
HAL Id: hal-02497184
https://hal.science/hal-02497184v1

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Mediation for A Posteriori Log Analysis
Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, Olivier Raynaud

To cite this version:
Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, Olivier Raynaud. Semantic Me-
diation for A Posteriori Log Analysis. ARES ’19, Aug 2019, Canterbury, United Kingdom.
�10.1145/3339252.3340104�. �hal-02497184�

https://hal.science/hal-02497184v1
https://hal.archives-ouvertes.fr

Semantic Mediation for A Posteriori Log Analysis
Farah Dernaika

farah.dernaika@imt-atlantique.fr
IMT Atlantique

Cesson-Sévigné, France
Be-Studys

Geneva, Switzerland

Nora Cuppens-Boulahia
IMT Atlantique

Cesson-Sévigné, France

Frédéric Cuppens
IMT Atlantique

Cesson-Sévigné, France

Olivier Raynaud
Université Clermont-Auvergne
LIMOS CNRS UMR 6158, France

Be-Studys
Geneva, Switzerland

ABSTRACT
The a posteriori access control mode consists in monitoring actions
performed by users, to detect possible violations of the security
policy and to apply sanctions or reparations. In general, logs are
among the first data sources that information security specialists
consult for forensics when they suspect that something went wrong.
One difficult challenge we face when analyzing logs, is the multiple
log file formats. However, normalizing logs in one format needs a
lot of processing especially because log files usually contain a high
volume of data. Our study proposes then to tackle this problem,
by leaving the different log formats as they are, and retrieving
information from logs by querying them. A semantic mediator
makes it possible to inter-operate various sources of information
without modifying their internal functioning. It can be responsible
for locating data sources, to transmit queries to each source, or from
one source to another, to retrieve the queries responses and possibly
send them back to other sources. To the best of our knowledge,
semantic mediation techniques have been used to share information
from heterogeneous data sources, but they were never used in the
context of log analysis.

CCS CONCEPTS
• Behavioral Analysis for Access and Usage Control→A pos-
teriori log analysis.

KEYWORDS
Logs, Semantic Mediation, Query Rewriting, Access Policy.

ACM Reference Format:
Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, and Olivier Ray-
naud. 2019. Semantic Mediation for A Posteriori Log Analysis. In Proceedings
of the 14th International Conference on Availability, Reliability and Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7164-3/19/08. . . $15.00
https://doi.org/10.1145/3339252.3340104

(ARES 2019) (ARES ’19), August 26–29, 2019, Canterbury, United Kingdom.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3339252.3340104

1 INTRODUCTION
In certain sensitive environments, such as the health domain, where
users are generally trusted and where particular events (such as
emergencies) may occur, security controls in the corresponding
information systems must not block certain decisions and actions of
users. This could have serious consequences. Indeed, it is important
to be able to identify and trace these decisions and actions, in order
to detect possible breaches of the security policy put in place and set
responsibilities.We consider that a security policy of an information
system is a set of rules that define access control requirements
(permissions, prohibitions) relating to the actions perfomed by a
user on this information system.

Intuitively, a priori control of a security policy is a preventive
mode in which any attempt to access the information system that
violates the security policy is systematically blocked. In contrast,
the problematic of the a posteriori control is fairly recent and was
introduced by Sandro Etalle andWilliamWinsborogh [28]. The first
researches were mainly concerned with the auditing requirements
needed to implement the a posteriori control mode [21, 27]. A post-
access control mode consists in monitoring actions performed by
users, to detect possible violations of the security policy and to
apply sanctions or reparations.

Every system generally logs all events associated with its op-
erating system, running applications, and the network to which
it is connected. Recognizing the importance of logs, the National
Institute of Standards and Technology, USA issued best practices
and recommendations for computer security log management [34].
Therefore, logs are among the first data sources that information
security specialists consult for forensics when they suspect that
something went wrong.

One important issue that makes these investigations doubtful, is
that log analysis is based essentially on the expertise of the person
who performs it. For example, the system administrator can use
a generic list of security checks that is not necessarily adapted to
the target system. Thus, several efforts have been made to detect
anomalies from logs such as process mining [46], and machine

https://doi.org/10.1145/3339252.3340104
https://doi.org/10.1145/3339252.3340104

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom F. Dernaika, et al.

learning techniques [23] that were also integrated in some log anal-
ysis tools e.g Splunk [37]. Yet, these methods always require human
intervention for further analysis to decide what is really normal vs.
abnormal.
When it comes to access control, the security policy is the judge.
Consequently, it is necessary to define a reference format for the
security policy, in order to facilitate the detection of potential vio-
lations.

