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Abstract This study proposes a general differential split-sample test (GDSST) based on an oriented bootstrap to assess 13 

the transferability of conceptual rainfall-runoff models to climatically contrasting periods. Compared to existing 14 

benchmark techniques, the GDSST allows a larger number of climatically contrasted discontinuous periods to be 15 

sampled, and is computationally more effective than the basic bootstrap to identify the most contrasted periods. When 16 

applied to three hydrological models (GR4J, HBV and IHACRES) in five catchments in northern Tunisia, the GDSST 17 

provided clear limits of the transferability of the models under changing precipitation (P) and temperature (T) conditions 18 

towards drier and hotter conditions. According to the criteria and thresholds retained, approximate limits of model 19 

transferability are drawn. The models are roughly transferable for relative changes in precipitation ΔP < (0.08 ΔT – 0.18) 20 

with ΔP ∈ [-30%, +80%], and changes in temperature ΔT ∈ [-2 °C, +2 °C]. These transferability limits suggest 21 

selecting a past sub-period as close as possible to the future climate to identify calibration parameters, which can be used 22 

for hydrological projections. The limits of transferability were then compared to climate projections by eight high-23 

resolution Regional Climate Model (RCM) simulations resulting from the EURO-CORDEX initiative. The RCMs’ 24 

precipitation and temperature simulations of the historical period 1970‒2000 were first assessed to select the most 25 

realistic ones for future projections. A delta-change monthly correction was used to perturb the observed climate series 26 

according to climate simulations under two Radiative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5) for 27 

one medium-term horizon (2040‒2070) and one long-term horizon (2070‒2100). The effects of the selected past 28 

calibration period on the hydrological projections were then analysed. The RCP 8.5 climate projections fall outside the 29 

limits of transferability of all rainfall-runoff models tested. Models calibrated on the whole observed period were found 30 
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to underestimate the impacts of climate change on runoff by 5% to 20% in comparison with models calibrated on sub-31 

periods with mean annual  P and T closer to projected climate conditions. 32 

Key words  Rainfall-runoff modelling; Split-sample tests; Parameter transferability; Climate scenarios; CORDEX; Tunisia. 33 

1. INTRODUCTION 34 

1.1. Simulating the impact of climate change on runoff 35 

Several studies have shown that climate change has already affected available water resources worldwide 36 

(e.g. Haddeland et al., 2014) and is expected to have even more severe impacts in the future (e.g. Hageman 37 

et al., 2013; IPCC, 2013). However, assessing the potential impact of climate change on runoff precisely 38 

requires both high-resolution climate projections and models capable of reliably representing the 39 

hydrological processes in recent decades and at the scale of basins that are sufficiently representative of 40 

water management issues, i.e. several hundred to several thousand square kilometres (Fabre et al., 2016). In 41 

developing countries, the use of physically-based distributed models is generally hampered by insufficient 42 

data to force and control the models. Consequently, model validation is usually based on the streamflow at 43 

the outlet, which does not guarantee that the water redistribution processes and their interactions are well 44 

represented within the catchment. Application is even harder when it comes to testing the ability of models 45 

to reproduce multi-decadal hydrological variability which is a prerequisite for studying the impact of climate 46 

change on water resources (Ruelland et al., 2012). Therefore, conceptual models representing the 47 

functioning of the basins using a small number of empirical equations whose few parameters can be 48 

calibrated with a minimum of data are often preferred, particularly in a context of data scarcity (e.g. Bastola 49 

et al., 2011; Chen et al., 2011; Hublart et al., 2016; Ruelland et al., 2012; 2015). On the other hand, their 50 

relative simplicity and the need to calibrate their parameters on current data do not always plead for their use 51 

when conditions shift beyond the range of prior experience (Hublart et al., 2015) as it can be the case in a 52 

framework of future change (see e.g. Vaze et al., 2010). The use of conceptual models is therefore 53 

conditional on the estimation of the uncertainty associated with the modelling process itself, which is a 54 

combination of uncertainties evolving from input and control data, model structures, parameterization and 55 

parameter transferability under non-stationary conditions, such as climate change or variability. 56 
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1.2. Review of the literature on the problem of model parameter transferability to climate change 57 

Parameter transferability can be defined as the ability of a model to perform with the same level of accuracy 58 

under conditions that differ from those used for its calibration (Seiller et al., 2012). It requires particular 59 

attention in studies on the impact of climate change, because it can be an important source of uncertainty in 60 

the hydrological, modelling chain as already pointed out by many authors (e.g. Brigode et al., 2013; Coron 61 

et al., 2012; Poulin et al., 2011; Fowler et al. 2016; Melsen et al., 2018). Many techniques have thus been 62 

proposed to assess potential parameter transferability under different climate conditions. For instance, the 63 

differential split-sample test (DSST, Klemeš, 1986) is a powerful procedure to evaluate transferability under 64 

climate variability. It consists of calibration and validation exercises for hydrological models using sub-65 

periods with contrasted climate conditions, which make it possible to evaluate model transferability from 66 

one climate condition to another. The idea behind performing a DSST is that the errors made when 67 

extrapolating from one set of observed climate conditions to another different set could correspond to the 68 

errors made when reference data is used for calibration and extrapolation to future climate conditions 69 

(Seibert, 2003). The main variables used in the DSST to discretize sub-periods of different climate 70 

conditions are precipitation and/or temperature (e.g. Refsgaard and Knudsen 1996; Vaze et al., 2010; Seiller 71 

et al., 2012; Tramblay et al. 2013; Ruelland et al., 2015; Hartmann and Bárdossy, 2005; Dakhlaoui et al. 72 

2017), potential evapotranspiration (Coron et al., 2012), and runoff (Seibert, 2003; Vormoor et al., 2018). 73 

The use of DSST is generally based on clustering reference periods on two climate contrasted sub-74 

periods, and generally according to only one climate variable (e.g. Refsgaard and Knudsen, 1996; Seibert, 75 

2003; Wu and Johnston, 2007; Vaze et al., 2010; Ruelland et al., 2015). As a result, it provides a limited 76 

number of calibration and validation samples directly linked to the available data, which does not help fully 77 

understand the behaviour of the rainfall-runoff models (RRM) under climate variability. Moreover, the 78 

implications of RRM robustness under a changing climate remains unknown, since potential changes in 79 

climate may go beyond the observed variability (see Ruelland et al., 2012; Guo et al. 2018; Zheng et al., 80 

2018). These limits led several authors to increase the number of calibration-validation exercises and to 81 

expand the range of hydro-climatic changes between these periods, to better explore model robustness under 82 

climate variability. For example, Hartmann and Bárdossy (2005) divided a 30-year observation period into 83 

three sub-periods, first in terms of mean annual temperature (warm, normal and cold), and second, in terms 84 

of annual precipitation (wet, normal, and dry years). This made it possible to increase the number of 85 
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validation exercises for each climate variable and catchment to six compared to the two DSST periods 86 

usually used, and to sample more contrasted sub-periods. Tolson and Shoemaker (2007) divided the 87 

observation period into three sub-periods: a 6-year period for calibration and two independent validation 88 

series of three years and one year respectively, which allowed them to check the model’s performance under 89 

contrasted hydrological conditions. Dakhlaoui et al. (2017) simultaneously used mean annual temperature 90 

and precipitation values to generate four climate contrasted sub-periods (hot/wet, cold/wet, hot/dry, and 91 

cold/wet), which allowed a bigger number of validation exercises (12 per catchment) to be considered and 92 

the use of contrasted sub-periods in terms of temperature and precipitation. Coron et al. (2012) developed a 93 

generalized version of SST (so-called general split-sample test: GSST, and hereafter called sliding-window 94 

SST), which allows a large number of calibration-validation exercises by sampling sub-periods based on a 95 

sliding window over the reference period. This technique allowed even more validation exercises than the 96 

previous ones and better exploration of observed climate variability in 216 catchments in southeast 97 

Australia. Coron (2013) proposed another version of GSST (hereafter called random bootstrap SST) by 98 

generating sub-periods according to a bootstrap where a large number of randomly selected combinations of 99 

years are used for calibration and for validation. This technique was revisited recently by Arsenault et al. 100 

(2018) to evaluate how the length of the calibration period impacted the transferability of two hydrological 101 

models in three North American catchments. To explore a larger continuum of model behaviour, Guo et al. 102 

