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Solitons on a finite background, also called breathers, are solutions of the focusing nonlinear Schrödinger
equation, which play a pivotal role in the description of rogue waves and modulation instability. The breather
family includes Akhmediev breathers (AB), Kuznetsov-Ma (KM), and Peregrine solitons (PS), which have
been successfully exploited to describe several physical effects. These families of solutions are actually only
particular cases of a more general three-parameter class of solutions originally derived by Akhmediev, Eleonskii,
and Kulagin [Theor. Math. Phys. 72, 809 (1987)]. Having more parameters to vary, this significantly wider
family has the potential to describe many more physical effects of practical interest than its subsets mentioned
above. The complexity of this class of solutions prevented researchers to study them deeply. In this paper, we
overcome this difficulty and report several effects that follow from more detailed analysis. Namely, we present
the doubly periodic solutions and their Fourier expansions. In particular, we outline some striking properties of
these solutions. Among the effects, we mention (a) regular and shifted recurrence, (b) period doubling, and (c)
amplification of small periodic perturbations with frequencies outside the conventional modulation-instability
gain band.

DOI: 10.1103/PhysRevA.101.023843

I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is one of the
paradigms of modern nonlinear science. It describes the evo-
lution of narrow-band envelopes under the combined action of
weak dispersion and nonlinearity, and naturally appears in dif-
ferent branches of physics such as optics [1], hydrodynamics
[2], plasma [3], and cold atoms [4].

In the focusing regime, the continuous wave (CW) solution
of NLSE is unstable with respect to modulation instability
(MI) [5,6], which entails the exponential growth of low-
frequency perturbations. Modulation instability is the most
basic and widespread nonlinear phenomenon, which has been
studied since the 1960s in such diverse disciplines as hy-
drodynamics [5] or nonlinear optics [6]. While the initial
development of MI that arises from the linear stability analysis
is well understood, the nonlinear stage of MI is an extremely
hot and active research topic. In the fully nonlinear regime, MI
can give rise to Fermi-Pasta-Ulam (FPU) recurrences [7–15],
modulated cnoidal waves [16–20], deterministic formation of
breathers [21–26], whose appearance can be triggered by the
shape of the initial perturbation of the background [27,28],
as well as turbulent states mediated by statistical appearance
of breathers [29–31]. Moreover, MI has been identified as
one of the possible generating mechanisms of rogue waves
[32–34]. The latter can be described analytically as breathers,
or solitons on finite background.

*Corresponding author: matteo.conforti@univ-lille.fr

All the solutions that describe such regimes can be pre-
sented in analytic form due to the integrability of the NLSE
and the inverse scattering transform (IST) being the powerful
tool for its analysis. There are different formulations of IST
depending on specific boundary conditions of the problem
to be solved. For example, problems related to MI require
periodic boundary conditions. These sets of problems are
more complicated than the one with zeros at infinity. Thus,
special finite-band integration theory has been developed
[35–38]. This technique permits one to write the solutions
of the NLSE with periodic boundary conditions explicitly as
ratios of Riemann theta functions [39–43]. However, these
formal solutions contain an infinite number of free parameters
and their practical use remains questionable. Indeed, extract-
ing physically relevant solutions from these general ones is
not an easy task. Practical solutions are mostly relying on
direct methods with the most popular one being the Hirota
method [44].

An alternative way to proceed is constructing more com-
plex solutions from simple ones rather than trying to extract
simple solutions from the most general one. One of these
techniques is the Darboux transform that allows one to start
with the seeding solution in the form of a plane wave and build
periodic solutions with elaborate evolution [45,46]. Using the
plane wave as a seed solution only allows one to find some
classes of solutions that can be considered as higher-order MI.
In order to expand this class of solutions to more general ones,
other types of seed solutions must be used.

The basic family of solutions of the NLSE that is periodic
both in space and time can be found using a special ansatz
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suggested in [47,48]. This technique allows one to reduce the
NLSE which is an infinite dimensional Hamiltonian system to
a finite dimensional one that can be then solved analytically
[45,47–49]. The result is the family of first-order solutions
that have arbitrary amplitude and arbitrary periods in time
and space [48]. Well-known solutions such as Peregrine soli-
ton (PS) [51], Kuznetsov-Ma (KM) soliton [52,53], or the
Akhmediev breather (AB) [47] and the two-parameter family
of doubly periodic solutions of A and B types [11,47,50] are
special cases of this significantly wider family. Thus, we can
talk about this three-parameter family as the most general
known family of doubly periodic solutions.

In this paper, we report a detailed study of the properties of
the first-order solutions, which include all above listed subsets
and provide an analytic description for several intriguing
nonlinear phenomena. These include the following: (1) FPU
recurrence as a natural consequence of longitudinal period-
icity, (2) period doubling during the MI process of growing
periodic perturbation, and (3) the MI growth outside of the
conventional MI band. We found the Fourier coefficients of
the first-order solutions in analytic form. The latter is an essen-
tial part of the present work that made possible the expansion
of the number of physical applications of the doubly periodic
solutions.

The paper is organized as follows. In Sec. II, we give the
exact form of the family of solutions with three free param-
eters. Moreover, we present the expressions of the Fourier
coefficients and analyze the relevant physical properties such
as the amplitude, the period, and the wave number of the
solutions as a function of these three governing parameters.
In Sec. III we predict, based on these solutions, the coun-
terintuitive phenomena such as the growth of linearly stable
perturbations and period doubling within the MI. In Sec. IV
we summarize our results.

