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The reference point in dynamic Prospect-based User Equilibrium: a simulation
study

S. F. A. Batistaa,∗, Ludovic Leclercqa

aUniv. Lyon, ENTPE, IFSTTAR, LICIT, F-69518, Lyon, France

Abstract

In this paper, we revisit the concept of Prospect-based User Equilibrium and extend it to dynamic traffic assignment.
We propose a solution algorithm to calculate the network equilibrium that is based on the Method of Successive Av-
erages. Monte Carlo simulations are considered to account for the distributions of route travel times. A mesoscopic
Lighthill-Whitham-Richards (LWR) traffic model is used to determine time-dependent route costs that account for
congestion and spillback effects. We analyze the dynamic Prospect-based User Equilibrium compared to the bench-
marks DUE and SUE, on a synthetic Manhattan traffic network. We consider four endogenous settings of the reference
point. We show that these settings play a very important role in the route flow patterns and on the network performance
at an aggregated level, in terms of vehicles mean speed as well as internal and outflow capacities. We show that the
Prospect-based User Equilibrium is more sensitive to a change in the reference point setting than in the calibration of
the users’ risk-aversion and risk-seeking parameters.

Keywords: Risk-seeking and risk-aversion users’ behavior, Prospect theory, Dynamic traffic assignment, Network
performance, LWR traffic model.

Highlights

• We enhance the importance of the reference point in the application of Prospect Theory to route choice.

• We investigate the influence of users risk-seeking and risk-aversion behavior in the traffic network performance.

• We propose the first implementation of Prospect Theory in a dynamic context, where travel costs are determined
by a LWR traffic model.

• We propose a solution algorithm to calculate the dynamic Prospect-based User Equilibrium.

• We show that the concepts of disutility minimization and prospect maximization give different route flow pat-
terns, depending on the reference point.

1. Introduction

The concept of Dynamic Traffic Assignment (DTA) was introduced by the seminal works of Merchant and
Nemhauser (1978a) and Merchant and Nemhauser (1978b). Up to now, most of the DTA applications discussed
in the literature are based on the Deterministic User Equilibrium (DUE) (Wardrop, 1952) and Stochastic User Equi-
librium (SUE) (Daganzo and Sheffi, 1977; Daganzo, 1982). The DUE assumes that users are fully informed about the
travel times for their trips and they seek to minimize their own travel times (Wardrop, 1952). The SUE assumes that
travel times have an uncertainty associated due to changes in traffic conditions over time. The modeling of the SUE is
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based on the application of different Random Utility models (McFadden, 1978; Prato, 2009), depending on which as-
sumptions are made on the perception error. Revealed (Zhu, 2011) and stated (Avineri and Prashker, 2004) preference
surveys show that users do not always aim to minimize their own travel times. Therefore, both the DUE and SUE
have an inherent strong users’ behavior assumption. In the literature of traffic assignment, there are other alternative
models that take into account more realistic users’ behavior. The latter includes bounded rational users (Simon, 1957;
Mahmassani and Chang, 1987; Huang and Lam, 2002; Szeto and Lo, 2006; Batista et al., 2018), regret-averse users
(e.g. Chorus, 2014; Li and Huang, 2016) and users risk preferences (e.g. Bates et al., 2000; Avineri, 2006; Shao et al.,
2006; Chen and Zhou, 2010). But, few efforts have been made to adapt these models to DTA problems.

In this paper, we focus on the users’ choices over alternatives that involve risk. In many studies in the literature,
the users’ risk preferences have been associated to the reliability of travel times, i.e. the variance of the travel times
distributions. In this case, users have a preference for more reliable travel times. Several modeling approaches have
been discussed in the literature: the mean-variance model (Jackson and Jucker, 1982); the scheduling-delay (Small,
1982; Watling, 2006); the travel time budget (Shao et al., 2006; Shao et al., 2006; Lo et al., 2006; Lam et al., 2008);
the mean-excess traffic model (Chen and Zhou, 2010; Chen et al., 2011); and the added-variability model (Ordóñez
and Stier-Moses, 2010), to name a few examples. Bell (2000) and Bell and Cassir (2002) propose a non-cooperative
game, where users are pessimistic about their travel times variability and show a risk-aversion behavior. Nevertheless,
Katsikopoulos et al. (2000) conducted a stated preferences survey and participants showed to be risk-averse when the
travel time of a route is below a certain threshold travel time and risk-seeking in the opposite scenario. In this spirit,
the application of Prospect Theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) seems to be more
appealing. It is a behavioral economic theory. The outcomes of the possible choices are framed as prospects, that are
evaluated as gains and losses against a reference point, i.e. status quo. Users evaluate the gains and losses differently.
In fact, people are more sensible to a loss than an equivalent amount of gain. As an example, we feel a greater
emotional impact on a loss of 50$ than on a similar amount of gain, i.e. the loss effect. In Prospect Theory, users want
to maximize their gains. Users are also risk-averse when confronted with prospects of gains and risk-seeking when
confronted with prospects of losses. In the traffic community, Prospect Theory has been applied by many studies
to model users’ choices for their departure time (Fujii and Kitamura, 2004; Jou et al., 2008), routes (Avineri and
Prashker, 2004; Viti et al., 2005; Avineri, 2006; Connors and Sumalee, 2009; Sumalee et al., 2009; Gao et al., 2010;
Ramos et al., 2011; Xu et al., 2011; Ramos et al., 2013) or bus lines (Avineri, 2004).