(2018) used a stochastic weather generator to generate synthetic climate data to represent future climate 103 

conditions, which made it possible to assess the transferability of three RRMs (GR4J, AWBM and CMD) 104 

beyond conditions in existing records. However, one limitation of the proposed methodology is that it is 105 

based on only one climate variable (precipitation). Furthermore, the authors reported that the stochastic 106 

weather generator had difficulty representing natural variability. 107 

1.3. Research needs revealed by the review of literature 108 

Even though the GSST (sliding-window SST or random bootstrap SST) seems to offer the most complete 109 

SST, its use presents some limitations. Indeed, the GSST was not specifically designed to identify contrasted 110 

periods only, but rather to create an ensemble of conditions, ranging from similar to contrasted. As a result, 111 

unlike DSST, it does not explicitly ensure that the most climatically contrasted periods are selected. When 112 

applied to continuous years through a sliding-window, the GSST provides contrasted climatic conditions, 113 
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which result mainly from the climate trends over the reference period and/or smoothed climatic variability 114 

over the selected continuous periods. When applied to discontinuous years through a random bootstrap, the 115 

GSST can theoretically select the most contrasted periods if all combinations are sampled, which is 116 

computationally unrealistic when considering multi-decadal periods. On the contrary, the DSST applications 117 

found in the literature were intended to explicitly identify a climatic contrast between the periods based on a 118 

statistical climate analysis, for example by grouping the wettest (driest) years in the same period. On the 119 

other hand, the GSST has the major advantage of generating a large number of time periods (composed of a 120 

continuum of climatic conditions) for a more complete assessment of the transferability of conceptual 121 

hydrological models. This calls for a SST technique which could sample a large number sub-periods 122 

composed of discontinuous years and gathering similar to contrasted conditions in terms of  precipitation 123 

and temperature, while ensuring that the most climatically contrasted sub-periods are sampled. 124 

 Although many authors have used DSST to evaluate RRM transferability under climate variability (e.g. 125 

Refsgaard and Knudsen 1996; Vaze et al., 2010; Seiller et al., 2012; Tramblay et al. 2013; Ruelland et al., 126 

2015; Hartmann and Bárdossy, 2005; Seibert, 2003), only a few quantified changes in climatic variables 127 

which allow acceptable transferability of model results, and generally, only precipitation was used to define 128 

the limits of transferability. For example Vaze et al. (2010) tested four rainfall-runoff models in 61 129 

catchments in southwest Australia and suggested that calibration periods of at least 20 years were needed for 130 

robust models under climate variability but only if the difference in mean rainfall between calibration and 131 

validation period was greater than -15% (for drier climates) and less than +20% (for wetter climates). 132 

Similarly, Bastola et al. (2011) found for two Irish catchments that model transferability was less affected 133 

when the difference in rainfall between calibration and validation periods was less than 10%. Singh et al. 134 

(2011) identified an acceptable range of changes in precipitation (-10% to +20%) with no marked effect on 135 

model transferability for five catchments across continental USA. Coron et al. (2012) evaluated the 136 

robustness of three RRMs (GR4J, MORDOR6 and SIMHYD) under simultaneous changes in precipitation 137 

and potential evapotranspiration (PET) in southeast Australia, and reported that, on average, a 20% absolute 138 

bias was observed with a 10%–20% change in precipitation and a 1%–2% change in PET between the 139 

calibration and validation periods. However, as mentioned above, the sliding-window SST used in Coron et 140 

al. (2012) was not intended to specifically focus on contrasted periods but rather to create a continuum of 141 

conditions, from similar climatic conditions to contrasted ones, in order to better evaluate the evolution of 142 
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model behaviour with increasing contrasts between different time periods. In a recent study (Dakhlaoui et al. 143 

2017) we evaluated the transferability of three RRMs (GR4J, HBV and IHACRES) under simultaneous 144 

precipitation and temperature variability in catchments representative of hydro-climatic conditions in 145 

northern Tunisia. We showed that the difference in climate conditions between calibration and validation 146 

periods progressively affected the performance of hydrological models. We also showed that the models 147 

tested were transferable to wetter and/or colder conditions. However, the model robustness became 148 

unacceptable when climate conditions involved a decrease of more than 25% in annual precipitation and an 149 

increase in annual mean temperatures of more than +1.75 °C. However the DSST we used only generated 150 

small number of calibration and validation exercises (four calibration exercises and 12 validation exercises 151 

for each catchment) and provided little information on RRMs transferability under moderate climate 152 

changes. In addition, only a few studies have put the RRM transferability limits into perspective in the 153 

context of climate projections (see e.g. Singh et al., 2011; Guo et al., 2018). As a result, there is a need for a 154 

more precise definition of the limits of transferability of conceptual models in terms of ∆T and ∆P and for 155 

these limits to be put into perspective with respect to available high-resolution climate projections. This is of 156 

particular importance in the Mediterranean region which is known to be a hot spot of climate change, 157 

notably the southern rim (Cramer et al., 2018). Indeed recent climate change scenarios in the Mediterranean 158 

region predicted a potential 20% decrease in total precipitation and a +1 °C to +3 °C increase in mean 159 

annual temperature by the 2050 horizon compared with the 1971‒1990 period (Milano et al., 2012; Schilling 160 

et al., 2012; Terink et al., 2013; Tramblay et al. 2018). These climate changes would have a considerable 161 

effect on the surface water resources of southern Mediterranean countries which already suffer from water 162 

paucity (Blinda and Thivet, 2009).  On the other hand, the few studies which evaluated the hydrological 163 

impacts of climate change in the Mediterranean region (e.g. Milano et al., 2012; Drooger et al. 2012; Sellami 164 

et al., 2016) did not take into account the limits of transferability of the hydrological models they used. This 165 

calls for an evaluation of the effect of the expected loss in performance of RRMs under future climate 166 

change and for more reliable hydrological projections to enable better climate change adaptation strategies. 167 

1.4. Objectives 168 

This paper proposes an improved SST technique to test the robustness of hydrological models by selecting 169 

time periods with contrasted conditions in terms of temperature and precipitation. The proposed technique 170 
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was compared to three other split-sampled methods to demonstrate its efficiency. It was then used to assess 171 

the transferability of conceptual rainfall-runoff models under multi-decadal climate variability with a view to 172 

simulating hydrological scenarios based on high-resolution climate projections in northern Tunisia. We 173 

compared the limits of transferability with future climate scenarios obtained from high resolution EURO-174 

CORDEX regional climate models. Finally we analysed the effect of the selection of the calibration period 175 

on the limits of RRM robustness on the hydrological projections. 176 

2. DESCRIPTION OF THE SPLIT-SAMPLE TECHNIQUES 177 

2.1. Three benchmark SST techniques 178 

The SST methods selected to be tested on the study catchments were: (i) a sliding-window SST (Coron et 179 

al., 2012); (ii) a random bootstrap SST (Coron, 2013; Arsenault et al., 2018); and (iii) a 4-sub-period DSST 180 

(Dakhlaoui et al., 2017). These three techniques were selected because they enable simultaneous 181 

investigation of the effect of T and P on model transferability under climate variability. The first technique 182 

was adopted in several studies (Coron et al., 2012; 2014; Guo et al., 2018; Vormoor et al., 2018), the second 183 

one inspired our proposed DSST to randomly combine independent years in the sample and the third one 184 

was recently successfully used in northern Tunisia to sample very climatically contrasted sub-periods. These 185 

three techniques are described in Figure 1 and Table 1. 186 

 187 

Figure 1 to be inserted near here (colour). 188 

 189 

The sliding-window SST technique (Coron et al., 2012) consists in using calibration-validation tests on 190 

independent sub-periods of equal length, considering all possible pairs of sub-periods. The sampling method 191 

used to generate sub-periods is based on sliding windows applied over the reference period. The technique 192 

enables the identification of l-n+1 calibration sub-periods, where n is the number of years composing each 193 

sub-periods and l is the total number of years of the reference period. 194 

 The random bootstrap SST technique (Coron, 2013; Arsenault et al., 2018) relies on a sub-period 195 

sampling technique which is based on a random combination of discontinuous years (bootstrap). This 196 

sampling technique is time consuming since the possible number of calibration sub-periods is equal to ���  . 197 

For example the random bootstrap SST technique results in around six million possible 8-year sub-periods if 198 
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applied to a 30-year reference period. Its application then requires a priori selection of the number of 199 

permitted calibration exercises, due to limited time budget for model calibration and validation. 200 