II. FIRST-ORDER DOUBLY PERIODIC SOLUTIONS

We start from the NLSE written in the following nor-
malized form, which is the standard nonlinear fiber optics
notation:

iψz + 1
2ψtt + |ψ |2ψ = 0. (1)

The first-order solutions have the following property: At
each propagation step z, the real and imaginary parts of
the field ψ (t, z) are linearly related [47]. This implies the
following form of the solution [48]:

ψ (t, z) = [Q(t, z) + iδ(z)]eiφ(z), (2)

where Q, δ, and φ are real functions. For every value of
z, Eq. (2) represents a straight line in the complex plane
(Reψ ,Imψ). The ansatz (2) permits one to reduce the NLSE,
which is an infinite-dimensional Hamiltonian system, to a
finite number of dimensions. The unknown functions Q, δ,
and φ are calculated through the solution of three nonlinear
ordinary differential equations. In the following, we present
only the final forms of the solutions, the method being thor-
oughly discussed in [45,48,49].

The first-order solutions are in general doubly periodic,
i.e., periodic both in time and space and depend on three

real parameters. We classify the solutions in two types the
same way as in [47] (see Fig. 1 of [47]). The type-A so-
lutions describe shifted recurrence, where local maxima in
time appear with a shift of half temporal period after a
propagation distance corresponding to a half of spatial period.
The type-B solutions describe the recurrence, where the local
maxima in time appear at the same temporal position after
a propagation distance corresponding to one spatial period.
The separatrix between these two families, known as the
Akhmediev breather, is a heteroclinic orbit (periodic in time,
nonperiodic in z), connecting the two CW solutions of the
same amplitude but different phases. The convention taken in
the recent work [50] is the same as here. However, the notation
used in [11] is reversed.

The family of solutions is controlled by three parameters
α1, α2, and α3 which are the three roots of a fourth-order
polynomial, with the fourth one being zero [48]. They can
either be all real, ordered in such a way that α3 > α2 >

α1 > 0, or one real and two complex conjugates: α3 > 0
and α1 = α∗

2 = ρ + iη. Division of the roots αi by some
positive number C is equivalent to transition from the solution
ψ (t, z) corresponding to the roots αi to a different solution
ψ ′(t, z) corresponding to the roots αi/C. The two solutions
are connected by the transformation,

ψ (t, z) = Cψ ′(Ct,C2z). (3)

As a constant C, we can choose, for example, the value of
one of the roots and seek a two-parameter family of solu-
tions. The third parameter can be reintroduced by means of
the transformation (3), thus adjusting the amplitude. In the
following, we consider α3 = 1, which physically means fixing
the initial CW component of the solution (strictly for the
A-type solutions and approximately for the B-type solutions).
The two parameters α1 and α2 allow us to tune independently
the spatial and temporal periods of the solutions. In practice,
this means that if the period and amplitude of the initial
condition are known, we can predict the oscillating pattern
of the resulting evolution.

A. The B-type solutions

As explained above, here, we stick to the definition of
doubly periodic solutions introduced in [47]. Namely, A-type
solutions are those located inside the separatrix corresponding
to the Akhmediev breather while B-type solutions are located
outside of the separatrix. We start with the B-type solutions.
They depend on the three real parameters α3 > α2 > α1 > 0.

For the function δ(z), we have the following expression:

δ(z) =
√

α1α3sn(μz, k)√
α3 − α1cn2(μz, k)

, (4)

where the modulus m of the Jacobian elliptic functions [54,55]
is m = k2 = α1(α3−α2 )

α2(α3−α1 ) and μ = 2
√

α2(α3 − α1). It is impor-

tant to note that 0 < δ2 < α1 by construction.
For the function φ(z), we have the following expression:

φ(z) = (α1 + α2 − α3)z + 2α3

μ
�(am(μz, k), n, k), (5)

023843-2



DOUBLY PERIODIC SOLUTIONS OF THE FOCUSING … PHYSICAL REVIEW A 101, 023843 (2020)

where n = α1
α1−α3

and �(am(μz, k), n, k) is the incomplete
elliptic integral of the third kind, with the argument am(u, k)
being the amplitude function [54,55].

For the function of two variables Q(t, z), we have the
following expression:

Q(t, z) = QD(QA − QC ) + QA(QC − QD)sn2(pt, kq )

(QA − QC ) + (QC − QD)sn2(pt, kq )
, (6)

where the elliptic modulus is mq = k2
q = α2−α1

α3−α1
and p =√

α3 − α1. Importantly, QC < Q < QD by construction. The
z-dependent functions QA(z) > QB(z) > QC (z) > QD(z) are
defined by the following expressions:

QA = s
√

α1 − y + √
α2 − y + √

α3 − y, (7)

QB = −s
√

α1 − y − √
α2 − y + √

α3 − y, (8)

QC = −s
√

α1 − y + √
α2 − y − √

α3 − y, (9)

QD = s
√

α1 − y − √
α2 − y − √

α3 − y, (10)

where y(z) = δ2(z), and s = s(z) = sgn(δz ) =
sgn(cn(μz, k)). The expressions in Eqs. (7)–(10) differ
from the original ones given in [48] by the sign function s in
the first terms. This amendment removes the discontinuities
of the z derivative of the field ψ , which were present in the
original formulation.

