged to the
group of 50 individuals with the highest GBV nor to the group of
50 individuals with the lowest GBV.

In the other four application families, the realized selection dif-
ferential was always significant for per cent over-colour, for three
of them for attractiveness, per cent of russet and over-colour,
for two of them for fruit size and for only one for fruit cropping
(Supplementary Table S3). The results were slightly different for the

directional realized selection differential, which was always signifi-
cant for per cent over-colour, for three of them for per cent of russet,
for two of them for fruit cracking and for one of them for attractive-
ness, fruit cropping, fruit size and over-colour (Supplementary Table
S4). The realized selection differential was significant for six traits in
AF4_31Ga (i.e. attractiveness, fruit cropping, fruit size, per cent of
russet, over-colour and per cent over-colour, Supplementary
Table S3), whereas it was significant only for three traits in
AF2_Pi63 (i.e. attractiveness, per cent of russet and per cent over-
colour, Supplementary Table S3). The largest realized selection dif-
ferentials were observed in family AF4_31Ga for over-colour (2.38)
and per cent over-colour (2.63).

DISCUSSION
This study reports encouraging results on genomic selection for
traits that are scored before or at harvest in two European apple
breeding programmes. Accuracy of genomic prediction of pheno-
typic scores varied with traits and families. Heritability was clearly a
factor affecting accuracy in this study, whereas the effect of geno-
mic relatedness between application and training population on
accuracy was not significant. The realized selection differential in
the largest FS family, AF1_Da66, was highly significant for four traits

Figure 4. Relationship between phenotypic scores and predicted genomic breeding values in the AF1_Da66 family. The 50 (best) individuals
with the highest predicted GBV are represented by green points, the 50 (worst) individuals with the lowest predicted GBV by red points, the other
individuals by blue points. The black stars represent the parents. The horizontal green and red lines represent the interval of 62 standard error
around the mean of the groups of 50 individuals with the highest or lowest predicted GBV.
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(attractiveness, fruit size, over-colour and per cent over-colour) and
negligible for the other five traits.

Factors affecting genomic prediction accuracy

Relatedness between training and application population. The relat-
edness between training population and application individuals is a
key factor affecting prediction accuracy.40,41 Our training population
was expected to be well-suited for genomic prediction in the
application FS families as for each family one or both parents were
also parents in the training population, except for AF5_33Br family
(Supplementary Table S1, Supplementary Fig. S1). The dense and
irregular structure of pedigree relationships between application
and training FS families is a plausible explanation why none of the
three measures of genomic relatedness provided a regularly spaced
sample of relatedness. The later would have been more useful to test
the relationship between relatedness and accuracy of genomic pre-
diction. Nevertheless, the three measures of genomic relatedness
did not address the same level of relationship. In the application FS
families that shared a parent with the training FS families, the 10
most closely related individuals were indeed predominantly present
in the training FS families with the shared parents. For individuals
from the AF5_33Br family, the 10 most closely related individuals
were distributed over 15 of the 20 training FS families (with lower
levels of relatedness), but in more than 140 (out of 178) cases most of
them were from ‘Pinova’ 3 ‘Reanda’ and ‘Rewena’ 3 ‘Pirol’ families,
which share recent common ancestors with parent 338 (‘Priam’ 3
‘Reka’). Thus the top 10 relatedness seemed mostly influenced by
recent common ancestors. On the contrary, the top 25% most clo-
sely related individuals were distributed among 16–20 training FS
families suggesting that top 25% relatedness was mostly influenced
by more distant common ancestors.

The AF5_33Br family was the least related application family, but
it did not consistently show the lowest accuracy for all traits. For
example, accuracy of genomic prediction in AF5_33Br family was
higher than in AF2_Pi63 family for fruit size, per cent over-colour
and over-colour (Table 1). The absence of a clear trend between
genomic relatedness and prediction accuracy could also be due to
the rather large uncertainty of the estimated accuracies (Figure 3).
Despite the large family sizes in the application population, the
confidence interval lengths ranged between 0.16 and 0.37. Such
large sampling errors of accuracy estimates were also observed by
Wolc et al.42

These results emphasize the importance of the composition of
the training population as all QTLs that are segregating in selection
candidates of the application populations should also be present at
reasonable allele frequency in the training population. The applica-
tion of genomic selection in a single large bi-parental plant popu-
lation, phenotyping only a subset, yield high accuracy on
unphenotyped full-sibs.43 In such an application, the generation
interval cannot be reduced while this is critical in perennial fruit
crops. Thus, a more powerful training population in fruit crops
should capture a large and genetically diverse collection of small
bi-parental populations to maximize the relatedness of any selec-
tion candidate with multiple members of the training population.41

A larger diversity of the training population and the larger distance
between training and application populations will require a higher
marker density than for genomic selection in a single bi-parental
population.