 The implementation of the 4-sub-period DSST (Dakhlaoui et al., 2017) requires the calculation of the 201 

annual precipitation and mean temperature for each hydrological year of the reference period. The sub-202 

periods are thus made up of clusters of climatically contrasted years. To create these clusters, the 203 

hydrological years are first distributed into two equal groups of hydrological years (dry years and wet years) 204 

according to the annual precipitation median for the reference period (Fig. 1c). Dry and wet years are 205 

defined as years with respectively less or more total precipitation than the median of the reference period. 206 

For each group, the median of the mean annual temperature is then calculated, which serves to distinguish 207 

hot and cold years. The four final groups of hydrological years are: hot/dry (HD), hot/wet (HW), cold/dry 208 

(CD) and cold/wet (CW) years (see Figure 1). 209 

 Using the three above techniques makes it possible to identify different numbers of calibration sub-210 

periods of n years (see Table 1). All n-year periods which do not have any year in common with a given n-211 

year calibration period can thus be considered as independent validation exercises. As a result, the number of 212 

validation exercises may not be the same for all calibration periods selected with the sliding-window and 213 

random bootstrap SST. For the 4-sub-period SST, there are three possible validation exercises for each of the 214 

4 calibration sub-period. 215 

 216 

Table 1 Overview of the split-sample test techniques. n is the number of years composing each sub-periods, 217 
l is the total number of years of the reference period, SST stands for split-sample test and DSST for 218 
differential split-sample test. 219 

Method Sliding-window SST Random bootstrap  SST 4 –sub-period SST GDSST 

Reference Coron et al., 2012 Coron, 2013 

Arsenault et al., 2018 

Dakhlaoui et al., 2017 Current paper 

Test type SST SST DSST DSST 

Sub-period Continuous years Discontinuous years Discontinuous years Discontinuous years 

Sub-period 

generation 

technique 

Sliding window Random bootstrap hot/dry, hot/wet, 

cold/dry and cold/wet 

years 

Oriented random 

bootstrap 

Number of 

sub-periods 

l-n+1 ���  as maximum, need 

to be defined a priori 

4 ���  as maximum, need 

to be defined a priori 

Number of 

validation 

exercises 

All n-year periods 

which do not have any 

year in common with 

the n-year calibration 

period 

All n-year periods 

which do not have any 

year in common with 

the n-year calibration 

period 

12 All n-year periods 

which do not have any 

year in common with 

the n-year calibration 

period 
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2.2. Proposal for a general differential split-sample test (GDSST) 220 

Based on the existing SST methods, we developed a technique which can take benefit from the random 221 

bootstrap SST technique to provide a large number of validation exercises while accounting for the much 222 

contrasted ΔT and ΔP detected with the 4-sub-period DSST. In other words, the idea was to design a method 223 

which uses the sampling of the random bootstrap SST technique, but which is oriented so as to obtain the 224 

extreme climate contrast provided by the 4-sub-period DSST. The proposed method was called general 225 

differential split-sample test (GDSST) and is described in Figure 2. 226 

 The procedure used to generate k n-year sub-periods from the l hydrological years (from the 1st of 227 

September to the 31st of August) of reference period, is as follows. The first year of the n-year sub-period to 228 

be sampled is randomly selected from the l years of the reference period (step 1 in Fig. 2). The l-1 remaining 229 

years of the reference period are then sorted based on the order of increasing distance of Mahalanobis (1936) 230 

to the first selected year in the space of mean annual temperature (T) and total annual precipitation (P) (step 231 

2 in Fig. 2).  The Mahalanobis distance is computed according to the following expression: 232 

 233 

 ���������, �
������ = (������� − �
�����)���
(������� − �
�����)   (1) 234 

  235 

where ���������, �
������ is the Mahalanobis distance between a year y from the l-1 remaining years of the reference 236 

period and the first selected year in the space of mean annual temperature (T) and total annual precipitation 237 

(P); ������� is a vector representing a year y from the l-1 remaining years of the reference period  in the T and P; 238 

�
����� is a vector representing the first selected year in the T and P space; � is the covariance matrix between T 239 

and P of the l years of the reference period. 240 

 Using the Mahalanobis distance aims at rescaling the T and P axes in order to account for the 241 

correlations between the two variables and to calculate standard Euclidean distance in a transformed space 242 

having unit variance. In other words, it aims to reduce the dominance of one climatic variable over the other 243 

when computing “climatic” distance between years. A trapezoidal probability is then assigned to the l-1 244 

remaining years of the reference period, as follows (step 3 in Fig. 2): 245 

 246 

�(�) =  2(� + 1 − �) �(� + 1)  , � = 1, … , �⁄   (2) 247 
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�(�) = 0 , � = � + 1, … , � − 1  (3) 248 

 249 

where P(i) is the probability assigned to the year with rank i; i is the rank of the remaining years of the 250 

reference period sorted in order of increasing Mahalanobis distance to the originally selected year; m is a 251 

number selected randomly at each sub-period selection from the interval [n-1, l-1]. The year closest to the 252 

year originally retained has the highest probability (P(1)= 2/m+1) and the farthest years has the lowest 253 

probability (P(m) = 2/m(m+1) and P(i) = 0 for � > m). 254 

 255 

The n-1 remaining years of the sub-period are then selected from the l-1 remaining years of the reference 256 

period according to the trapezoidal probability distribution giving more chance to be selected to the years 257 

which are the closest to the initial year retained according to the Mahalanobis distance defined in the T and P 258 

space (step 4 in Fig. 2). The trapezoidal distribution allows only the m years closest to the initial year 259 

retained, to be selected in the sub-period. This gives more chance to years with similar climatic conditions to 260 

be selected in order to generate more climatically contrasted sub-periods. However, varying randomly m for 261 

each sub-period generation also allows years with different climatic conditions to be selected. This aims at 262 

creating a continuum of climatic conditions, from similar to contrasted, between the sampled sub-periods in 263 

view of evaluating the model transferability under increasing climate contrasts. In case the new created sub-264 

period was already sampled, it is not retained (step 5 in Fig. 2). The procedure (steps 1 to 5 in Fig. 2) is 265 

repeated until the required number of sub-periods is reached (step 7 in Fig. 2). 266 

 The random selection of years in the proposed procedure allows a larger number of sub-periods to be 267 

selected than with a deterministic procedure (where the closest years to the originally retained year are 268 

selected). In fact, in the best case, the deterministic procedure provides a number of sub-periods equal to the 269 

number of observed years (e.g. 30 sub-periods for a 30-year reference period). The number of calibration 270 

sub-periods which can be generated by the proposed technique is similar to the random bootstrap SST 271 

technique ( ���  ). That is why its application requires a priori selection of the number of permitted calibration 272 

exercises. Similarly to the three benchmark SST (section 2.1), all n-year periods which do not have any year 273 

in common with a given n-year calibration period can be considered as independent validation exercises 274 

with the GDSST (see Table 1). 275 

 276 



 

 
11

Figure 2 to be inserted near here (colour). 277 

 278 

3. EVALUATION PROTOCOL 279 

In this section, we present successively the study basins, the hydro-climatic data and the methods to assess 280 

the transferability of three hydrological models under climate-contrasted conditions based on the proposed 281 

GDSST. 282 

3.1. Study basins 283 

Five catchments located in Northern Tunisia (Fig. 3) were used for the evaluation protocol. These basins 284 

were selected based on the following criteria:  (i) their streamflow regime can be considered as natural since 285 

they are located upstream from major hydraulic installations, such as dams and water transfers; (ii) the 286 

availability of hydro-climatic series for the same 30-year period to enable sufficiently climate contrasted 287 

sub-periods to be sampled for the split-sample tests; and (iii) the availability of good quality hydrological 288 

data according to hydrological reports, with the aim of reducing the impact of data errors on the results. The 289 

basins are located in the region that produces most of the surface water in Tunisia (Baouab and Cherif, 290 