The period along z (=L) and along t (=T ) can be calcu-
lated as follows:

L = 4K (k)

μ
, T = 2K (kq)

p
, (11)

where K (k) is the complete elliptic integral of the first
kind [54].

A typical example of the B-type solution is shown in
Fig. 1. Parameters of the solution are given in the figure
caption. Figure 1(a) shows the spatiotemporal evolution of
the intensity |ψ |2, and Fig. 1(c) shows the intensity profile
at the input (z = 0, dashed red curve) and at the point of the
maximum temporal pulse compression (z = L/2 ≈ 3.8, solid
blue curve). With the given set of parameters, the solution is
similar to the evolution of the separatrix (AB) up to z ≈ 7.5.
It describes the amplification of a small but finite periodic
modulation on top of a strong CW towards the generation
of a periodic train of pulses. Just as the separatrix, after the
maximum compression, the field returns back to its initial
profile. However, in contrast to the separatrix, this happens
at finite length z = L = 7.55. In spectral domain, the energy
spreads from the central component to sidebands with the
following return back to the central one. We have, thus,
an analytic description of the FPU recurrence phenomenon
except that the initial spectrum is not completely concentrated
in a single component. An important point is that the presence
of three independent parameters of the family allows us to
control independently periods in x and t and the amplitude of
the input. This is discussed, in more detail, below.

B. Fourier spectrum of the B-type solution

From a practical point of view, important parameters of
periodic solutions are their spectral components. Remarkably,

(d)

(a) (b)

(c)

FIG. 1. An example of the B-type double-periodic solution.
(a) False color plot of intensity |ψ (z, t )|2. Two longitudinal peri-
ods are shown. (b) Evolution of the spectrum. (c) Intensity profile
|ψ (t )|2 at z = 0 (dashed red curve, minimum of modulation) and at
z = L/2 = 3.78 (solid blue curve, maximal modulation). (d) Evo-
lution of the first three Fourier components in logarithmic scale
(20 log10 |ψ̂k (z)|). Parameters are as follows: α1 = 0.3, α2 = 0.4,
α3 = 1, giving the temporal period T = 3.9 (modulation frequency
ω = 2π/T = 1.61) and the spatial period L = 7.55.

for the above solutions, the calculations can be done analyt-
ically. Being periodic in t variable, the Q function in Eq. (6)
can be expanded in Fourier series as follows:

Q(t, z) =
+∞∑

�=−∞
Q̂�(z)ei 2π�

T t

= Q̂0(z) + 2
+∞∑
�=1

Q̂�(z) cos

(
2π�

T
t

)
, (12)

where the z-dependent Fourier coefficients [56] are

Q̂0(z) = QA + (QD − QA)
�(n, kq)

K (kq)
, (13)

Q̂�(z) = (QD − QA)
πλ

2K (kq)

sinh(2�w)

sinh(2�w0)
. (14)

Here, n = (QD − QC )/(QA − QC ),

λ =
√

n

(n − 1)(mq − n)
,

w = π [K (k′
q) − v0]

2K (kq)
, w0 = πK (k′

q)

2K (kq)
,

v0 = F (sin−1(1 − n)−1/2, k′
q ), k′2

q = 1 − k2
q ,

and F (ϕ, k) is the incomplete elliptic integral of the first kind
[54,55]. The evolution of the Fourier coefficients for the total
field ψ (x, t ) is simply given by

ψ̂0(z) = [Q̂0(z) + iδ(z)]eiφ(z), (15)

ψ̂�(z) = Q̂�(z)eiφ(z). (16)
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AB

DN

KM

PS

CW BS

(a) (b)

(c) (d)

DP

FIG. 2. Major characteristics of the B-type doubly periodic so-
lutions on the plane (α1,α2) when α3 = 1. (a) False color plot of
frequency ω = 2π/T . (b) False color plot of wave number q =
2π/L. The thin curves in (a) and (b) show the lines of equal
frequency or wave number. (c) Maximal and minimal amplitudes of
|ψ (t = 0, z)|. (d) Absolute value of the CW component in ψ (x, t )
at z = 0. Special cases in (a) as follows: PS, Peregrine solution;
CW, the family of continuous wave solutions; DN, the family of
DNoidal wave solutions; AB, the family of Akhmediev breathers;
KM, the family of Kuznetsov-Ma solitons; BS, bright soliton on
zero background; DP, the two-parameter family of doubly periodic
solutions.

The evolution of the spectrum of the B-type solution for
the same set of parameters as in Fig. 1(a) is shown in Fig. 1(b)
and 1(d). The Fourier spectrum is symmetric with respect
to ω = 0. For the choice of parameters in Fig. 1, the initial
power of the CW component is approximately 1 (0 dB). The
total range of changes shown here is 80 dB. Five Fourier
components of the initial profile are located within this range.
Namely, |ψ̂0(0)| ≈ 0 dB, |ψ̂±1(0)| = −27.5 dB, |ψ̂±2(0)| =
−57.2 dB. At the point of maximal pulse compression, the
solution becomes a comb of 17 spectral lines that has a
triangular shape. Indeed, the power of the harmonics decays
as a geometrical progression with the order, as can be seen
from Eq. (14). As the solution is z periodic, it describes an
energy cascade towards higher harmonics, which is repeatedly
reversed back to the original spectrum. The detailed evolution
of the first three spectral components is shown in Fig. 2(c).
From this figure and from Eq. (14), it can be seen that the
sidebands never vanish, i.e., the solution never turns to CW
with |ψ | = constant. This only happens for the special choice
of parameters when the doubly periodic solution approaches
the separatrix.