The concept of Prospect-based User Equilibrium was first established by Avineri (2006) for stochastic traffic net-
works. This concept was generalized by Connors and Sumalee (2009), where the mathematical formulation was
introduced. Sumalee et al. (2009) further extended this definition of the network equilibrium to account for endoge-
nous stochastic demands and supply. But, the application of Prospect Theory to traffic assignment strongly relies on
the choice of the reference point, as evidenced by Avineri (2006). The applications of Prospect Theory presented by
Avineri (2006), Connors and Sumalee (2009) and Sumalee et al. (2009) rely on exogenously defined reference points.
Xu et al. (2011) extended the Prospect-based User Equilibrium to consider endogenous reference point, for stochas-
tic traffic networks. While several studies discussed the implementation of Prospect Theory to traffic assignment,
there are several questions that still remain to be explored. First, the application of Prospect Theory has only been
based on static implementations and small networks. Connors and Sumalee (2009) investigated the implementation
of Prospect Theory on a static traffic assignment context on a 2 links network and on a Braess network. Xu et al.
(2011) also considered a static implementation of Prospect Theory on a 4 links network as well as on the Nguyen and
Dupui’s network. Up to our best knowledge, there is still no study that investigates the implementation of Prospect
Theory in a dynamic context, i.e. where travel times are time-dependent and account for spill-back and shock-wave
effects. Second, travel times are not deterministic due to changes of traffic conditions over time. On the contrary,
time prospects are deterministic. Only Sumalee et al. (2009), Xu et al. (2011) and Yang and Jiang (2014) discuss
the application of Prospect Theory for stochastic traffic network and static traffic assignment problems. Third, the
setting of the reference point is a key ingredient in the application of Prospect Theory. Particularly, in the case of
traffic assignment problems, the setting of the reference point is yet not consensual (Avineri, 2006; de Palma et al.,
2008; Avineri and Bovy, 2008; Connors and Sumalee, 2009; Gao et al., 2010; Zhou et al., 2014). In this paper, we
propose the first implementation of Prospect Theory to a DTA problem, considering travel times uncertainties. We
calculate time-dependent route travel times that account for congestion and spill-back effects, through a Lighthill-
Whitham-Richards (LWR) mesoscopic traffic simulator (Leclercq and Becarie, 2012). The goal of this paper is not
to propose a new paradigm for the setting of the reference point, we investigate its influence in the application of
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Prospect Theory to traffic assignment. We revisit the concept of Prospect-based User Equilibrium, to investigate the
influence of the users’ risk-seeking and risk-aversion behavior on the traffic network mean speed as well as internal
and outflow capacities. We analyze the traffic network performance against the classical DUE and SUE models. For
these tests, we consider a synthetic Manhattan traffic network.

This paper is organized as follows. In Sect. 2, we introduce the theoretical formulation of Prospect Theory and
review the key points for its application. In Sect. 3, we discuss the mathematical formulation of the Prospect-based
User Equilibrium and present a solution algorithm. In this paper, the dynamic traffic assignment framework is based
on a quasi-static approximation. We then analyze how the algorithm converges in a simple static assignment problem
on a 3 road network. In Sect. 4, we investigate the influence of the users’ risk-seeking and risk-aversion behavior on
the performance of a synthetic Manhattan traffic network, compared to the benchmarks DUE and SUE. In Sect. 5, we
outline the conclusions.

2. Prospect Theory: theoretical background and key points

Kahneman and Tversky (1979) and Tversky and Kahneman (1992) introduced Prospect Theory to model users’
choices over alternatives of which the outcomes involve risk. By other words, the outcome of each alternative has a
given probability to happen and is evaluated as a prospect of gain or loss compared to a reference point. In this paper,
we focus our attention on the application of Prospect Theory to traffic assignment. Therefore, the question is how to
model users’ decisions about the time prospects. In Sect. 2.1, we introduce the mathematical background of Prospect
Theory. We then dissect the two fundamental points for the application of Prospect Theory. In Sect. 2.2, we discuss
the setting of the reference point in the traffic assignment context. In Sect. 2.3, we discuss the calibration of the
parameters that determine how users differently evaluate gains and losses as well as how they weight the probabilities
associated to each outcome.

In Table 1 we summarize the notations of all symbols and variables used in this paper.

Table 1: Nomenclature used in this paper.

City network:
k Route.
a Link.
o Origin.
d Destination.
Ξ Set of all od pairs of the network.
Γa Set of all links of the network.
Ωod Choice set of alternative routes for od pair.
ta Free-flow travel time of link a.
tk Travel time of route k.

Prospect Theory:
Xk(tk) Time prospect.
vk(tk) Value function.
tk Deterministic travel time of route k.
ω(pk) Weighting function for gains and losses.
pk Probability that travel time tk is a gain or a loss.
T0 Reference point.
T od

0 Reference point per od pair.
α Degree of diminishing the users sensitivity for gains.
β Degree of diminishing the users sensitivity for losses.
λ Users loss-aversion degree.
γ Parameter that captures the users perception for the probabilities of gains.

Continued on next page
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Table 1 – Continued from previous page
ϕ Parameter that captures the users perception for the probabilities of losses.
−→
V od Vector that contains the mean values of the route travel times distributions for the od

pair.
δod Acceptability risk tolerance band for the od pair.

Prospect-based User
Equilibrium:
Qod Total demand for the od pair.
Qod

k Flow of route k of the od pair.
qa Flow of link a.
Tk Perceived route utility.
Zk Deterministic route utility.
ϵk Route uncertainty or error term.
ϵa Link error or uncertainty term.
δak Dummy variable that equals 1 if link a belongs to route k.
M Number of samples for the error term discretization.
ηa and ζa Scale and shape parameters of a gamma distribution.
ti
a Sample i of the travel time distribution of link a.

ti
k Sample i of the travel time distribution of route k.
δak Binary variable that equals 1 if route k travels on link a, or 0 otherwise.

Method of Successive
Averages:
j Iteration j of the Method of Successive Averages.
τ j Descent step of the Method of Successive Averages.
QOD, j+1

k Flow of route k at iteration j + 1.
QOD, j

k Flow of route k at iteration j.
QOD,∗

k New temporary flow of route k.
N(λ) Number of violations.
Φ Pre-defined threshold for the number of violations.
Nmax Maximum number of descent step iterations.
T Simulation period.
dt Assignment period.
Gap Relative gap.
RMS E Root mean square error.