2015). The study catchments are situated within a semi-arid to humid Mediterranean climate with a hot 291 

season (Henia, 2008). The hydro-climatic characteristics are given in Figure 3. More details on the basins 292 

can be found in Dakhlaoui et al. (2017). 293 

 294 

Figure 3 to be inserted near here (colour). 295 

 296 

3.2. Hydro-climatic data 297 

3.2.1. In-situ meteorological data 298 

A total of 123 daily rain-gauges located in the study region were used (see Fig. 3). These stations were 299 

selected because they had less than 30% of daily gaps in the period 1970‒2000, thus providing a stable, 300 

coherent network of measurements for the spatial interpolation of precipitation forcing. Eight meteorological 301 

stations with monthly mean series of daily minimum and maximum temperatures (Fig. 3) were used to 302 
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compute mean monthly air temperatures, which were considered as daily values. Climate forcing was 303 

interpolated on a 2-km grid with the inverse distance weighting technique. Temperature (T) was interpolated 304 

by accounting for a lapse rate of -0.65 °C/100 m (see details on the method used in Ruelland et al., 2014) 305 

while precipitation (P) was interpolated by accounting for altitude via a 4.10-4 corrective factor in the 306 

exponential function proposed by Valéry et al. (2010).  The formula of Oudin et al. (2005) was chosen to 307 

estimate PET. This formula is based on mean daily air temperature and on estimated clear daily sky solar 308 

radiation depending on the latitude of the grid cells. 309 

3.2.2. High-resolution climate simulations 310 

The climate model data used (Table 2) are simulations and projections of daily mean temperature and 311 

precipitation from eight pairs of RCMs (Regional Climate Models) forced by different Global Circulation 312 

Models), from the EURO-CORDEX initiative, the  most  recent climate  simulations  for  the  Euro-313 

Mediterranean  region with 0.11° resolution (~12x12 km). The model data for the period 1951‒2005 314 

correspond to the historical simulation, and 2006‒2100 corresponds to future projections. Two Radiative 315 

Concentration Pathway (RCP) scenarios were used for the future projections: RCP 4.5 and RCP 8.5, which 316 

represent respectively moderate and strong greenhouse gas emission scenarios. The climate projections were 317 

based on two 30-year future periods: one medium-term (2040‒2070) and one long-term (2070‒2100) 318 

horizon. They were compared to the past reference period (1970‒2000). 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

Table 2 RCMs selected from the EURO-CORDEX initiative. 327 

Model acronym Name of 

RCM 

Modelling center 

(country) 

Name of 

GCM 

Modelling center 

(country) 

Reference 

CLM-HAD CLM11 CLM community 

(USA) 

HadGEM2-

ES 

Met Office Hadley Centre 

(UK) 

Rockel et al. (2008) 

CLM-MPI CLM11 CLM community 

(USA) 

MPI-ESM-

MR 

Max-Planck-Institut für 

Meteorologie (Germany) 

Stevens et al. (2013) 

CNR-CNR ALADIN 5.3 Centre National de 

Recherches 

CNRM-CM5 Centre National de 

Recherches 

Voldoire et al. (2013) 



 

 
13

Météorologiques 

 (France)  

Météorologiques 

 (France) 

KNM-ECE KNM11 Royal Netherlands 

Meteorological 

Institute 

EC-EARTH 

 

EC-EARTH consortium 

(Europe) 

van Meijgaard et al. 

(2012) 

SMH-CNR SMH11 Swedish 

Meteorological and 

Hydrological 

Institute 

CNRM-CM5 

 

Centre National de 

Recherches 

Météorologiques 

 (France) 

Voldoire et al. (2013) 

SMH-ECE SMH11 Swedish 

Meteorological and 

Hydrological 

Institute  

EC-EARTH 

 

EC-EARTH consortium 

(Europe) 

Samuelsson et al. 

(2011) 

SMH-HAD SMH11 Swedish 

Meteorological and 

Hydrological 

Institute  

HadGEM2-

ES 

 

 

Met Office Hadley Centre 

(UK) 

Samuelsson et al. 

(2011) 

SMH-MPI SMH11 Swedish 

Meteorological and 

Hydrological 

Institute  

MPI-ESM-

MR 

Max-Planck-Institut für 

Meteorologie (Germany) 

Stevens et al. (2013) 

 328 

3.3. Model’s transferability evaluation under climate-contrasted conditions 329 

3.3.1. Hydrological models 330 

Three conceptual hydrological models, running at a daily time step, were used: GR4J (Perrin et al., 2003), 331 

HBV (Bergström, 1976; Bergström and Lindström, 2015) and IHACRES (Jakeman et al., 1990; Croke and 332 

Jakeman, 2004). They were selected because they are parsimonious models and all have to be calibrated 333 

based on precipitation, PET and runoff data, but differ in the way they conceptualise the hydrological 334 

processes and in their complexity (4 to 8 free parameters, 2 to 3 conceptual reservoirs, see Table 3). This 335 

makes inter-comparison of the model simulations possible. All three models have recently been applied in 336 

Tunisia (see Dakhlaoui et al., 2009; 2012; 2017). Further description on the model versions used can be 337 

found in Dakhlaoui et al. (2017). 338 

 339 

 340 

 341 

 342 

 343 

Table 3 Overview of the characteristics of the three tested models (modified from Dakhlaoui et al., 2017). 344 

 GR4J HBV IHACRES 

Number of parameters 4 8 5 

Production module 

 

 

Precip.  interception by PE,  

 

 

PE extracted  from stored 

soil moisture  

 

Precip. interception by PE, 
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Water exchange 

Non-linear soil moisture 

(SM) accounting store,  

 

 

 

 

Actual evapotranspiration 

parabolic function (of SM), 

Yes 

 

Inter-catchment 

groundwater flow 

 

The level of soil moisture 

accounting store 

determines the quantity of 

precipitation intercepted by 

the soil 

 

Actual evapotranspiration 

piecewise linear  function 

(of SM) 

 

No  

Non-linear soil moisture 

accounting store, 

 

 

 

 

Actual evapotranspiration 

exponential function (of 

SM) 

 

No  

Routing module Two unit hydrographs, 

 Non-linear routing store 

Two conceptual reservoirs, 

the upper is non-linear 

(direct runoff) and the 

lower is linear (subsurface 

runoff) 

One unit hydrograph  

 

Two unit hydrographs in 

parallel equivalent to two 

linear routing stores 

Source of first publication Perrin et al. (2003) Bergström (1976) Jakeman et al. (1990) 

 345 

3.3.2. Calibration and validation methods 346 

Model robustness was evaluated through a series of calibration and validation exercises under contrasted 347 

precipitation/temperature conditions according to the proposed GDSST. The three hydrological models 348 

(GR4J, HBV and IHACRES) were calibrated for the five study catchments over the 100 sub-periods 349 

generated by the oriented bootstrap technique. One optimal parameter set per sub-period was thus obtained 350 

by calibration. The parameter sets obtained were then used to perform all possible independent validation 351 

exercises (i.e. any sub-periods which do not have any year in common with the calibration sub-period). The 352 

proposed GDSST method thus enabled testing of the models under different conditions from those used for 353 

calibration. Although discontinuous sub-periods were used for both model calibration and validation, the 354 

models were run in a continuous way for the whole reference period, while only the years that corresponded 355 

to calibration or validation periods were taken into account to compute the efficiency criteria. A 3-year 356 

warm-up period (September 1967 to August 1970) was considered before the whole reference period to limit 357 

the effect of the storage initialization. 358 

 359 

The model parameters were calibrated using the Kling-Gupta Efficiency index (KGE, Gupta et al., 2009), 360 

which represents a compromise between three evaluation criteria (correlation coefficient, bias error and 361 

standard deviation ratio) expressed as follows: 362 

 363 
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)²1()²1()²1(1 −+−+−−= βαrKGE       (4) 364 

 365 

where r is the linear correlation coefficient between observed (Qobs) and simulated (Qsim) flows, α is a 366 

measure to compare the variability of the observed and predicted data (equal to the standard deviation of 367 

Qsim over the standard deviation of Qobs), and β is a measure of bias (equal to the mean of Qsim over the mean 368 

of Qobs). 369 

Calibration was performed in a 4D, 8D and 5D parameter space for GR4J, HBV and IHACRES 370 

respectively, by searching for the maximum value of KGE. To perform this optimization exercise efficiently, 371 

we used the Shuffle Complex Evolution (SCE) algorithm (Duan et al., 1992). The algorithmic parameters of 372 

SCE-UA were set to the values recommended by Duan et al. (1994). We also followed the recommendation 373 

of Kuczera (1997), who suggested a number of complexes equal to the number of parameters to be 374 

optimised and assumed that with these security measures, the risk that SCE-UA falls in local optimal 375 

solutions is considerably reduced. The parameter feasible ranges were set to usual parameter limits (see 376 