C. Major characteristics of the B-type solutions

As mentioned, the family of the B-type solutions has three
variable parameters. Only two of them can be conveniently
shown on a plane. Thus, we keep the scaling parameter α3

fixed. It relates the amplitude and the two periods along the
z and t axes. Thus, it can be used in practical calculations
for adjusting any of these parameters to the actual values

obtained in experiments. Here, we present the two periods
(or the corresponding frequency and wave number) and the
maximal amplitude for fixed α3 = 1.

We recall that parameters α1 and α2 vary in the intervals
of values from 0 to α3 = 1. Moreover, we have assumed that
the roots are ordered in such a way that α2 > α1. Thus, it is
sufficient to consider these parameters within the triangular
area shown in color in Figs. 2(a) and 2(b). Figure 2(a) shows
the frequency ω = 2π/T while Fig. 2(b) shows the wave
number q = 2π/L both calculated using Eq. (11). The crucial
observation is that the range of admitted frequencies for the
B-type solutions coincides with the modulational instability
band 0 < ω < 2. Then, it is not surprising that the amplifi-
cation of small periodic perturbations as a major feature of
modulation instability remains valid at small deviations from
the separatrix as we have seen in the previous subsection.

However, the family of the B-type solutions includes a
much wider set of solutions. When α1 = α2, i.e., on the
diagonal line in Figs. 2(a) and 2(b), the solution becomes
homoclinic or a separatrix, known as Akhmediev breathers.
The members of this family of solutions have finite periods
in t and infinite periods in z. To be specific, period L in this
limit tends to infinity. At the point α1 = α2 = 1, the solution
degenerates to the Peregrine soliton. In this case, both periods
are infinite meaning that the solution is localized both in time
and in space. The vertical line α2 = 1 corresponds to the
Kuznetsov-Ma soliton or a soliton on a finite background. This
solution is periodic in z and localized in t . The background
becomes zero at the point α1 = 0 and α2 = 1. Thus, the soli-
ton on a background turns into an ordinary bright soliton on
zero background. The line α1 = 0 corresponds to the periodic
in t and stationary in z solutions known as DNoidal waves.
The period is variable and changes along the horizontal line.
The point α1 = α2 = 0 corresponds to the CW solution. The
straight line connecting the points (1/2,1/2) and (0,1) on the
plane (α1,α2) corresponds to the family of doubly periodic
solutions first presented in [47] [see Eq. (18) of this work]. It
was further studied theoretically and experimentally in more
recent works [11,50].

For periodic solutions, important physical parameters are
the maximal and the minimal amplitudes of the wave profiles.
We present here the minimum and the maximum values of
ψ (z, 0) as a function of distance z at fixed time t = 0. The
t = 0 is chosen as the point where the wave amplitude changes
the most. This can be seen clearly from Fig. 1(a). In particular,
the ratio of these values can serve as a measure of the contrast
of amplitude oscillations. From the exact solution, we get

ψmin = min
z

|ψ (t = 0, z)| = −√
α1 + √

α2 + √
α3, (17)

ψmax = max
z

|ψ (t = 0, z)| = √
α1 + √

α2 + √
α3. (18)

The two surfaces described by Eqs. (17) and (18) are shown in
Fig. 2(c). Naturally, they are joined together at the line α1 = 0
as the DNoidal wave does not evolve in time. The minimal
amplitude here is 1. The maximal amplitude of 3 is reached in
the case of the Peregrine solution (α1 = α2 = 1). This is the
expected absolute maximum of the AB solutions at this limit.

For completeness, Fig. 2(d) shows the amplitude of the
CW component at z = 0 extracted from Eq. (13). For the AB
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solutions, the CW component is always 1 when α3 = 1. For
all other cases, the CW component is smaller. More generally,
when α3 is different from 1, the estimates can be made in
terms of α3. For values of parameters sufficiently far from
the cases α1 = 0 (DN limit) and α2 = 0 (KM limit), the
estimate is |ψ̂0(0)| ≈ √

α3. This means that for the solutions
describing the amplification of a small harmonic perturbation
over a strong CW, the value of the CW is fixed mainly by the
parameter α3.

D. The family of A-type solutions

As shown in [48], for A-type solutions α1 and α2 are
complex and it is more convenient to switch to the other
two parameters ρ and η defined as α1 = α∗

2 = ρ + iη. Then
the family of solutions depends on three real parameters
α3 > 0, ρ, η. In this case, for the function δ(z), we have the
following expression:

δ(z) =
√

α3

2
(1 − ν)

√
1 + dn(μz, k)

1 + νcn(μz, k)
sn(μz/2, k), (19)

where m = k2 = 1
2 (1 − η2+ρ(ρ−α3 )

AB ),

A2 = (α3 − ρ)2 + η2, B2 = ρ2 + η2, ν = A − B

A + B
,

and μ = 4
√

AB. Clearly, 0 < δ2 < α3, by construction.
The phase φ(z) is given by

φ(z) =
(

2ρ + α3

ν

)
z − α3

νμ

[
�(am(μz, k), n, k)−

− νσ tan−1

(
sd(μz, k)

σ

)]
, (20)

where n = ν2

ν2−1 , σ =
√

1−ν2

k2+(1−k2 )ν2 , and sd(μz, k) = sn(μz,k)
dn(μz,k) .