The advantage of using a multi-parental population for training,
compared to training and application within a single bi-parental
population, is to share the costs of genotyping and phenotyping
the training population over a larger number of selection decisions.
For fruit trees, this is particularly important as phenotyping costs are
high due to the large space needed to grow trees and the long time
required to evaluate traits of interest because of the juvenile period
and because of the perennial nature of the crops.

Genetic architecture of the trait. The genetic architecture of the trait,
which can be partly described by the number of QTLs and the
distribution of their effects, is another key factor affecting accuracy
of genome-wide predictions. This architecture is fixed for a given
population—it may change by altering the composition of the
population. We used the BayesCp model because of its robustness
to a large range of trait genetic architecture in terms of number of
QTLs. Although the focus here was not on model inference, the
number of QTLs (i.e. non-zero marker effects) influencing a trait
may be postulated from the estimated proportion of SNPs (p) from
the BayesCp model. Indeed, Habier et al.39 showed in simulations
that estimates of p reflected well the genetic architecture of the
trait. For example, the estimated p of 0.007, 0.062 and 0.319 for
over-colour, attractiveness and fruit cropping, respectively, would
correspond to 55, 470 and 2500 QTLs, respectively. These estimated
numbers of QTLs are orders of magnitude larger than what
reported in previous QTL mapping studies,29,44–53 which is most
likely due to the significance threshold used in QTL mapping stud-
ies but omitted in genomic prediction. Low p estimates, and SNPs of
large effects (Figure 2), were generally observed for traits with
moderate to high accuracies. For traits where the largest SNP effects
were small, the size of the training population could have been not
large enough to properly estimate SNP effects.

The realized selection differential, in the large family AF1_Da66,
was significant for four traits (attractiveness, fruit size, over-colour
and per cent over-colour). However, most individuals with extreme
phenotypic scores for these traits were in the middle of the distri-
butions of GBV, and thus would not have been identified for selec-
tion or culling purposes. This shows that the tails of the distributions
for these traits were not well predicted, even if accuracies were
high. Note that phenotypes were taken as indicators for the indivi-
duals’ true genotypic values and these phenotypes may have been
imprecise for (some) individuals. In addition, the presence of non-
additive genetic effects was ignored in the (additive) prediction
model. Further exploration of genomic prediction models including
dominance and epistasis would be appropriate as fruit tree crops
are often vegetative propagated.54

Marker density and linkage disequilibrium in training population. The
main hypothesis of genomic selection is that all QTLs will be in LD
with at least one marker.55 The marker density in this study (six
markers/cM) may be too low to have markers in strong/complete
LD with each QTL and consequently the effect for such QTL is
diffused over multiple SNPs, thereby increasing the earlier men-
tioned estimates of p for various traits. The diffusion of QTL effect
over multiple (bi-allelic) SNPs may also occur when the QTL is multi-
allelic.56 On the other hand, long stretches of LD might be present in
the training population that comprised 20 FS families with mod-
erate to large sizes and many recent common ancestors. The num-
ber of recombination events was consequently much lower
compared to a population of unrelated individuals. The average
r2 between the adjacent markers was 0.3, and the average r2

between markers separated by 0.2 cM, 2 cM (around 1 Mb) and
20 cM was 0.26, 0.17 and 0.045, respectively (Supplementary Fig.
S5), which were almost identical to those reported by Kumar et al.23

Optimization of experimental setup. Using deterministic
approaches and simplifying assumptions, several formulae have
been proposed to predict the accuracy of genomic selection prior
to any experiment.57–59 The reliable estimation of the ‘‘number of
effective segments in the genome’’ as a function of genome size
and effective population size was recently questioned.60