Other variables:
−→
Q Vector that contains the all route flows for the od pair.
u Free-flow speed.
w Wave speed.
k jam Jam density.

2.1. Prospect Theory: basic formulation

In the context of traffic assignment, users frame travel times as time prospects. During the first editing phase, time
prospects are framed as gains and losses against a reference point T0. Then, during an evaluation phase, users choose
the maximum time prospect that is perceived.
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The time prospect Xk(tk) of route k is:

Xk(tk) = vk(tk)ω(pk),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (1)

where vk(tk) is the value function and tk is the deterministic travel time of route k; ω(pk) is the weighting function
for gains and losses; pk is the probability that the perceived travel time of route k is a gain or a loss; Ωod is the route
choice set; and Ξ is the set of all od pairs of the city network.

The value function vk(tk) (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) determine how users
value the gains and losses against the reference point T0. It is defined as:

vk(tk) =

(T0 − tk)α, if tk ≤ T0

−λ(tk − T0)β, if tk > T0
(2)

where T0 is the reference point; α ≤ 1 and β ≤ 1 represent the degrees of diminishing sensitivity for gains and losses,
respectively; and λ ≥ 1 is the loss-aversion degree. The parameters α and β control the concavity and convexity of
vk(tk). Note that if α = β = 1 users are pure loss averse. In Fig. 1, we show the shape of vk(tk). As one can observe,
users joy increase with the increase of gains. Whilst, users feel more emotional pain as the losses increase.

The weighting functionω(p) (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) determines how users
deal with the outcome probabilities. It is defined as:

ω(pk) =


pγk

(pγk+(1−pk)γ)
1
γ
, if tk ≤ T0

pδk
(pδk+(1−pk)δ)

1
δ
, if tk > T0

(3)

where γ > 0 and δ > 0 capture the distortion in the perception of the probability pk for gains or losses, respectively.
These parameters also control the curvature of ω(pk) (see Eq. 3). This definition of ω(pk) has some important prop-
erties: (i) w(0) = 0; (ii) w(1) = 1; (iii) is asymmetrical with an inflection point at 0.3 (Prelec, 1998); and (iv) it
overweights small probabilities and underweights higher ones. In Fig. 1, we show the shape of ω(pk).

For the application of Prospect Theory, there are two fundamental points that need to be properly calibrated: (i) the
reference point T0; and (ii) the sets of (α, β, λ) parameters of the value function and (γ, ϕ) parameters of the weighting
function. This is described in more detail in the next two sections.

2.2. The reference point T0

The setting of the reference point T0 for the Prospect Theory application to traffic assignment problems has not
been consensual in the literature (de Palma et al., 2008). It is still a research question in traffic assignment problems.
Avineri (2006), Connors and Sumalee (2009) and Sumalee et al. (2009) considered an exogenous definition of T0.
These studies show that the setting of T0 strongly influences the route flow patterns in the traffic network. Other
authors propose to calibrate the reference point T0 based on empirical surveys (see e.g. Senbil and Kitamura, 2004;
Jou et al., 2008; Ceder et al., 2013; Zhou et al., 2014). For DTA applications, an endogenous definition of the reference
point is more appropriate. Avineri and Bovy (2008) proposed to consider the mean or median of the route travel times.
Gao et al. (2010) discusses some insights to set T0 as a latent variable and to calculate it based on the free-flow travel
time, the worst travel time or the mean of the travel times. Ben-Elia and Shiftan (2010) and Kemel and Paraschiv
(2013) also consider the mean of the travel times. Xu et al. (2011) considers a time budget reference point. Zhou
et al. (2014) considered the average travel times calculated from the route travel time distributions of the different
alternatives. Jiang et al. (2014) set the reference point as the average of the free-flow travel times of the alternative
routes.

In this paper, we assume a common reference point T0 for all users sharing the same od pair (that is T od
0 ). We

focus on three endogenous definitions discussed in the literature:

T od
0 = mean(

−→
V od) (4)
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Figure 1: Left: Value function vk(tk). Right: Probability weighting function ω(pk). These functions are defined by Kahneman and Tversky (1979)
and Tversky and Kahneman (1992).

T od
0 = median(

−→
V od) (5)

T od
0 = mode(

−→
V od) (6)

where
−→
V od is a vector that contains the mean values of the route travel times distributions for the od pair.

We also propose a different endogenous definition of T od
0 , that is based on an acceptability risk tolerance band δod

for the desired travel time. It is defined as:

T od
0 = (1 + δod)min(

−→
V od) (7)

where the acceptability tolerance band δod ∈ [0,+∞[. Note that, when δod, users are strict on their travel times.
Whilst, when δod is large, users are more relaxed about their travel times. For example, a small δod value might
represent people that want to go to work and a large δod value might represent people that will go to do some leisure
activity and are more relaxed about their travel times.

2.3. The users’ risk-aversion parameters
Another important ingredient for the application of Prospect Theory is the calibration of the sets (α, β, λ) and (γ, ϕ)

for the value and weighting functions, respectively. These parameters are context dependent and may vary from user
to user. Avineri and Bovy (2008) investigated the calibration of these parameters in the traffic assignment context.
As an example, Avineri and Bovy (2008) shows that the loss-aversion degree λ varies across the period of the day.
The authors calculate that λ = 0.76 for the morning peak and λ = 1.62 for the afternoon peak. The off peak value is
λ = 1.28. Up to our best knowledge, only the set of parameters used by Xu et al. (2011) has been calibrated in a traffic
assignment context: (α, β, λ, γ, ϕ) = (0.37, 0.57, 1.51, 0.74, 0.74). Several other studies (see e.g. Yang and Jiang, 2014)
used the set of parameters proposed by Tversky and Kahneman (1992): (α, β, λ, γ, ϕ) = (0.88, 0.88, 2.25, 0.61, 0.69).
Nevertheless, this set of parameters were not calibrated in a traffic assignment experiment and one should be careful
in drawing conclusions when considering it.
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3. Prospect Theory Stochastic User Equilibrium