Formula (20) for the phase is the corrected version of the one
presented earlier in [45,48].

The function Q(t, z) has the following expression:

Q(t, z) = sb − c+
r + cn(pt, kq )

1 + rcn(pt, kq )
, (21)

where s = s(z) = sgn[cn(μz/2, k)], r = M−N
M+N ,

p =
√

MN = 2 4
√

(α3 − ρ)2 + η2,

mq = k2
q = 1

2
+ 2

ρ − α3

p2
, b = √

α3 − y, y(z) = δ2(z),

c± =
√

2[
√

(y − ρ)2 + η2 ± (ρ − y)],

M2 = (2sb + c+)2 + c2
−, N2 = (2sb − c+)2 + c2

−.

The periods along z (=L) and t (=T ) are

L = 8K (k)

μ
, T = 4K (kq )

p
. (22)

A typical example of the intensity profile evolution of the
A-type doubly periodic solution is shown in Fig. 3(a). For
a given set of parameters, this solution also describes the
amplification of a weakly modulated CW (z = −L/4 = −3.4)
towards the generation of a periodic train of pulses (z = 0).

(b)

(d)

(a)

(c)

FIG. 3. An example of the A-type doubly periodic solution.
(a) False color plot of intensity |ψ (t, z)|2. One complete period of
evolution is shown. (b) Evolution of the spectrum. (c) The inten-
sity profile |ψ (t )|2 at z = −L/4 (dashed red curve, the minimal
modulation) and at z = 0 (solid blue curve, the maximal pulse
compression). (d) Evolution of the first three Fourier components
in logarithmic scale (20 log10 |ψ̂k (z)|). Parameters are as follows:
α3 = 1, ρ = 0.355, η = 0.073. The resulting temporal period T = 3.9
corresponds to the modulation frequency ω = 2π/T = 1.61. The
spatial period L = 13.6.

This can be seen by comparing the initial (at z = −L/4) and
the maximally compressed (at z = 0) profiles in Fig. 3(c).
However, in contrast to the B-type solution, after the first
recurrence back to the initial condition, where the initial CW
state is recovered (at z = L/4 = 3.4), the follow-up evolution
differs qualitatively from the B-type case. Namely, the next
growth-decay cycle generates a train of pulses which is shifted
by a half of the temporal period in the time domain (z =
L/2 = 6.8) relative to the pulse train in the first cycle. Snap-
shots of the initial (z = −L/4) field profile and the generated
train of pulses (z = 0) are shown in Fig. 3(c) by the dashed
red and the solid blue curves, respectively.

Our analysis provides an elegant analytic description of
the FPU recurrence and a symmetry breaking in infinite-
dimensional dynamical systems. Here, it takes the form of
the transition between the A-type and B-type doubly peri-
odic solutions. Indeed, the spreading of the spectrum from
one CW component to several sidebands and the follow-up
compression of the energy back to the same single compo-
nent is the manifestation of the FPU recurrence. Switching
between the two scenarios of this recurrence while cross-
ing the separatrix is a symmetry breaking. However, we
should remember that the transition from one type of orbit
to another one occurs in an infinite-dimensional phase space.
This transition is far from being a simple copy of symmetry
breaking in systems with one degree of freedom. Complexity
of these transitions can be seen from some examples given
in [50].

The freedom of tuning independently the spatial and tem-
poral periods of the solution is a powerful tool in the descrip-
tion of a variety of physical phenomena. In addition, the third
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parameter α3 provides the freedom of changing arbitrarily the
amplitude of the solutions. Clearly, this family of solutions is
more general than the one used in [11].

E. Fourier spectra of A-type solutions

The Fourier coefficients of the Q function given by Eq. (21)
can be calculated using the technique from [56]. These spectra
are as follows:

Q̂0(z) = sb + c+
r

(
�(n, kq)

K (kq)
− 1

)
, (23)

Q̂�(z) = c+πλ

2K (kq)
×

{
s sinh(�w)

sinh(�w0 ) , if � is even,

− cosh(�w)
cosh(�w0 ) , if � is odd,

(24)

where n = r2/(r2 − 1), λ =
√

1−r2

mq+r2(1−mq ) ,

w = π [K (k′
q) − v0]

2K (kq)
,w0 = πK (k′

q)

2K (kq)
,

and v0 = F (sin−1
√

1 − r2, k′
q ).

Interestingly, the even and odd Fourier coefficients in (24)
are different. This is in striking contrast to the case of the
B-type solutions. An example of the evolution of the spectra
of the A-type solution is shown in Fig. 3(b). The evolution
of the power spectrum is periodic in z with period L/2.
It shows periodic expansion towards higher order spectral
components and recurrence back to the initial spectrum. The
spectra remain symmetric with respect to zero frequency at
every z. At the point of maximal expansion, a triangular comb
of 17 lines can be seen within the range of 80 dB. These
include the central component |ψ̂0(0)| = 0 dB, and the first
sideband |ψ̂±1(0)| = −27.0 dB. The pair of second-order
sidebands vanishes, |ψ̂±2(0)| = 0 = −∞ dB. Moreover, all
even order sidebands also completely vanish as can be seen
from Eq. (24). They are recovered at the points of minimal
spectral expansion (z = L/4 + �L/2, � = 0,±1, . . .). This
can be seen in Fig. 3(d) which shows the evolution of the first
three spectral components.