Dakhlaoui et al., 2017). Although the hydrological models were run at a daily time step, their calibration and 377 

validation were performed at 10-day time scale (i.e. based on 10-day mean values), since preliminary tests 378 

showed that day-to-day variability was difficult to reproduce accurately due to the limited quality of data in 379 

space and over time. 380 

Although models were calibrated by KGE Criteria, their performance (transferability) during 381 

validation was evaluated based on the analysis of the Nash and Sutcliffe Efficiency index (NSE, Nash and 382 

Sutcliffe, 1970) and the cumulated volume error (VE). We selected these two efficiency criteria because, 383 

they are commonly used by hydrologists, thus making easier their interpretation notably when defining the 384 

model transferability limits. The NSE criterion is as well-known form of the normalized least squares 385 

objective function. It represents the overall agreement of the shape of the hydrograph, while placing more 386 

emphasis on high flows. Perfect agreement between the observed and simulated values yields an efficiency 387 

of 1, while a negative efficiency represents a lack of agreement worse than if the simulated values were 388 

replaced with the observed mean values. VE represents the agreement of cumulated runoff volume during 389 

the simulation period and is expressed through the proportional difference to observed values. Its optimal 390 

value is zero. These criteria are computed according to the following equations: 391 

 392 
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 398 

To underline model instability between periods with contrasted climate conditions, parameter transferability 399 

was assessed as a function of the climate change variables (ΔT and ΔP) between the validation and 400 

calibration periods. Since NSE is based on a ratio of the squared model error to the variance of observed 401 

flows, any changes in variance or volumes between climatically contrasted periods (dry/wet) can affect 402 

result of the comparison. We thus chose to evaluate model transferability by calculating the differences 403 

between NSE resulting from the calibration period (RR, receiver) and the NSE calculated in the same period 404 

but with parameters provided by model calibration on other sub-periods (DR, donor). This made it possible 405 

to represent the results obtained from the GDSST classified in a grid of ΔT and ΔP, with a step of 0.2 °C and 406 

5%, respectively (see Fig. 5). 407 

4. RESULTS AND DISCUSSION 408 

4.1. Comparison of the different SST techniques 409 

The three benchmark SST techniques and the proposed GDSST were applied to the five study catchments in 410 

northern Tunisia. The techniques were compared as regards to the number of validation exercises and to the 411 

precipitation-temperature differences they provided. The 30-year reference period over each catchment was 412 

based on the hydrological years (from the 1st of September to the 31st of August). The length of the sub-413 

periods was set to 8 years for the sliding-window SST, the random bootstrap SST and the GDSST. However, 414 

for the 4-sub-period DSST, the 30-year reference period was spread over 7-8 years hot/dry, hot/wet, cold/dry 415 

and cold/wet sub-periods (since 30 is not a multiple of four). A ~8-year time span was judged to be suitable 416 

for model calibration. Indeed, several studies have shown that three to eight years are generally sufficient for 417 
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model calibration with validation using a classical split-sample test (e.g. Yapo et al., 1996; Anctil et al., 418 

2004). Moreover, using 8-year periods still provided significant differences in mean climate due to the 419 

length of available records (30 years) and the high variability of the climate conditions under study. As a 420 

result, we assumed it was an acceptable compromise between the length of the period needed for calibration 421 

and the number of possible combinations between calibration-validation periods. 422 

 The random bootstrap SST results in a large number of possible sub-periods if fully applied to a 30-423 

year period (around six millions 8-year sub-periods). Due to limited time budget for model calibration and 424 

validation, we decided to use only 100 randomly selected sub-periods for each catchment. For sake of fair 425 

comparison, the same number of randomly selected sub-periods was set with the GDSST. Note that the 426 

number of sub-periods for the two other techniques is already limited by their design: 23 sub-periods for the 427 

sliding-window SST and four for the 4-sub-period DSST. 428 

Figure 4 shows the number of validation exercises obtained with the different sampling techniques 429 

according to a grid of the differences in mean annual temperature and precipitation between the validation 430 

and calibration sub-periods (ΔT and ΔP with a step of 0.2 °C and 5%, respectively). When a given ΔT and 431 

ΔP did not exist in the classification sample, the corresponding square in the figure was coloured in grey. 432 

The figure allows the spread of the sample provided by each sampling technique to be evaluated in terms of 433 

ΔT and ΔP. Additionally, Table 4 summarizes the number of calibration-validation exercises and the ranges 434 

in ΔT and ΔP provided by the different sampling techniques applied over the 1970‒2000 period in the five 435 

studied basins. 436 

 Figure 4a shows the sample offered by the sliding-window SST technique when applied to the five 437 

study catchments. It provided 1 495 possible validation exercises for 115 (23 x 5 basins) calibration 438 

exercises. The differences between the different sub-periods in mean precipitation ranged from -20% to 439 

+25% and the differences in temperature ranged from -1.8 °C to +1.8 °C. When looking at the random 440 

bootstrap SST technique (Fig. 4b), it provided 5 800 possible validation exercises for a total of 500 441 

calibration (100 x 5 basins) exercises. The differences between the different sub-periods in mean 442 

precipitation ranged from -35% to +50%, and in temperature from -1.4 °C to +1.4 °C. The 4-sub-period 443 

DSST (Fig. 4c) provided 60 possible validation exercises from 20 (4 x 5 basins) calibration sub-periods. The 444 

differences in mean precipitation obtained ranged from -40% to +60%, and in temperature from -2 °C to 445 

+2 °C. Like the random bootstrap SST, the proposed GDSST (Fig. 4d) provided many possible validation 446 
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exercises (9 320) from a total of 500 calibration (100 x 5 basins) exercises. However, the differences in 447 

mean precipitation obtained ranged from -45% to +80%, and in temperature from -2 °C to +2 °C. 448 

 449 

Table 4 Number of calibration-validation exercises and ranges in ΔT and ΔP provided by the four split-450 
sample methods applied over a 30-year reference period (1970‒2000) in the five studied basins. ΔT and ΔP 451 
represent respectively the differences in mean annual temperature and the relative difference in annual 452 
precipitation between the calibration and validation sub-periods. 453 

Method Sliding-window SST Random bootstrap  SST 4 –sub-period SST GDSST 

Number of 

calibration 

exercises 

115 

(23 x 5 basins) 

500 

(100 x 5 basins) 

20 

(4 x 5 basins) 

500 

(100 x 5 basins) 

Number of 

validation 

exercises 

1 495 

(299 x 5 basins) 

5 800 

(~1160 x 5 basins) 

60 

(12 x 5 basins) 

9 320 

(~1 864 x 5 basins) 

Range of 

ΔT 

[-1.8 °C; +1.8 °C] [-1.4 °C; +1.4 °C] [-2.0 °C; +2.0 °C] [-2.0 °C; +2.0 °C] 

Range of 

ΔP 

[-20%; +25%] [-35%; +50%] [-40%; +60%] [-45%; +80%] 

 454 

Although the sliding-window SST technique provided numerous validation exercises, the differences in P 455 

(ΔP) were less contrasted than those offered by the three other techniques. The sliding-window technique 456 

thus appears to depend too much on the historical climate trends to detect extremely contrasted sub-periods 457 

for calibration. Using this method, Coron et al. (2012) found well contrasted precipitation in southeast 458 

Australia. However, the authors reported precipitation trends that contributed to obtain a significant contrast 459 

in precipitation characteristics between different periods. In northern Tunisia, continuous sliding periods 460 

were unable to provide sufficiently contrasted periods because there was no trend in precipitation during the 461 

historical study period, as shown by Dakhlaoui et al. (2017). In addition, the study area presents high inter-462 

annual precipitation variability (see also Dakhlaoui et al., 2017). Using continuous sub-periods thus smooths 463 

the average precipitation in the sub-periods, thereby reducing the climate contrast between them. However 464 

this is not the case for temperature, for which the sliding-window SST technique provided significant 465 

differences in T (ΔT) due to the increasing temperature trends in northern Tunisia over 1970‒2000 466 