3.1. Prospect-based User Equilibrium and solution algorithm
In this paper, we follow the mathematical formulation of the Prospect-based User Equilibrium proposed by Con-

nors and Sumalee (2009) and Xu et al. (2011). In Prospect Theory, users aim to maximize their travel time prospect
Xk(tk),∀k ∈ Ωod∧∀(o, d) ∈ Ξ. Therefore, under Prospect-based User Equilibrium, the time prospects of all used routes
are equal to the maximum time prospect value for each od pair. Moreover, under equilibrium conditions, no user can
increase his or her own time prospect Xk(tk) by unilaterally changing routes. This definition of equilibrium was in-
troduced by Avineri (2006). Mathematically, the Prospect-based User Equilibrium can be described as (Connors and
Sumalee, 2009; Xu et al., 2011):

Qod
k (max(Xod

k (tod
k )) − Xod

k (tod
k )) = 0,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (8)

Qod
k > 0, if Xod

k (tod
k ) = max(Xod

k (tod
k ))

Qod
k = 0, if Xod

k (tod
k ) ≤ max(Xod

k (tod
k ))

(9)

∑
k

Qod
k = Qod,∀(o, d) ∈ Ξ (10)

qa ≥ 0,∀a ∈ Γa (11)

Qod
k ≥ 0,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (12)

where Qod
k is the flow of route k of the od pair; qa is the flow of link a; Γa is the set of links of the graph that represents

the traffic network; and Qod is the total demand for the od pair.
We make use of the Method of Successive Averages (or MSA) to determine the Prospect-based User Equilibrium

defined by the system of equations Eq. 8 to Eq. 12. The travel times at the link level are assumed to be gamma
distributed (Nielsen, 1997), with scale parameter ηa and shape parameter ζa. Monte Carlo simulations (Sheffi, 1985)
are used to account for the travel times uncertainties. The idea is to discretize the link travel times into M samples.
Let ti

a be a sample i of the travel time of link a,∀a ∈ Γa. We assume that the link utilities are additive, to calculate the
sample i of the travel time of route k, ti

k, as:

ti
k =
∑
a∈Γa

ti
aδak,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ ∧ ∀i = 1, . . . ,M (13)

where δak is a binary variable that equals 1 if route k travels on link a, or 0 otherwise.
For each sample i = 1, . . . ,M, we locally solve the corresponding Prospect-based User Equilibrium problem. In

more detail, each sample ti
k is evaluated in terms of travel time prospects Xk(ti

k) (Eq. 1) and framed as a gain or a loss
depending on the reference point T od

0 . We also have to calculate the probability pk. For this, we discretize the travel
time distributions into small bins and we calculate the surface area of each bin. This defines a set of probabilities for
each route k that connects the od pair. Based on the sample ti

k, we identify the respective bin and the probability value.
Once the time prospects are calculated, users choose the routes with the largest time prospects for each od pair, based
on an all-or-nothing principle. The new temporary route flows, Qod,∗

k , are calculated by averaging all local choices
made for each sample set. Qod,∗

k is used to update the new route flows Qod, j+1
k at iteration j + 1, as:

Qod, j+1
k = Qod, j

k + τ j{Qod,∗
k − Qod, j

k },∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (14)
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Figure 2: Traffic network composed by one od pair and three routes.

where Qod, j
k represents the route flows at iteration j of the MSA; and τ j is the descent step of the MSA.

This process is repeated at each iteration j of the MSA. To ensure the good convergence properties of the MSA,
one should properly choose the descent step τ j. For the theoretical convergence of the algorithm, the following two
conditions should be satisfied (Sheffi, 1985):

∞∑
j=1

τ j = ∞ (15)

lim
j→∞
τ j → 0 (16)

In this paper, we set τ j =
1
j .

For the MSA convergence, we consider two stopping criteria:

• the number of violations N(λ) (Sbayti et al., 2007), that represent the number of cases where |Qod, j+1
k − Qod, j

k |
is superior to a pre-defined path convergence threshold Φ, for each od pair. The convergence is achieved when
N(λ) ≤ Φ, for each od pair.

• a maximum number of j iterations Nmax. That is j ≤ Nmax.

We present a solution algorithm to calculate the Prospect-based User Equilibrium in Algorithm 1. A mesoscopic
LWR traffic simulator (Leclercq and Becarie, 2012) is used to calculate time-dependent route costs, that account for
dynamic effects such as congestion and spillback effects. In this paper, we split the total simulation period T into
smaller periods with duration dt. The dynamic traffic assignment framework is based on a quasi-static approximation
for each period. For the first period dt, we calculate the Prospect-based User Equilibrium through the framework
previously described. For the second period between dt and 2 × dt, users make their choices based on the travel times
at equilibrium from the previous period. This process is repeated for all small periods dt until T . This re-assignment
process allows the users’ decisions to be time-dependent.

3.2. Example of application: static traffic assignment on a 3 road network
In this paper, the dynamic traffic assignment framework is based on a quasi-static approximation for each as-

signment period. Therefore, we investigate how the algorithm that is proposed to calculate the Prospect-based User
Equilibrium (i.e. Algorithm 1) converges. We consider a simple static assignment problem. The test network is de-
picted in Fig. 2. It is composed by one od pair and four links. The route choice set is Ωod = {(1, 2); (1, 3); (4)}. The
total demand is Qod = 100.

The travel time tk of route k depends on its circulating flow and is calculated as:

tk(
−→
Q) =

∑
a∈Γa

(ta + qa(
−→
Q) + ϵa)δak,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (17)

where
−→
Q is a vector that contains the three route flows, i.e.