F. Major characteristics of A-type solutions

The major characteristics of the family of doubly periodic
A-type solutions are periods along the z and t axes and the
wave amplitudes. In this section, we will express them as
a function of control parameters of the family ρ, η, α3. As
before, we keep α3 = 1 fixed. The amplitude can be rescaled
when needed using Eq. (3). When α3 = 1, the average initial
amplitude |ψ̂0(0)| = 1, as it can be seen from Eq. (23).
Physically, this means that at the point of minimal spectral
expansion, the A-type solution describes a weak modulation
of a CW of unit amplitude.

Figures 4(a) and 4(b) show the frequency ω = 2π/T and
the wave number q = 2π/L, respectively, calculated from
Eq. (22). The crucial difference from the B-type case is
that there is no frequency cutoff for the A-type solutions.
This means that these solutions can describe the growth of
weak perturbations on a constant background even outside the
conventional MI band, [0,2]. The whole yellow-red area in
Fig. 4(a) corresponds to the frequencies above the limiting

KM
x

CW AB PS

(a) (b)

(c) (d)

FIG. 4. Major characteristics of A-type doubly periodic solutions
vs ρ and η. False color plots of (a) frequency ω = 2π/T and (b) wave
number q = 2π/L. (c) Maximal (ψmax) and minimal (ψmin) values
of |ψ (t = 0, z)|. (d) Difference between the maximal and minimal
values of |ψ (t = 0, z)|. Notations in (a) as follows: PS, Peregrine
solution; CW, continuous wave; AB, Akhmediev breathers; KM,
Kuznetsov-Ma solitons; BS, bright soliton. Here parameter α3 = 1.

value 2. Comparing Figs. 4(a) and 4(b), we conclude that,
in this region, the higher the frequency ω, the higher is the
wave number q. Thus, when frequency ω is well outside the
MI band, the solution will oscillate rapidly in the z direction.
This is a typical feature of non-phase-matched four-wave
mixing.

Particular cases of this general three-parameter family of
solutions can be identified based on spatial and temporal
periods. Each of them is still a family of solutions with a lower
number (two) of parameters. When η = 0 and 0 < ρ < 1, we
get the homoclinic AB solutions. They are periodic in t while
period L along the z axis tends to infinity. When η = 0 and
ρ = 1, the solution becomes the Peregrine soliton with no
free parameters (except α3). It is localized both in time and
in space thus representing a rogue wave. The case η → 0
and ρ > 1 corresponds to the Kuznetsov-Ma solitons. They
are periodic in z and localized in t . When η = 0 and ρ < 0,
the solution becomes the trivial CW (homogeneous) solution.
Note that if η is strictly zero, η = 0, then ρ < 1 because the
roots α1 = α2 = ρ < α3 by definition.

The minimum and the maximum of ψ (0, z) as a function
of distance for t = 0 are given by

ψmin = |√α3 −
√

2[
√

ρ2 + η2 + ρ]|, (25)

ψmax = √
α3 +

√
2[

√
ρ2 + η2 + ρ]. (26)

The two surfaces described by Eqs. (25) and (26) are shown in
Fig. 4(c). It can be seen from Fig. 4(c) that when

√
ρ2 + η2 +

ρ > α3/2, the two surfaces are nearly parallel. Then the
difference between the maximal and minimal values saturates
to the maximum value ψmax − ψmax = 2

√
α3. This is shown

separately in Fig. 4(d).
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(c) (d)

(a) (b)

FIG. 5. False color plots of amplification of the first Fourier
harmonics |ψ̂1| in decibels for (a) the B-type and (b) the A-type
doubly periodic solutions. The superimposed level curves are for
the constant frequencies ω. The color map is saturated at 40 dB for
readability. (c) Amplification curves on selected straight lines α1 =
α2 − �a in the plot (a). Here �a < α2 < 1. (d) Amplification curves
at selected lines of constant η in the plot (b). Here −3 < ρ < 1.
Vertical dashed lines in (c) and (d) show the MI threshold for a CW
of unit amplitude. In all cases, α3 = 1.

III. NONLINEAR STAGE OF LINEARLY
STABLE PERTURBATIONS

The fact that the A-type solutions have an arbitrary tem-
poral period has intriguing effects on the nonlinear stage of
MI. As we know well [5,6], periodic perturbations outside the
conventional MI band, 0 < ω < 2, in the linearized problem
are not growing. The detailed analysis of A-type solutions
leads to a different conclusion, as explained below in detail.