(Dakhlaoui et al., 2017). The random bootstrap SST technique provided an important number of validation 467 

exercises (5 800). However it led to limited differences in T (ΔT) and a poor distribution of the sample with 468 

high concentration in the centre of the figure, where there is the least significant contrast to test model 469 

parameter transferability. The 4-sub-period DSST provided more contrasted ΔT and ΔP than the sliding-470 

window and random bootstrap SST. Indeed it is based on a sampling technique generating highly climate-471 

contrasted sub-periods. However, although it explored contrasted climatic conditions in the historical period, 472 
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the technique provides very few insights into moderate ΔT and ΔP compared to the other techniques. The 473 

oriented bootstrap of the GDSST provided more validation exercises than the random bootstrap SST, 474 

although both techniques were based on the same number of calibration exercises (500).  This can be 475 

explained by the fact that the oriented bootstrap favours the selection of independent sub-periods by 476 

reducing overlap between them. In addition, the GDSST provided a better spread of validation periods. 477 

Indeed, contrary to the random bootstrap technique in which the validation exercises were concentrated in 478 

the zone of ΔT and ΔP near 0, the sample provided by the GDSST technique was more concentrated at the 479 

extremes ΔT and ΔP, which are the most contrasted sub-periods to test the parameter transferability. Hence, 480 

the differences in mean precipitation and temperature between the different sub-periods ranged respectively 481 

from -45% to +80%, and from -2 °C to +2 °C, thus providing a more marked climatic contrast between the 482 

calibration and validation periods compared with the previous techniques (see Fig. 4). 483 

 484 

Figure 4 to be inserted near here (colour). 485 

 486 

It should be noted that the random bootstrap technique theoretically includes all the spread of ΔT and ΔP 487 

provided by the other techniques tested.  In other words, the theoretical limits of the tested combinations (if 488 

all possible combinations were sampled) should be as large as the largest limits provided by all the other 489 

techniques. However the problem is that the application of a bootstrap on all combinations would require 490 

excessive computation time and would lead to a very large number (~6 million of 8-year sub-periods) of 491 

combinations that could obviously not be tested through cross-validation with hydrological models. The 492 

proposed GDSST has the advantage to be more effective: with only a limited number of calibration exercises 493 

(100), it provides a large number of sub-periods from similar to contrasted conditions in terms of 494 

precipitation and temperature, while ensuring that the most climatically contrasted sub-periods are sampled. 495 

4.2. Model transferability under climate-contrasted conditions using GDSST 496 

These encouraging results led us to use the GDSST to assess the model’s transferability under climate-497 

contrasted conditions (see protocol in section 3.3.). 498 

 Based on the NSE criterion, the model’s transferability decreased with an increase in temperature and a 499 

decrease in precipitation (Fig. 5b). The simultaneous increase in T and decrease in P resulted in a significant 500 
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reduction in model performance. In contrast, an increase in precipitation and/or a decrease in temperatures 501 

had a much moderate impact on model efficiency (sometimes even leading to a slight improvement in 502 

performance), providing evidence for better parameter transferability under wetter and/or colder conditions. 503 

The cases where the model performance was improved can be explained by the fact that the evaluation 504 

criterion (NSE) is different from the calibration objective function (KGE). By the way, there were no cases 505 

where the KGE value in validation on a given period was larger than the KGE value in calibration on the 506 

same period (see Fig 5a), which shows that the method and the optimization algorithm are consistent and 507 

robust. Figure 5c shows that VE increases with an increase in temperature and a decrease in precipitation. 508 

The water balance decreases when temperature decreases and precipitation increases. This means that runoff 509 

is overestimated when moving to hotter and drier climate conditions and underestimated in the reverse case. 510 

The transferability as regards to the VE criterion was more affected by changes in precipitation (P) than by 511 

changes in temperature (T). An increase in T and/or a decrease in P between periods weakened the model 512 

robustness. On the opposite, the transferability is very satisfactory when ΔT and ΔP are low, i.e. when 513 

climate conditions are rather similar between the receiver and donor periods (including periods with extreme 514 

conditions). This means that the models are robust when applied on periods with similarly climate 515 

conditions, whether extreme or not. 516 

 517 

Figure 5 to be inserted near here (colour). 518 

 519 

Figure 5d shows the limits of transferability of the hydrological models as a function of ∆T and ∆P. These 520 

limits were defined according to a decrease in NSE of more than 0.2 and a variation in VE of more than +/-521 

25%. We acknowledge that these thresholds are somewhat subjective and should be adapted depending on 522 

the hydrological conditions and according to the user need, for example to match a sustainable level of 523 

uncertainties for water resources management in a given context. For the current study, NSE values were 524 

always greater than 0.8 while VE values were always around 0 for all calibration periods and catchments. 525 

We thus assumed that beyond a 0.2 decrease in NSE criterion and a 25% increase in VE, the simulations 526 

were no longer efficient. The red grid shows non-transferable areas. These results show that transferring 527 

parameters to different climate conditions resulted in significant uncertainties when the shift is to a hotter 528 

drier climate. Compared to the other hydrological models, GR4J appeared to be the least affected by changes 529 
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in temperature and the most affected by changes in precipitation. The limited effect of changes in 530 

temperature on the VE criterion can be partly explained by the fact that the changes in temperature mainly 531 

occur in the dry season, which contributes little to runoff. 532 

 The limits of transferability of the models show clear interdependence of precipitation and temperature. 533 

Given the criteria and the thresholds retained, they can be approximated according to an acceptability line 534 

(Fig. 5d) computed from a linear relation between ΔT and ΔP: the models are thus roughly transferable for 535 

changes in precipitation ΔP < (0.08*ΔT – 0.18), with ΔP ∈ [-30%, +80%] and changes in temperature ΔT ∈ 536 

[-2 °C, +2 °C]. These limits are more precise than those presented in previous studies, which showed 537 

squared transferability limits (see Coron et al., 2012 and Dakhlaoui et al., 2017). However, it should be 538 

noted the presence of outliers above the acceptability line. These outliers correspond to low density of 539 

validation samples (see Fig. 4d) and it is difficult to give general conclusion about them. For instance 540 

another limit towards wetter and colder conditions may also exist, but it is difficult to identify within the 541 

obtained results. Moreover, although Figure 5 provides evidence of transferability problems when moving to 542 

drier and hotter conditions, the interdependence of temperature and precipitation partly hides the fact that the 543 

models are probably less transferable towards drier conditions than towards hotter conditions. 544 

4.3. Analysis of high resolution climate simulations 545 

4.3.1. Efficiency of the RCMs over the control period 546 

Figure 6 shows the raw RCM outputs (P and T) versus climate observations over the reference period 1970‒547 

2000. Figures 6a and 6b compare the mean seasonal precipitation (temperature) observed with the one 548 

simulated by each of the eight RCMs over the reference period, while Figure 6c shows the relative errors 549 

between mean simulated and observed annual precipitation and mean errors between mean simulated and 550 

observed annual temperature. 551 

 The RCMs did not correctly reproduce precipitation. NSE values between mean seasonal simulated 552 

precipitation and mean seasonal observed precipitation range from negative values to 0.7 depending on the 553 

climate models and the catchments (Fig. 6b). The RCMs tested were thus not able to accurately reproduce 554 

the average seasonality of precipitation, especially during the wet season. In addition, many models were not 555 

even able to represent average annual precipitation, which leads to significant over- or under-estimation of 556 

rainfall (see Fig. 6c). The RCM simulations of temperature show a better agreement with observations. The 557 
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NSE values were generally above 0.85 (Fig. 6b) showing the good performance of RCM in reproducing the 558 

temperature seasonality. The difference between mean annual simulated and observed temperature was very 559 

small for CLM-HAD, CLM-MPI, SMH-HAD and SMH-MPI (Fig. 6c). However this difference was greater 560 

than 2 °C for CNR-CNR and KNM-ECERCM. 561 

 The limited efficiency of RCM (notably in reproducing observed precipitation over the reference 562 

period) hampered the direct use of climate model raw outputs for building climate scenarios. Moreover, 563 

since CNR-CNR RCM was the least efficient in reproducing the past observed climate in the studied basins, 564 

it was excluded from the ensemble. While this did not guarantee better future projections, we nevertheless 565 

considered it an essential step to obtain the most reliable and relevant simulations for future projections. 566 

4.3.2. Climate scenarios for the medium- and long-term horizon 567 

The RCM bias in reproducing reference climate (notably precipitation volume and seasonal patterns) led us 568 

to apply a simple delta-change method in order to produce a range of climate scenarios from the RCM 569 

outputs. All simulations of climate change were thus based on the historical Representative Concentration 570 