−→
Q = (Q1,Q2,Q3); ta is the free-flow travel time of link a;

Γa is the set of links that define the traffic network; δak is a binary variable that equals 1 if route k travels on link a, or

8



Input the traffic network, demand scenario, re-assignment period dt and simulation duration T .
Calculate the route choice set Ωod,∀(o, d) ∈ Ξ.
Initialize j = 1, ηa, ζa, α j=1 = 1.
Initialize the route flows Qod, j=1

k = 0,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Perform an initial network loading.
for m=1:T/dt do

while N(λ) ≥ Φ or j ≤ Nmax do
Set Qod, j

k = Qod, j+1
k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.

Discretize the link travel time distributions into M samples.
Update the endogenous reference point T od

0 .
Calculate the set of probabilities pk for each route k of each od pair.
for i=1 to M do

Update the set of samples ti
k,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.

Calculate the value function vk(tk) (Eq. 2) and the weighting function ω(p) (Eq. 3),
∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.

Determine the time prospect Xk(tk),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (Eq. 1).
For each od pair, users are assigned to the route with the maximum travel prospect based on an

all-or-nothing assignment.
end
Update the new route flows Qod,∗

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ, based on an averaging of the users choices
over all M samples.

Update the route flows based on Eq. 14.
if Time-independent costs then

Perform a static loading of the network based on the new route flows and update the route travel
times.

end
if Time-dependent costs then

Run the LWR mesoscopic simulator (Leclercq and Becarie, 2012) and update the route travel times.
end
Based on the link travel times, fit a gamma distribution to update the set of ηa and ζa.
Calculate N(λ).
Update τ j =

1
j .

Set j = j + 1.
end
Save the route flows: Qod, j+1

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
end

Algorithm 1: Dynamic implementation algorithm of the PT model previously described.

0 otherwise; ϵa is the error or uncertainty term associated to the travel time of link a; and qa is the flow of link a that
is calculated as:

qa =
∑
a∈Γa

Qkδak (18)

The free-flow link travel times are set to: t1 = t2 = 10; t3 = 20; and t4 = 50. The error terms ϵa are gamma
distributed with a mean equal to ta,∀a ∈ Γa and a similar variance for σa = 2,∀a ∈ Γa. The parameters of the gamma
distribution are updated as ηa = σa,∀a ∈ Γa for the scale parameter and ζa = ta

σa
,∀a ∈ Γa for the shape parameter. For

the Monte Carlo simulations, we set M = 5000 samples.
The Prospect-based User Equilibrium is calculated for each reference point defined in Eq. 4 to Eq. 7 and the set

of parameters (α, β, λ, γ, ϕ) = (0.37, 0.57, 1.51, 0.74, 0.74) (Xu et al., 2011). We set three values of the acceptability
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Equilibrium T od
0 Q1/Qod Q2/Qod Q3/Qod RMSE Gap

DUE ∼ 0.30 0.20 0.50 0.3595 0.0000
SUE ∼ 0.36 0.22 0.42 0.0005 0.1142

Prospect Theory Mean 0.42 0.21 0.35 0.0012 0.3063
Prospect Theory Median 0.47 0.26 0.27 0.0182 0.5741
Prospect Theory Mode 0.40 0.23 0.37 0.0008 0.2293
Prospect Theory δod = 0 0.39 0.23 0.38 0.0008 0.3010
Prospect Theory δod = 0.5 0.53 0.29 0.18 0.0023 1.0113
Prospect Theory δod = 1 0.69 0.25 0.06 0.0547 2.0326

Table 2: Route flows, RMSE and Gap values under Prospect-based User Equilibrium conditions for six settings of the reference point T od
0 . The

results for the DUE and SUE are also listed. These results correspond to the descent step iteration j = 30.

tolerance band δod = 0, 0.5, 1. As a reference, we also calculate the DUE and SUE. Note that, in this static imple-
mentation a simulation period T is not considered and therefore only one iteration of the for loop (see Algorithm 1) is
done.

We start by analyzing the convergence of Algorithm 1. We focus on the root-mean-square error (RMSE) and the
relative Gap (Sbayti et al., 2007) criterion as convergence indicators for the traffic network depicted in Fig. 2. The
RMSE at the j−th iteration of the MSA is calculated as:

RMS E j =

√
1
|Ωod |

∑
k

|Qod,∗
k − Qod, j

k | (19)

where |.| is the number of routes listed in Ωod.
The relative Gap (Sbayti et al., 2007) at the j−th iteration of the MSA is calculated as:

Gap j =

∑
k Qod

k (tod
k −min(tod

k ))

Qod min(tod
k )

(20)

The relative Gap j is an equilibrium indicator that is 0 under DUE conditions. This means that all users have
chosen the routes with the minimal travel times. The Gap j is larger than 0 for the SUE, however small, due to the
uncertainty of the travel times.

To analyze the convergence of Algorithm 1, we run 30 iterations of the MSA procedure for the DUE, SUE and the
different settings of the Prospect Theory as previously described. Fig. 3 depicts the evolution of the RMSE, relative
GAP and the different reference points T od

0 as function of the j−th MSA iteration. The route flows as well as the
RMSE and relative GAP values for the 30-th iteration are listed in Table 2.