Figure 5 shows the amplification of the first Fourier har-
monic for B-type and A-type solutions. Namely, Fig. 5(a) is
a two-dimensional (2D) color-coded plot of the gain of the
first sideband defined as G = |ψ̂1(L/2)/ψ̂1(0)| in dB for the
B-type solution as a function of parameters (α1, α2) when
α3 = 1. On the line α1 = α2, the gain defined this way, goes
to infinity, because the modulation tends to zero for z → 0
and the period L → ∞. In order to enhance the readability of
the picture, the color scale is saturated at 40 dB. The lines
of constant frequency ω are superimposed in order to see
their value relative to the MI band. The gain is decreasing
away from the AB limit, and completely vanishes on the line
α1 = 0. The solution at this line describes a z-stationary solu-
tion. Three gain curves along the lines α1 = α2 − �a parallel
to the line of the AB solutions are shown in Fig. 5(c). The
highest amplification is observed on the line that is closest to
the AB limit. As these curves show, all frequencies within the
MI band are amplified as we would expect from the standard
MI analysis. The gain is zero outside of this band also in
agreement with the standard MI theory.

The situation is different for the A-type solutions.
Figure 5(c) shows the color-coded 2D plot of the gain de-
fined the same way G = |ψ̂1(0)/ψ̂1(−L/4)| in dB for the
A-type solution as a function of parameters (ρ, η). The third

(c) (d)

(a) (b)

FIG. 6. Evolution of the A-type doubly periodic solution illus-
trating the amplification outside the conventional MI band. (a) False
color plot of intensity |ψ (z, t )|2. (b) Evolution of the first three
Fourier components. (c) Intensity profiles |ψ (t )|2 at z = −L/4
(dashed red curve, minimum of modulation) and at z = 0 (solid
blue curve, maximum pulse compression). (d) Input (solid red) and
output (dashed blue) spectra. The input spectrum has a pair of small
secondary (third-order) sidebands. Parameters of the solution are
as follows: ρ = 0, η = 1, α3 = 1. In this case, the temporal period
T = 2.74 (modulation frequency ω = 2.287 > 2) and the spatial
period L = 2.75.

parameter α3 = 1. The lines of constant frequency ω are su-
perimposed on this plot allowing us to identify the frequencies
inside and outside the MI band. The bold red curve in this plot
corresponds to the upper limit of the conventional MI band,
ω = 2. As in the case of the B-type solutions, the gain tends
to infinity within the conventional MI band (0 < ω < 2) when
η → 0 and 0 < ρ < 1. The z period on this line is also infinite
as it should be for the AB solutions. The color scale here is the
same as in Fig. 5(a). It is saturated at 40 dB. The value of the
gain decreases away from this area, as expected. However, it
never vanishes to zero which is an important conclusion of our
analysis. Indeed, this is the most striking feature of A-type
solutions. They describe amplification and parametric gain
outside the standard MI band. This feature is further evident
from Fig. 5(d), showing gain curves at small constant values
of η. As we can see from these curves, there is no cutoff at
ω = 2, but rather a smooth transition to a region of small gain
for ω > 2. This gain slowly drops at large frequencies, being
nearly independent of η.

An example of the A-type solution illustrating the phe-
nomenon of the first sideband amplification outside the insta-
bility band and the follow-up recurrence is shown in Fig. 6.
The evolution starts with the CW field with small but finite
nearly sinusoidal perturbation. This initial condition is shown
by the dashed red curve in Fig. 6(c). The amplitude of modu-
lation grows transforming the wave profile to a train of pulses.
The maximum amplitude of pulses is reached after a quarter
of the z period at the point z = 0. The transformed profile is
shown as the solid blue curve in Fig. 6(c). Periodicity takes the
profile back to the initial shape after a half of the z period. This
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(a) (b)

FIG. 7. False color plots of minimum amplitude of the first
Fourier harmonics |ψ̂1| in the plane of free parameters of the family
of solutions. (a) B-type solutions (minimum sidebands obtained at
z = 0; parameters α1, α2). (b) A-type solutions (minimum sidebands
obtained at z = −L/4; parameters ρ, η). Here α3 = 1.

occurs at z = L/4. However, the phase of the sinusoid is now
shifted in time. The next pulse compression point is z = L/2.
The maxima of the pulses are now located at the position
of minima of the previously compressed profile although the
shape remains the same.

The evolution of the lowest order Fourier components
during this process is shown in Fig. 6(b). Amplification of
the first sideband in the first quarter of the period is clearly
seen. Its power at the point of maximum increases by g =
|ψ̂1(0)/ψ̂1(−L/4)|2 = 2.19 = 3.4 dB. This happens at the
expense of the significantly depleted CW component. The
process is periodic thus leading to periodic evolution of spec-
tral components. Figure 6(d) shows the spectral content of the
initial condition (red circles) and the maximally compressed
pulse train profile (blue circles). A remarkable observation
that may lead to important applications is that even harmonics
are zero at the input field. This is clearly seen in Fig. 6(d).
They are generated in evolution and become the strongest
at the point of maximal compression still keeping the total
spectrum within the triangular shape (blue points). In the
time domain, this spectral feature corresponds to the period
doubling of the field intensity. This can be seen clearly in
Fig. 6(c). The period of the solid blue curve is twice the period
of the dashed red curve. This is different from the case shown
in Fig. 1(c) where periods of the initial condition and the
resulting train of pulses coincide. Clearly, the frequency is
halved when period doubling takes place. This effect is op-
posite the frequency doubling phenomenon considered earlier
in [57] once again demonstrating the richness of phenomena
contained in the family of doubly periodic solutions.