Notwithstanding, all formulae consistently identified heritability
as a key factor affecting accuracy of genome-wide predictions,
and this was confirmed by our results (Figure 3). The heritability
in these formulae pertains to the additive genetic part of the
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precision of phenotypic data, and this narrow-sense heritability can
be very high (o0.95) when data are obtained from progeny test-
ing.60 Likewise, the heritability of traits in apple and most fruit trees
can be increased by averaging phenotypes from clonal replications
or from multiple years when trees are not clonally replicated (the
latter ignoring permanent environment effects). In all formulae to
predict the accuracy of genomic selection, the size of the training
population and heritability are mostly used together in a product.
Consequently, when establishing a training population, economic
parameters, such as costs of plantation, maintenance and pheno-
typing, must be considered to optimise the size of the training
population and the number of replications that affect heritability
and eventually maximize accuracy. Another way of raising heritabil-
ity of traits could be the use of more objective assessment methods
instead of visual scoring, for example using digital imaging for traits
pertaining to fruit external appearance.

Phenotypic distributions. All traits were measured on an ordinal 1
to 5 scale but treated as continuous variables in our analysis. As
the phenotypic data used for the training population were aver-
aged over multiple years and also adjusted for year and site
effects, we could consider them as continuous variables and we
verified that the distributions of the residual terms in the training
population were normal for all traits except pre-harvest dropping
and fruit cracking (Supplementary Fig. S3). A more general
approach for prediction is the use of an ordinal probit or threshold
model22 that includes fixed effects (e.g. year and location effects
and their interaction) influencing the raw phenotypic data. The
threshold model holds a continuous latent variable underlying the
observed ordinal scores, and this latent variable is described with
fixed effects and genetic marker effects. In our case, however,
fitting such models for estimation of these fixed effects was not
possible because the application FS families were phenotyped in
locations and years that were different from those of the training
population. Montesinos-López et al.61 reported that ordinality of
the phenotypic data is not problematic when the number of
classes of an ordinal trait is large, i.e. not less than five, and the
data approximated a normal distribution. Wang et al.62 extended
the BayesCp method to fit a threshold model for ordinal traits and
reported very similar accuracies for the normal and threshold
models for simulated traits with four or eight classes and an
approximately normal distribution. The threshold model did yield
superior accuracies for traits with four classes and highly asym-
metric distributions.63

In our study, several traits, i.e. pre-harvest dropping, fruit cracking
and per cent of russet in application family AF5_33Br, showed a
very limited phenotypic variation with very skewed distributions
(Figure 1), but even for these traits, distribution of genotypic
BLUP in the training population was moderately asymmetric.
Such asymmetric phenotypic distributions are frequently observed
for these traits (Laurens, personal communication). This may be due
to experimental conditions that do not favour expression of the
defects to evaluate. These distributions gave rise to the very low
accuracies obtained for fruit cracking (from 20.09 to 0.13, Table 1),
for per cent of russet in AF5_33Br family (accuracy 20.06) or for pre-
harvest dropping (accuracies between 20.06 and 0.02). Fruit crack-
ing also had a very low heritability (0.03, Figure 3), lower than the
value of 0.22 observed by Durel et al.,64 an intermediate estimated
value for p in the BayesCp model (0.1, Figure 2), and a short range of
relative SNP effects, extending to less than 0.0034, all contributing
to very low accuracies. To increase accuracy for this trait, one could
consider a presence/absence classification of the defect and fit a
binomial model as shown for root vigour in sugar beet by Biscarini
et al.65 However, this approach ignores the intensity of the defect,
when present. For binomial traits, Wang et al.62 showed that the
accuracies obtained with the threshold BayesCp method decreased

when heritability and/or incidence were lower. Consequently, the
low incidence, and heritability, of fruit cracking would probably
yield low accuracies when applying the threshold version of the
BayesCp method.

Accuracies of genomic prediction for fruit cropping were also
very low, except in AF4_31Ga (Table 1), while phenotypic variance
was large for this trait and phenotypic distributions were almost
symmetric in all application FS families, except in AF2_Pi63. Fruit
cropping is often affected by biennial bearing and breeders will
usually consider multiple years of phenotyping. Consequently,
additional phenotypic data on the application population are
needed before drawing reliable conclusions on genomic selection
for fruit cropping.