The evolution of the RMSE as function of the j−th MSA iteration shows the good convergence of Algorithm 1.
As j increases, the RMSE value decreases towards 0, for all model settings considered for the Prospect Theory. The
reference point T od

0 also converges to a constant value as we achieve the equilibrium conditions of the traffic network.
The relative Gap acts as an indicator that tells us how far we are from the DUE. The results depicted in Fig. 3 show that
the implementation of Prospect Theory considering the reference points T od

0 defined by Eq. 4 to Eq. 6 leads to network
equilibrium conditions that are very close to the DUE and SUE. Nevertheless, this is not similar for the reference point
T od

0 defined by Eq. 7. For δod = 0, the evolution of the relative Gap converges to similar values as the DUE and SUE.
For larger δod values, the relative Gap converges to larger values. The latter evidences that the network equilibrium
is different than the DUE and SUE. To better dissect these results evidenced by the relative Gap, we analyze the
route flows at equilibrium listed in Table 2, for the descent step iteration j = 30. Fig. 4 depicts the distribution of
travel times, value of function v(tk), probability distributions and time prospect distributions for the reference point
calibration defined in Eq. 7, considering three δod values. These results correspond to the route flows at equilibrium
listed in Table 2. For δod = 0, we are close to the DUE and SUE as previously evidenced by the Gap values and the
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Figure 3: RMSE and Gap values as function of the MSA descent iteration j. The results are shown for the DUE, SUE and the Prospect-based User
Equilibrium considering different settings of the reference point. The evolution of the six endogenous reference points T od as function of the MSA
descent iteration j are also represented. The left plots represent the results for the mean, median and mode setting of T od . The right plots represent
the three settings of δod for T od .
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Figure 4: Distributions of travel times, value function v(tk), probability distributions pk and time prospects Xk(tk) for three settings of the reference
point defined in Eq. 7. The results in red refer to route 1, in green to route 2 and in blue to route 3. Three values of δod are considered: 0, 0.5 and 1.
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route flows at equilibrium. An increase of δod leads to an increase of the reference point value and the range of the
travel times distributions that are framed as gains also increases (see the v(tk) distributions in Fig. 4). But, increasing
the reference point value does not necessarily mean that users will choose the route(s) with the minimum(minimal)
travel time(s). For δod = 1, the distribution of travel times is lower for route 3 than the other two routes. The value
function indicates that one might potentially have larger gains in choosing route 1. Nevertheless, the probability of
facing these gains for route 1 is much lower than for the other two routes (see the probability distribution in Fig. 4).
The time prospect (Eq. 1) depends on the balance between the value of the possible gains with the weighting of the
outcome probabilities of facing these gains. Therefore, routes 1 and 2 happen to have a larger number of prospects
framed as the maximum ones for a larger number of Monte Carlo samples. These two routes are then chosen more
often than route 1.

In summary, we show that the tenets of disutility minimization (i.e. users that chose to minimize their own travel
times) and prospect maximization are different. These differences strongly depend on the setting of the reference
point.

4. Dynamic Prospect-based User Equilibrium

4.1. Synthetic Manhattan traffic network settings
In this section, the dynamic implementation of Prospect Theory is done on a synthetic Manhattan network, de-

picted in Fig. 5. It is composed by 134 links with a similar length of 100 meters. There are traffic lights located in all
intersections, with a cycle of 45 seconds. The traffic lights located in the horizontal links have a green light duration
of 30 seconds.

Figure 5: Manhattan network. The origins are shown by the indicators from o1 to o6 and the destinations from d1 to d6.

The fundamental diagram, that regulates the traffic states in each lane, is triangular and characterized by the fol-
lowing parameters: free-flow speed u = 15 (m/s); wave speed w = 5 (m/s); and a jam density k jam = 0.2 (veh/m/lane).
The traffic network has six entries and exits. They are identified in Fig. 5, by o1 to o6 for the entries and by d1 to d6
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for the exits. There is a constant inflow (i.e. demand) of 0.5 (veh/s) at each entry, that is equally assigned to the six
exits during the assignment period. The entry network links have two lanes. Vehicles are equally assigned on each
lane. There are no capacity restrictions at the exits. In total, there are 36 od pairs. For each od pair, the choice set Ωod

is calculated based on 3 K-shortest paths per od pair. This yields a total of 108 routes.
The total simulation period is T = 3000 seconds and the network equilibrium is calculated each 250 seconds.

This means that vehicles are re-assigned at each period of 250 seconds based on the traffic conditions of the previous
assignment period. We set Φ = 0 and Nmax = 250 for the MSA convergence and M = 5000 samples for the Monte
Carlo simulations. The dynamic Prospect-based User Equilibrium is calculated based on the reference points defined
in Eq. 4 to Eq. 7. For the acceptability risk tolerance band, we set δod = 0, 1,∞. Unless clearly stated otherwise (in
Sect. 4.3), we consider the users’ risk-aversion and risk-seeking parameters stated in Xu et al. (2011) for all simulation
scenarios. In Table 3, we label each simulation scenario considered in this section.

Model T od
0 ID Model

DUE ∼ 1
SUE ∼ 2
PT Mean 3
PT Median 4
PT Mode 5
PT δod = 0 6
PT δod = 1 7
PT δod = ∞ 8

Table 3: Models IDs for the DUE, SUE and the implementation of Prospect Theory considering the reference points defined in Eq. 4 to Eq. 7.
Three δod values are considered.

4.2. Analysis of the network performance at an individual level
In this section, we analyze the traffic network performance at an individual level. For this, we investigate the

differences between the route flow patterns under the dynamic Prospect-based User Equilibrium and the benchmarks
DUE and SUE. Fig. 6 and Fig. 7 depict the route flows for all 36 od pairs and all eight simulation scenarios. We refer
to these scenarios following the labels listed in Table 3. Fig. 8 depicts the distributions of the average travel times
per route for each of the eight scenarios. As one can observe, the route flows are very similar between the dynamic
Prospect-based User Equilibrium, calculated for the settings of the reference point such as the mean, median and
mode (i.e. models 3 to 5) and the benchmarks DUE and SUE (i.e. models 1 and 2). This is due to the low number
of routes that are evaluated in terms of time prospects. When the reference point T od

0 is set as the mean, median or
mode of the travel times, only one or two out of three routes are mainly framed as prospects of gains. The routes with
the minimal travel times tend to be the ones with the largest time prospects and are the chosen ones. These results
also confirm the ones discussed in Sect. 3.2. The distributions of the average travel times per route (Fig. 8) also show
the similarities between the dynamic Prospect-based User Equilibrium, for the reference points defined as the mean,
median and mode, and the benchmarks DUE and SUE. Nevertheless, when the reference point T od

0 is defined as in
Eq. 7 (i.e. models 6 to 8), the route flows under the dynamic Prospect-based User Equilibrium are different than
the benchmarks DUE and SUE. When δod = 0, the route flows are very close to the ones of the benchmarks DUE
and SUE, for the reasons we have just mentioned before. As δod increases, the value of the reference point T od

0 also
increases. Routes with larger travel times will also be valued as possible gains. Depending on the weighting of the
outcome probabilities, the time prospects of these routes with larger travel times might be framed as prospects of gains
and then chosen by the drivers. With the increase of δod drivers start to switch to different routes and in some cases
to routes with larger travel times than the minimal one for their od pair. In fact, this result is also evidenced by the
distributions of average travel times per routes depicted in Fig. 8. One can observe that as δod, the number of routes
with larger travel times also increases.