The example shown in Fig. 6(b) corresponds to a case
where the initial amplitude of the first-order sideband is
relatively large. One might wonder how small the sideband
could be to still achieve out-of-instability-band amplification.
In order to answer this question and further reveal the differ-
ence between the behaviors of A-type and B-type solutions
concerning the out-band amplification, we show, in Fig. 7,
the minimum value over z of the first-order Fourier harmonic
|ψ̂1|. This corresponds indeed to the smallest sideband that
can be amplified (along with the harmonics that are involved
in the solutions) for any given choice of the parameters α1, α2

for B-type, or ρ, η for A-type solutions, assuming α3 = 1
as before. Figure 7(a), which is related to type-B solutions,

shows that the sideband amplitude is defined only inside the
conventional MI band ω < 2, ranging from arbitrarily small
values (close to AB, α1 � α2) to relatively large values when
the solution is a deformation of the DN-oidal solution (α1 =
0; see Fig. 2) with large α2. As shown in Fig. 7(b), for the A-
type solutions, small sideband amplitudes are obtained close
to the horizontal axis (η � 0) for ρ < 1 where, at variance
with the previous case, they exist across the band edge limit
(parametric curve ω = 2) near the origin of the plane (ρ, η).
As a consequence, one can still amplify even small sidebands,
although it must be considered that the gain abruptly drops
across such a threshold [see Fig. 5(b) and the blue curve in
Fig. 5(d)], whereas the period L decreases. This regime is
similar to a parametric amplification characterized by large
phase mismatch. Larger values of η correspond, in the out-
band region, to a rapid increase of the sideband to values
which are typically larger than those for the B-type solution,
and can become comparable to the amplitude of the CW. This
is the regime of amplification of large modulations, which,
by definition, cannot be described by the standard MI linear
stability analysis.

Finally, we give an important argument that helps to get
insight into the fact that only A-type solutions exhibit gain
outside the conventional MI gain bandwidth. To this end, we
resort to the interpretation of MI as a symmetry breaking
process, where the broken symmetry appears as the parameter
ω is decreased below the threshold ω = 2 [12]. As also
discussed above, the phase with broken symmetry (ω < 2)
is characterized by the coexistence of A-type and B-type
evolutions [12]. Conversely, for ω > 2, only one type of
evolution exists, which can be considered, for ω 	 2, a small
deformation of strictly linear solutions. The latter can be
easily obtained from the NLSE (1) by dropping the nonlinear
term |ψ |2ψ . By considering, for the sake of simplicity, the
initial condition ψ (t, 0) = ψ0 + c1 exp(iωt ) + c1 exp(−iωt )
containing the pump ψ0 and a single symmetric pair of side-
bands with complex amplitude c1, the linear solution reads as

ψ (z, t ) = ψ0 + [c1 exp(iωt ) + c1 exp(−iωt )] exp

(
−i

ω2

2
z

)
.

(27)

Equation (27) shows that the dispersion is responsible for
a continuous phase rotation of the modulation, which goes
through alternating states of amplitude and frequency modula-
tion, characterized by relative phase between the sideband and
the pump of 0, π , and ±π/2, respectively [58]. In particular,
two successive states of amplitude modulation, obtained at
relative distance �z = 2π/ω2 [half spatial period of solution
in Eq. (27)] such that they are phase shifted by ω2�z/2 = π ,
exhibit a temporal shift of half period in the intensity pattern,
similar to the case of A-type solutions. From this point of
view, nonlinear solutions of the A type can be considered as
the nonlinear dressing of linear solutions, which exist for ω >

2 and are smoothly continued into the phase with broken sym-
metry (ω < 2). Conversely, the B-type solutions have genuine
nonlinear origin, bearing no analogy to linear solutions. In-
stead, they appear only in conjunction with the onset of MI,
due to the symmetry breaking nature of the phenomenon.
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IV. CONCLUSION

We studied, in detail, the three-parameter family of doubly
periodic solutions of the nonlinear Schrödinger equation, orig-
inally derived by Akhmediev, Eleonskii, and Kulagin [48]. We
reveal the richness of physical phenomena that is contained
within this family. The three free parameters of this family
allow us to control arbitrarily the spatial and temporal periods
of the family and the amplitude of the resulting periodic
profiles.

We discovered several physical phenomena within this
family. These include modulation instability outside of the
standard instability band known from the classical works
of Benjamin-Feir [5] and Bespalov-Talanov [6]. Using this
expanded knowledge of modulation instability applied to the
classical NLSE will lead to better understanding of nonlinear
phenomena and their applications both in optics and water
waves.

One of the major advances of our present work is the cal-
culation of Fourier components of the periodic field in explicit
form. These analytic expressions will lead to further progress
in physical applications of the NLSE-related phenomena in
fiber optics and water waves.

From a theoretical point of view, our analysis provides
more physical understanding of fields generated by periodic
initial conditions. Previous approaches based on the general
solution expressed in terms of theta functions did not lead

to significant progress as it is difficult to extract physically
relevant results from general solutions. It is a better idea to
construct general periodic solutions from fundamental ones
in the way similar to construction of multisoliton solutions
from its fundamental constituents—single solitons. There are
several techniques that can be used for this aim such as
Darboux or Backlund transformations. Being equipped with
the family of the fundamental doubly periodic solutions of
the NLSE, it will be possible to construct more complicated
solutions using this one as a starting point.

Note Added. Recently, the authors became aware that
doubly periodic solutions as a background for rogue waves
have been independently addressed by Chen, Pelinovsky, and
White [59].
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