Pathway (RCP) over the reference period (1970–2000) and scenarios RCP 4.5 and 8.5 for a medium-term 571 

horizon (2040–2070) and a long-term horizon (2070‒2100). High-resolution climate change forcing was 572 

thus obtained by a monthly perturbation method, which assumes that climate models reproduce the relative 573 

change in climatic variables better than their absolute values. The method consists in producing future 574 

climate scenarios by modifying the observed climatic series so as to reproduce the mean monthly variations 575 

obtained between the reference and future climatic simulations produced by climate models. For more 576 

details on the method used, see Ruelland et al. (2012). 577 

 578 

Figure 6 to be inserted near here (colour). 579 

 580 

Figure 7a compares the mean seasonal precipitation observed over the reference period and projected 581 

precipitation according to the four combinations of horizons and RCPs, for each of the seven selected 582 

RCMs. Figure 7b shows the same comparison for temperature. The climate change signal is very different 583 

from one RCM to another especially for precipitation. However all RCMs predict a warmer climate and 584 

almost all climate models predict dryer conditions in the future. At the medium-term horizon, a change of 585 
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+10% to -23% (+6.3% to -35%) in total precipitation is projected under the RCP4.5 (RCP8.5) scenario. At 586 

the long-term horizon, a change of +12% to -30% (+15% to -52%) in total precipitation is projected under 587 

the RCP4.5 (RCP8.5) scenario. These changes mainly occur in the wet season (November to April). For 588 

temperature (Fig. 7b) at the medium-term horizon, an increase of +1.0 to +1.5 °C (+1.8 to +3.5 °C) is 589 

projected under the RCP4.5 (RCP8.5) scenario. At the long-term horizon, an increase of +1.7 to +3.3 °C 590 

(+3.2 to +5.7 °C) is expected under the RCP4.5 (RCP8.5) scenario. In contrast to precipitation, these 591 

changes are expected to occur mainly during summer. The changes in temperature are likely to have little 592 

impact on discharge, since there is almost no runoff in summer, but the decrease in winter precipitation may 593 

have a critical impact on water resources. 594 

 595 

Figure 7 to be inserted near here (colour). 596 

 597 

4.4. Comparing climate projections with model parameter transferability  598 

4.4.1. Analysis of the transferability of the models to climate-contrasted periods 599 

This section exploits one of the main results obtained in section 4.2 which showed that the difference in 600 

climate conditions between calibration and validation periods progressively affects the performances of 601 

hydrological models (see Fig. 5). 602 

 For this purpose, three cases were used for the hydrological projections with each model. The first case 603 

uses the parameter sets calibrated over the whole (WHO) reference period (1970‒2000). The second case 604 

uses the parameter sets calibrated over the 12-year sub-period the closest to the future climate (MSP).The 605 

third case uses the parameter sets calibrated over the 12-year sub-period the most different from the future 606 

climate (MDP). The median of the seven RCM projections was considered for each RCP, horizon, and 607 

catchment. Three hundred sub-periods were generated according to the proposed GDSST to increase the 608 

chance of finding the MSP and MDP sub-periods. The closest (the farthest) sub-period to the future climate 609 

(according to Mahalanobis distance as regards to the pluviometric and temperature conditions) were 610 

considered as MSP (MDP). It should be noted that given the time span (30 years) of the projection periods, 611 

we decided to increase the calibration period length from eight (see section 4.2. for the tests regarding the 612 

GDSST) to 12 years. The rationale behind this increasing length of calibration periods was to reduce the 613 
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ratio of number of years between the calibration period (12) and the future periods (30) under study, thus 614 

limiting over-fitted calibration when applying the models to the future 30-year periods. 615 

 Figure 8 shows the behaviour of VE and the transferability limits obtained by the GDSST applied to the 616 

reference period (1970‒2000) as described in section 4.2. For each RCM, RCP, horizon and catchment, three 617 

points are shown: one for the future climate seen from the whole period, one for the future climate seen from 618 

the MSP, and one for the MDP. The cross indicates the mean reference climate conditions over the 30-year 619 

past period or over the most similar or most different 12-year period, i.e. with 0 coordinates as a reference. 620 

This makes it possible to position future climate conditions (RCM) in relation to the transferability limits of 621 

the models. In the figure, the past climate conditions (WHO, MSP or MDP) are thus considered as 622 

calibration periods with respect to the climate conditions predicted by the RCM.  623 

 We found that under RCP 4.5, whatever the horizon, the transfer of parameter sets calibrated over the 624 

whole 30-year period to the future climate conditions would be acceptable with respect to the defined 625 

transferability limits. However, this was not the case under RCP 8.5 at the medium-term horizon, whereas 626 

choosing parameter sets calibrated over the MSP would be acceptable. Given the long-term climate 627 

predicted under RCP8.5, the parameter sets calibrated over the whole 30-year period or over the most similar 628 

12-year sub-period both fell outside the transferability limits. 629 

 630 

Figure 8 to be inserted near here (colour). 631 

 632 

4.4.2. Sensitivity of the hydrological projections to the selected calibration period 633 

Figure 9 shows the relative changes in runoff volume in the hydrological projections performed by the three 634 

rainfall-runoff models forced by the median of the climate projections of the seven RCMs retained. Three 635 

parameter sets (WHO, MSP and MDP) were used for each case. The predicted changes in precipitation and 636 

temperature are transformed into hydrological projections by a change of +0.14% to -6.2% in mean annual 637 

runoff under RCP4.5 and of -13% to -31% under RCP8.5 at the medium-term horizon, and respectively -638 

16% to -29% and -37% to -57% at the long-term horizon.  639 

 The different cases of model parameterization had different impacts on the hydrological projections. 640 

MSP generally predicted the largest change in volume compared to the two other cases. In fact, when using 641 

parameters calibrated over the whole period, the hydrological impact of climate change was underestimated 642 
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by 5% to 20% compared to when the parameters were calibrated on the MSP. Using parameters calibrated 643 

on the MDP (MSP) generally led to a smaller (larger) change in volume compared to the two other cases. 644 

Additionally, the change in volume simulated when using parameters calibrated over the WHO period was 645 

generally closer to the change simulated when they were calibrated over the MDP period rather than the 646 

MSP period. 647 

 It is clear here that the behaviour concerning the change in volume simulated by the models via the 648 

GDSST experiment (Fig. 5) was transferred to the hydrological projections. When moving to drier and 649 

hotter conditions (future climate conditions seen relative to past reference conditions over the WHO period 650 

or the MDP), the hydrological models tended to overestimate runoff and to generate less change in volume. 651 

The overestimation of runoff was reduced in the case of MSP where the decrease in precipitation and 652 

increase in temperature were less marked which, according to the GDSST results (section 4.2), could be 653 

translated into less overestimation of runoff compared to the WHO period, causing a bigger decrease in 654 

runoff. The limited difference between MDP and whole period could be explained by RRM transferability of 655 

VE, which is more affected by changes in precipitation than by changes in temperature, as discussed in 656 

section 3.3.3. In fact the climate conditions over the whole 30-year period and over the MDP 12-year period 657 

are not too different in terms of precipitation, in contrast to temperature. As found in further experiments, a 658 

similar behaviour of different rainfall-runoff models can be observed. 659 

 660 

Figure 9 to be inserted near here (colour). 661 

 662 

 663 

 664 

5. SUMMARY AND CONCLUSION 665 

We developed a bootstrap-based differential split-sample test to assess the transferability of conceptual 666 

rainfall-runoff models under past and future climate variability. The proposed general differential split-667 

sample test (GDSST) aims to sample sub-periods of discontinuous years gathering similar to different 668 

conditions in terms of differences in precipitation and temperature. The GDSST was compared to three other 669 

existing techniques to select sub-periods over a 30-year past period on a set of five basins under semi-arid 670 
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conditions in northern Tunisia. We showed that the GDSST outperformed the other split-sample techniques 671 

by providing a larger number of sub-periods from similar to contrasted conditions in terms of precipitation 672 

and temperature, while ensuring that the most climatically contrasted sub-periods are sampled. 673 

 The GDSST was then used to evaluate the transferability of three hydrological models under various 674 

past climate conditions in the five basins. Our results showed that the difference in climate between 675 

calibration and validation progressively affects model performance. The models tested showed acceptable 676 

transferability to wetter and/or colder conditions. However, their efficiency was significantly affected under 677 

a decrease in precipitation and an increase in temperature. According to the criteria and the thresholds 678 

retained, the models were found roughly transferable for relative changes in precipitation ΔP < (0.08*ΔT - 679 