In summary, we show that the calculation of the dynamic Prospect-based User Equilibrium, considering the setting
of the reference point T od

0 defined in Eq. 4 to Eq. 6, provides similar results as the benchmarks DUE and SUE.
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Figure 6: Route flow distributions for the 8 simulation scenarios and for the od pairs: o = 1, . . . , 6; and d = 1, 2, 3. Each simulation scenario is
identified by the Model ID as listed in Table 3.
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Figure 7: Same as in Fig. 7, but for the od pairs: o = 1, . . . , 6; and d = 4, 5, 6.
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Figure 8: Average route travel time distributions for the DUE, SUE and different settings of Prospect Theory (see Table 3 for more details).
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However, this is not the case for the reference point defined in Eq. 7. This strengths the importance of the reference
point calibration to calculate the Prospect-based User Equilibrium, also in the dynamic context.

4.3. Sensitivity of the dynamic Prospect-based User Equilibrium to T od
0 and the sets of the risk-aversion and risk-

seeking parameters
In this section, we analyze the sensitivity of the dynamic Prospect-based User Equilibrium to changes in the setting

of the reference point T od
0 and in the set of the users’ risk-aversion and risk-seeking parameters. For this purpose, we:

i. fix the set of users’ risk aversion parameters (α, β, λ, γ, ϕ) and change T od
0 as defined by Eq. 4 to Eq. 7.

ii. fix T od
0 and change the set of users’ risk aversion parameters (α, β, λ, γ, ϕ). We consider the set of parameters

defined by Tversky and Kahneman (1992) and the one by Xu et al. (2011).

Tversky and Kahneman (1992) parameters
Median Mode δod = 0 δod = 1 δod = ∞

Mean 0.027 0.017 0.023 0.102 0.265
Median ∼ 0.015 0.018 0.101 0.262
Mode ∼ ∼ 0.018 0.101 0.265
δod = 0 ∼ ∼ ∼ 0.100 0.261
δod = 1 ∼ ∼ ∼ ∼ 0.211

Xu et al. (2011) parameters
Median Mode δod = 0 δod = 1 δod = ∞

Mean 0.016 0.031 0.028 0.142 0.281
Median ∼ 0.025 0.020 0.142 0.280
Mode ∼ ∼ 0.013 0.155 0.288
δod = 0 ∼ ∼ ∼ 0.154 0.289
δod = 1 ∼ ∼ ∼ ∼ 0.212

Table 4: Sensitivity of the Prospect Theory to the reference point T od
0 . Top: Results for the Tversky and Kahneman (1992) parameters. Bottom:

Results for the Xu et al. (2011) parameters.

Mean Median Mode δod = 0 δod = 1 δod = ∞
0.040 0.033 0.021 0.025 0.087 0.180

Table 5: Sensitivity of the Prospect Theory to the user’s risk-aversion parameters (α, β, λ, γ, ϕ).

For this sensitivity analysis, we calculate the sum square of the residuals between the route flows at equilibrium
for all possible combinations of the Prospect Theory implementation. The results for case i and ii are listed in Table 4
and Table 5, respectively. We first focus on the sum square of the residuals for a change in the reference point as
defined in Eq. 4 to Eq. 6. The sum square of the residuals are of the order of ∼ 0.01 − 0.03, for both sets of the users’
risk-aversion and risk-seeking parameters. These are of the same magnitude order as for the case of a change in the
set of the users’ risk-aversion and risk-seeking parameters and fixing reference point T od

0 . When the reference point
is based on the acceptability risk-tolerance band (i.e. Eq. 7), the differences become much more significant. In this
case, the Prospect-based User Equilibrium is more sensitive to a change in the reference point than in the set of users’
risk-aversion and risk-seeking parameters.

4.4. Analysis of the traffic network performance at an aggregated level
In this section, we analyze the traffic network performance under the dynamic Prospect-based User Equilibrium

conditions compared to the benchmarks DUE and SUE. The network performance is evaluated through the Macro-
scopic Fundamental Diagram (MFD), i.e. at an aggregated network level. We are interested in investigating the critical
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Figure 9: Total travel distance (TTD) [in m] as function of the total travel time (TTT) [in s] and αTT D versus αTTT . (i) The results are depicted for
the DUE, SUE and three settings of Prospect Theory considering the reference points defined in Eq. 4 to Eq. 6. (ii) The results are depicted for the
three settings of Prospect Theory as in (i) compared to the benchmarks DUE and SUE. (iii) The results are depicted for the DUE, SUE and three
settings of Prospect Theory considering the reference point defined in Eq. 7 and three values of δod = 0, 1,∞. (iv) The results are depicted for the
three settings of δod compared to the benchmarks DUE and SUE.