Genotype by environment interaction. The application FS families
and training population were phenotyped in different locations
and years. Putative genotype by environment interactions due to
differences in years and locations, were not considered and might
have affected the prediction accuracy. Only parents were planted in
the same plots as the application families, so there was an insuf-
ficient number of reference genotypes available to estimate geno-
type by environment interaction. However, as the training
population was evaluated over three years and several locations,
the SNP effects estimated to build the genomic prediction model
reflect mean effects over years and locations, which would make
predictions more robust to genotype 3 environment interaction.
Additional phenotyping of the application populations is in pro-
gress, and using the average over multiple years may yield more
stable estimates of the phenotypic performance (as a proxy for true
breeding values), which could further increase the accuracy of the
predicted breeding values. To study genotype by environment
interactions in the context of genomic selection in perennial fruit
crops, a collaborative initiative is underway to establish replicates of
large reference populations in apple and peach at multiple sites
throughout Europe.

Imputation of marker genotypes. Imputation of marker genotypes
was seen as a tool to make genomic selection cost effective66 by
genotyping selection candidates with a panel of evenly spaced low-
density SNPs instead of the high-density panel used in the training
population. Results from a simulation study revealed that the loss of
accuracy using a low-density panel with markers every 10 cM was
limited in a dairy-cattle like population.66 Likewise, the application
of three levels of reduced density SNP panels (approximately one
marker every 5, 0.7 and 0.35 cM) in pigs showed that imputation
accuracy would be higher than 0.9 provided that both parents of
individuals genotyped at low density are genotyped at high den-
sity.67 In our study, the mean interval length between the 364
usable markers was 3.7 cM with 29 intervals being larger than 10
cM and one interval exceeding 20 cM (Supplementary Fig. S2). For
these regions the accuracy of imputation might have been reduced.
As only 3.7% to 7.0% of the markers with the highest effects were
actually genotyped in the application families, reduced imputation
accuracy would probably result in a loss of prediction accuracy.
Putative confounding factors hampered the assessment of the
impact of imputation on prediction accuracy. The accuracy of
imputation will be assessed in a forthcoming study.

Comparison to previous studies
The only previous study concerning genomic selection on apple23

indicated higher accuracies, ranging between 0.67 and 0.89, for six
fruit quality traits. Several factors may explain the discrepancy
between the results of our study and those of Kumar et al.23

Kumar et al.23 estimated accuracies by cross-validation within a
population of seven FS families obtained in a factorial mating
design with four female and two male parents, and sampling for
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cross-validation was performed without taking into account family
structure so that each individual in the validation set had full-sibs in
the training set. Such a within FS family prediction is expected to
result in high accuracies.41 In the present study, four application FS
families shared one or both parents with some of the training FS
families. In the work of Kumar et al.,23 the genotypic data were
obtained with the 8K SNP array31 for all individuals under study,
so imputation was used only for imputing sporadic missing data
and not for a high amount of genotypic data as done in the present
study. Based on the imputed datasets, the marker density was lower
in Kumar et al.,23 however, the levels of LD were similar to those
observed in the present study (Supplementary Fig. S5). In the study
of Kumar et al.,23 the narrow-sense heritability of the traits studied
varied between 0.19 and 0.60, thus there was no trait with very low
heritability like fruit-cracking in the present study. Finally, in the
work of Kumar et al.,23 the phenotypic data in the validation sets
used to estimate accuracy of genomic prediction were obtained in
the same orchard and with a common adjustment as phenotypic
data in the training sets, thus avoiding potential genotype 3 envir-
onment interaction that would reduce accuracies.