0.18), with ΔP ∈ [-30%, 80%] and changes in temperature ΔT ∈ [-2 °C, 2 °C]. These transferability limits 680 

showed clear interdependence between precipitation and temperature and are more accurate than those 681 

presented in previous studies which revealed more squared limits (Coron et al., 2012; Dakhlaoui et al., 682 

2017). The models tend to overestimate runoff with an increase in temperature and a decrease in 683 

precipitation, and conversely. 684 

 The transferability limits were then compared to the future climate projections in seven high-resolution 685 

regional climate simulations under two radiative concentration pathway (RCP) scenarios (RCP4.5 and 686 

RCP8.5) for one medium-term horizon (2040‒2070) and one long-term horizon (2070‒2100). At the 687 

medium-term horizon, RCMs project a change in mean annual precipitation of +6.3% to -35%. At the long-688 

term horizon, the change in precipitation is expected to reach +12% to -52%. The RCMs foresee an increase 689 

in temperature ranging from +1.0 °C to +3.5 °C by the medium-term horizon and from +1.7 °C to +5.7 °C at 690 

the long-term horizon. The differences in precipitation and temperature between past and future climate are 691 

generally within the limits of modelling transferability under RCP 4.5 regardless of the horizon. However 692 

this was not the case under RCP 8.5, regardless of the horizon. Our results showed that it was possible to 693 

find a calibration sub-period within the limits of transferability for the medium-term horizon. The projected 694 

change in precipitation and temperature are translated into hydrological projections by a +0.14% to -6.2% 695 

change in mean annual runoff under RCP4.5 and a -13% to -31% change in runoff under RCP8.5 at the 696 

medium-term horizon, and respectively -16% to -29% and -37% to -57% by the long-term horizon. 697 

 Finally, the effects of the selected past calibration period on the hydrological projections were analysed. 698 

We found that models calibrated on the whole past period underestimated the impact of climate change on 699 
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mean annual runoff by 5% to 20% in comparison to their calibration on sub-periods with mean annual 700 

precipitation and temperature that are closer to future climate conditions. Another key finding was similar 701 

transferability between the different hydrological models tested. 702 

This paper thus assessed the robustness of hydrological models under climate variability and drew the 703 

limits of their parameter transferability in terms of ΔT and ΔP. We proposed to reduce the uncertainty 704 

caused by parameter instability through a better strategy of calibration. Understanding the sources of the 705 

limited transferability of the models beyond the limits identified in the present study is a complex task. 706 

However we showed that the climate conditions of the period used to calibrate hydrological models can have 707 

a significant impact on hydrological projections. Using the whole historical period for model calibration can 708 

result in systematic underestimation of the impact of climate change on surface water resources. Based on 709 

our findings, we recommend selecting a past sub-period in which the climate conditions are as close as 710 

possible to those of the future periods to be simulated in order to identify calibration parameters that can be 711 

used for hydrological projections, which could significantly reduce uncertainty. 712 

 Future studies could focus on a better understanding of parameter instability to improve RRMs 713 

robustness. For instance, the choice in the calibration period length could be further explored. As mentioned 714 

by Coron at al. (2012), choosing the sub-period length used in the sampling methodology is a difficult task: 715 

the calibration period should be long enough to allow for correct parameter determination. Several studies 716 

(see e.g. Guo et al 2018; Vaze et al., 2010) thus claimed that longer calibration periods lead to more robust 717 

RRM under climate variability, since they represent more diversified climate conditions. At the same time, 718 

using overly long periods may play against the study’s objectives as it would reduce the contrast between 719 

periods. Also, the number of independent test periods per catchment decreases when the sub-period length 720 

increases. In the present study dealing with a 30-year reference period, we have considered 8-12 year 721 

calibration sub-periods, which appeared as an acceptable compromise between the length of the period 722 

needed for calibration and the number of possible combinations between calibration-validation periods. 723 

However, we acknowledge that shorter (longer) sub-periods could provide more (less) different contrasts in 724 

terms of ΔT and ΔP while possibly increasing (reducing) model robustness. Future work could also use 725 

physically-based models to test whether the more detailed processes they attempt to represent make them 726 

less climate dependent than the conceptual models in realistically representing the multi-decadal flow. 727 

Finally, the proposed GDSST was developed to sample sub-periods of discontinuous years, which is suitable 728 
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for a semi-arid climate with a long dry summer like in Mediterranean environments. However, it may not be 729 

suitable for other climates under which the hydrological processes are strongly influenced by the preceding 730 

years and with discharge sustained by groundwater flows during dry periods, thus leading to very various 731 

initial conditions. Future studies could thus focus on adapting the GDSST to such climates. 732 
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FIGURE CAPTIONS 889 

Fig. 1 Split-sample methods according to (a) a sliding-window SST technique, (b) a random bootstrap SST technique, and (c) a 4-sub-890 

period DSST technique. 891 

Fig. 2 Processing steps to sample climate contrasted sub-periods in the proposed GDSST. Each point represents a hydrological year 892 

from the reference period. The years circled are those selected 893 

Fig. 3 Location of study basins in Tunisia and of the precipitation, temperature and streamflow stations. The main hydro-climatic 894 

characteristics are averaged over the period 1970‒2000. (Dakhlaoui et al., 2017). 895 

Fig. 4 The number of validation exercises classified in a grid of ΔT and ΔP according to four split-sample methods applied over a 30-896 

year reference period (1970‒2000) in the five studied basins: (a) sliding-window SST; (b) random bootstrap SST; (c) 4-sub-period 897 

DSST; and (d) the proposed General DSST. ΔT and ΔP represent respectively the differences in mean annual temperature and the 898 

relative difference in annual precipitation between the calibration and validation sub-periods. When a given ΔT and ΔP did not exist in 899 

the sampled sub-periods, the corresponding square in the figure is coloured grey (No available information). 900 

Fig. 5 Evaluation of model transferability as a function of changes in the mean climate variables (∆T and ∆P) between the validation 901 

and calibration sub-periods, according to differences in (a) KGE, (b) NSE and (c) VE between the receiver (RR, i.e. validation) and the 902 

donor (DR, i.e. calibration) periods, and (d) transferability limits defined by a decrease in NSE of more than 0.2 and a variation in VE 903 

of more +/-25%. Each coloured square represents the mean results of five catchments obtained with each model (GR4J, HBV and 904 

IHACRES). When a given ΔT and ΔP did not exist in the sampled sub-periods, the corresponding square in the figure is coloured grey 905 

(no information available). It should be noted that the absence of information in the top-right and bottom-left parts of the figures reflects 906 

the effect of anti-correlation between annual total precipitation and mean annual temperature for the Mediterranean semi-arid climate of 907 

northern Tunisia. 908 

Fig. 6 Raw historical RCM outputs (P and T) versus climate observations in the five study catchments over the reference period 1970‒909 

2000: (a) mean seasonal precipitation and temperature in the RCM simulations; (b) performance of the RCM simulations according to 910 

the NSE criterion in reproducing observed seasonal precipitation and temperature; and (c) relative errors between mean simulated and 911 

observed annual precipitation (expressed in %) and mean errors between mean simulated and observed annual temperature (expressed 912 

in °C). 913 

Fig. 7 Changes in (a) mean annual precipitation and (b) mean annual temperature predicted by the seven RCMs for the medium-term 914 

horizon (2040–2070) and long-term horizon (2070‒2100) under RCP 4.5 and RCP 8.5. 915 

Fig. 8 Comparison of future climate projections (∆T and ∆P) with limits to model transferability in the Melah catchment. For each 916 

RCM, RCP and horizon three points were drawn: the empty circles represent the future climate relative to the whole period, the empty 917 

squares represent the future climate relative to the most similar sub-period (MSP), and the empty triangle represent the future climate 918 

relative to the most different sub-period (MDP). The crosses indicate the mean reference climate conditions over the 30-year past period 919 
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(WHO) or over the most similar (MSP) or different (MDP) 12-year period. 920 

Fig. 9 Changes in mean annual runoff (∆Q) produced by models calibrated over the whole past period (WHO), the most similar period 921 

(MSP) to future climate and the most different period (MDP) to future climate. 922 






