accumulation of vehicles nc and the critical production Pc of the MFD obtained for models 3 to 8 in comparison to the
benchmarks DUE and SUE (i.e. models 1 and 2). This allows to analyze the differences in terms of the mean speed as
well as the network internal and outflow capacities. Fig. 9 depicts the evolution of the total travel distance (TTD) as
function of the total travel time (TTT). Fig. 10 depicts the evolution of the outflow Qout as function of the total travel
time (TTT). As one can observe, there is a large points overlap of the MFD functions as well as of the outflow Qout

versus TTT. To better highlight the differences between the models, we define three criteria that represent:
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Figure 10: Vehicles outflow (Qout) as function of the Total Travel Time (TTT) and αQout versus αTTT . (i) The results are depicted for the DUE,
SUE and three settings of Prospect Theory considering the reference points defined in Eq. 4 to Eq. 6. (ii) The results are depicted for the three
settings of Prospect Theory as in (i) compared to the benchmarks DUE and SUE. (iii) The results are depicted for the DUE, SUE and three settings
of Prospect Theory considering the reference point defined in Eq. 7 and three values of δod = 0, 1,∞. (iv) The results are depicted for the three
settings of δod compared to the benchmarks DUE and SUE.
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• the relative difference between the average TTD of the different Prospect Theory settings (TT D∗) and of the
benchmarks DUE and SUE (TT Dre f ):

αTT D =
TT D∗ − TT Dre f

TT Dre f
× 100 (21)

• the relative difference between the average TTT of the different Prospect Theory settings (TTT ∗) and of the
benchmarks DUE and SUE (TTT re f ):

αTTT =
TTT ∗ − TTT re f

TTT re f
× 100 (22)

• the relative difference between the average Qout of the different Prospect Theory settings (Q∗out) and of the

benchmarks DUE and SUE (Qre f
out ):

αQout =
Q∗out − Qre f

out

Qre f
out

× 100 (23)

The average values for TTD, TTT and Qout are calculated for the simulation interval between 500 and 2500
seconds, for all models. Based on this, we calculate αTT D, αTTT and αQout and we estimate confidence intervals for
these three criteria. The results are shown in Fig. 9 for αTT D as function of αTTT . Fig. 10 depicts the results for
αQout as function of αTTT . The differences between the dynamic Prospect-based User Equilibrium and the DUE are
represented by the circle dots and for the SUE are represented by the cross dots. These three criteria allow us to analyze
the changes in the network capacity and performance. If αTT D < 0, the network internal capacity decreases compared
with the benchmarks DUE and SUE. The accumulation of vehicles inside the network is higher and congestion might
spread backwards, increasing the average waiting times for vehicles to enter the network. The network inflow capacity
is reduced. If αTTT < 0, the mean speed of vehicles inside the network is higher than the benchmarks DUE and SUE.
If αQout > 0, the outflow capacity of the network is higher compared against the benchmarks DUE and SUE.

We first focus on the analysis of the network performance, comparing the dynamic Prospect-based User Equi-
librium, when the reference point are set as the mean, median and mode (i.e. models 3 to 5), and the benchmarks
DUE and SUE. We do not observe any significant differences in terms of the network internal and outflow capacities.
However, there is an increase of ∼4% of the vehicles’ mean speed inside the network. Nevertheless, one can observe
significant differences in terms of the network internal and outflow capacities, when the reference point is defined
based on the acceptability risk tolerance band (see Eq. 7). As δod increases, the network internal capacity decreases
because drivers choose routes with larger travel times as previously discussed in Sect. 4.2. They need more time to
complete their trips and increase the level of congestion in the traffic network, reducing its internal capacity. This also
implies a reduction in the outflow capacity of the network as depicted in Fig. 10.

5. Conclusions

In this paper, we revisit the concept of Prospect-based User Equilibrium (Connors and Sumalee, 2009; Sumalee
et al., 2009; Xu et al., 2011) and extend it to the dynamic traffic assignment case. We discuss a solution framework
that considers Monte Carlo simulations to account for the distributions of route travel times. We propose a solution
algorithm that is based on the Method of Successive Averages. In this paper, the dynamic traffic assignment framework
is based on a quasi-static approximation. We then analyze how the algorithm converges in a simple static test scenario,
where we consider a network composed by one od pair and three routes. The algorithm shows good convergence
properties by analyzing the evolution of the RMSE and Gap criterion as function of the MSA descent step. The values
of the reference points also converge to a constant value as the MSA descent step increases. We also analyze the
dynamic Prospect-based User Equilibrium compared to the references DUE and SUE. These tests are performed on a
synthetic Manhattan network. A dynamic LWR mesoscopic dynamic simulator (Leclercq and Becarie, 2012) is used
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to calculate time-dependent route costs that account for congestion and spillback effects. Both results in the static
and dynamic contexts enhance the important role of the reference point T od

0 on the route flow patterns at equilibrium.
We show that under the Prospect-based User Equilibrium, the setting of reference points defined as the mean (Eq. 4),
median (Eq. 5) and mode (Eq. 6) lead to route flow patterns that are very similar to those of the DUE and SUE. On
the other hand, this is not the same for the reference point defined in Eq. 7. Our results also enhance that a disutility
minimizer (i.e. users that want to minimize their own travel times) and prospect maximizer behaviors are different.
As δod increases, routes with longer travel times than the minimal one might be framed more often as time prospects
of gains and therefore more often chosen. This depends on the balance between the value of possible gains and
the weighting of the probability of facing this outcome. In this paper, we also show that the Prospect-based User
Equilibrium is more sensitive to a change in the reference point T od

0 than in the set of the users’ risk-aversion and
risk-seeking behavior. We also show that as δod increases, the network internal and outflow performances decreases
compared to the DUE and SUE, because drivers chose routes with longer travel times. Nevertheless, no significant
differences are observed in terms of the network performance when the reference point is defined as the mean, median
and mode of the travel times.

As future research, we plan to do a calibration and validation of the Prospect-based User Equilibrium. This
work can also be extended to account for heterogeneous population of users, for example, with preferences for their
transportation mode. The idea is to split the heterogeneous population of users into homogeneous classes with similar
preferences in terms of prospects. For each class, one defines a T od

0 and a set of the risk-aversion parameters.

Data availability statement
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