Optimization of apple breeding programmes

Genetic bases of apple breeding programmes. The training popu-
lation represented the major founders of European and worldwide
breeding programmes, in order of representation: ‘Golden
Delicious’, ‘Delicious’, ‘McIntosh’, F2-26829-2-2, ‘Jonathan’, ‘Cox’
and some representation of ‘Common Antonovka’.68 Indeed, in
terms of accuracy of genomic prediction or realized selection dif-
ferential, no major differences were present between the five
application FS families derived from breeding programmes in
France (AF1_Da66, AF2_Pi63) and Belgium (AF3_31Fu, AF4_31Ga,
AF5_33Br). The part of breeding programmes devoted to introgres-
sion of new resistance genes,69 as well as families descending from
cultivar ‘Braeburn’ (that was absent in HiDRAS), could require a
more diverse training population. However, as the current training
population contained the major founders of the European breeding
programmes, genomic prediction seems applicable for many
crosses and juvenile FS families in ongoing breeding programmes,
allowing selection prior to field-phenotyping. Finally, the static
training population can evolve into a dynamic, larger and more
diverse representation by adding genotyped individuals with phe-
notypes as arise from these breeding programmes.

Organization of breeding programmes. Breeding programmes in
perennial fruit crops may encompass different breeding themes,
such as disease resistance, novel flavour and flesh colour,2 each
requiring a separate elite population for each theme. Deploying
genomic selection for each breeding theme separately would yield
highest accuracy of selection as this maximizes the coincidence of
key chromosome segments in training and application populations.
However, this challenges the management of inbreeding due to the
lower effective population size that arises from a highly related elite
population. Simulation experiments on genomic selection indi-
cated lower rates of inbreeding per generation.70 However, these
lower rates per generation may be counteracted by the reduction in
generation interval, such that the net outcome of genomic selec-
tion schemes will be an increase in inbreeding per year. Relative to
trait-targeted training population, the use of a large diverse training
population could reduce inbreeding, probably at the expense of
prediction accuracy. Note that the high-density genotyping of
breeding candidates presents an excellent opportunity to monitor
genetic diversity at the genome level and to control inbreeding.

The relatively higher efficiency of genomic selection compared
to conventional selection in terms of genetic gain per year was
estimated considering a reduction of breeding cycle length from
seven years in conventional selection to four years when using

genomic selection.23 Apple breeders could work on further redu-
cing generation interval to gain the full advantage of the early
availability of GBV by rapid cycling.3 Finally, breeders could dramat-
ically increase the number of progeny per cross and apply a higher
selection intensity among juveniles based on GBV obtained from
SNP profiles. The latter will incur higher costs for genotyping, so
novel cost-efficient genotyping strategies, such as Genotyping by
Sequencing, must be considered. More studies are needed to
optimize allocation of resources for phenotyping and genotyping
to maximize prediction power for Mendelian, ordinal and complex
traits in fruit crops.

CONCLUSION
This paper reports a substantial range in the accuracy of genomic
prediction and realized selection responses for ordinal culling traits
in apple. Lower accuracy and response were observed for traits with
reduced or skewed phenotypic distributions and with low heritabil-
ities. For symmetrically distributed traits with moderate or high
heritability, the genomic predictions could substitute expensive
field phenotyping to cull the poorest individuals with moderate
intensity of selection.
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Appendix
Expectation of correlation between phenotypic scores (y) and GBV

The phenotypic scores can be modelled as

y~XbzZuzeP

where y is a vector of phenotypic scores for a given trait, b is the vector of fixed effects (e.g. grand mean), X is the incidence matrix linking
observations to fixed effects, Z is the incidence matrix linking individuals to their polygenic additive effect (5 true breeding value) u which
has a Normal distribution with V ar(u)~As2

a , where A is the pedigree-based relationship matrix and s2
a is the additive genetic variance and eP

is a vector of residual terms identically and independently distributed with a variance s2
e P.

GBV (ĝ ) can be considered as an estimation of u, and thus we have

ĝ~uzeg

where eg is a vector of residual terms with variance s2
eG .

As the GBV ĝ are predictions derived from a model fitted to data from the training population while the phenotypic scores pertain to the
application population, the residuals terms eP and eg are independent. It should be noted also that the usual quantity of interest is the
correlation between the GBV and the polygenic additive effect/true breeding value which is

corr(ĝ ,u)~
cov(uzeg ,u)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(uzeg )var(u)
p ~

s2
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2
azs2

eG )s2
a

q ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

a

(s2
azs2

eG )

s

Consequently the correlation between the GBV ĝ and the phenotypic scores within the application FS families is

corr(y,ĝ )~
cov(XbzZuzeP ,uzeg )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(XbzZuzeP)var(uzeg )
p ~

s2
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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