Another difficult challenge we face when analyzing logs, is the
multiple log file formats. This is generally due to the different log
sources such as Application server, Web server, Database, etc. Sev-
eral log normalization methods have been proposed in the literature
like Regular Expressions, Tokenization, Natural Language Process-
ing, and Custom Normalization using log analysis tools e.g logstash
[1]. However, having one format of all the logs needs a lot of pro-
cessing especially because log files usually contain a high volume of
data. In consequence, it is a matter to provide simple, efficient, and
economical means to access data logs. Ideally, the solution must
guarantee different criteria such as system autonomy, scalability,
and transparency for accessing data location and format.

Our study proposes then to tackle this problem, by leaving the
different log formats as they are, and retrieving information from
logs by querying them. A semantic mediator makes it possible to
inter-operate various sources of information without modifying
their internal functioning. It can be responsible for locating data
sources, to transmit queries to each source, or from one source to
another, to retrieve the queries responses and possibly send them
back to other sources [47]. To the best of our knowledge, semantic
mediation techniques have been used to share information from
heterogeneous data sources, but they were never used in the context
of log analysis.

In this paper, we show how semantic mediation solutions can be
used for log analysis, and then be a part of a security mechanism
to detect violations of the security policy.

In the following, Section II presents the state of the art, and
Section III talks about the preliminaries related to our subject. Next,
we expose our approach in Section IV. Section V provides the proof
of concept and Section VI opens a discussion. Finally, we conclude
in Section VII.

2 STATE OF THE ART
The motivation of using an a posteriori access control model was
brought with the difficulty of managing access control in many
environments and organizations.

Interestingly, it is a prerequisite to take into account the organi-
zation’s uses and practices, so that the deployed security solution
is not perceived as a constraint for users with a significant risk of
rejection. This might be the case for some medical organizations,
where several emergency situations may occur.

In an a posteriori access control model, a trust management
system is used to ensure that data resources are only provided to
users who are subject to penalties in case of violation. This auditing
process is conducted using audit proofs such as logs. According to
previous a posteriori access control approaches [15, 17], this kind of
security control includes three components: log process, log analysis,
and accountability.

A number of researches dealt with this type of access control. For
instance, [28] provided the APPLE framework, where users are
responsible of logging and keeping traces of their actions, and each
data item is governed by its own policy label. In [16], the authors
proposed an a posteriori auditing framework that includes observ-
ability, conclusions, and proof obligations functions, in addition to
the implementation of a proof finder and a proof checker. In the
healthcare domain, [22] outlined the needed architecture to apply
audit-based access control in electronic health record systems, and
discussed the advantages and limitations of their proposal. Other
efforts in the medical domain were [5] and [7]. These works pro-
vided a solution to perform an a posteriori analysis of security rules
using ontologies, and adopted the ATNA standard as a log format
[6]. However, it is possible to consider other log formats [32]. More-
over, non contextual security rules were modeled, and techniques
to extract necessary data from logs for policy violation detection
were proposed. Other applications of the a posteriori access control
can be also related to business processes [4], and detecting violation
of privacy protection rules in social networks [9].

In our approach, we consider that the information system’s logs
are governed by the security policy that can be represented accord-
ing to several models such as, Discretionary Access Control (DAC)
[45], Mandatory Access Control (MAC)[10], Role Based Access
Control (RBAC)[30], Attribute Based Access Control (ABAC)[33],
Organisation-based Access Control (OrBAC)[25], and which will au-
tomatically detect deviations, and fix responsibilities. Nevertheless,
these logs keep traces of all the established events in the informa-
tion system, and these events differ from one logging source to
another. Therefore, each log source may provide a different/same
type of information, in a different/same format, and/or in a dif-
ferent/same location. This fact leads to the need of extracting the
necessary information from multiple log sources, to analyze them
and detect potential violations.

On the other hand, the multiplication of data sources has made it
impossible for a monolithic system to assimilate all the information.
To overcome this problem, [47] proposed an architectural model,
where a software module is responsible for accessing a set of data
sources, while providing clients the illusion of using a single in-
formation system. This software module is called mediator. This
mediator becomes semantical when the data represents structured
knowledge with formal semantics. As a result, a semantic mediator
is based on models of knowledge representation that are able to
describe, to a certain extent, the semantics conveyed by a piece of
information and on tools to compare and unify the information se-
mantics independently of the underlying structures. It is essentially
used for Query Rewriting [13], where queries are mediated from a
single query access point to various data sources. Yet, the notion of
semantics of an entity cannot be represented in an absolute way.
It only makes sense when an entity is in relation to a particular
context that can be represented by a concept map that describes a
particular field of application. A concept is generally defined from
the content of an ontology, that is a formal description of an abstract
and simplified view of the world that one wants to represent.

As for access control, several researches were interested in us-
ing semantic mediation solutions, namely for privacy preserving
enforcement. For instance, in [11], a Privacy-Preserving Service-
Oriented Data Integration System (PAIRSE) was proposed. PAIRSE

Semantic Mediation for A Posteriori Log Analysis ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

only allows access to information to which users are entitled for a
given purpose. The queries in this project are resolved by automat-
ically selecting and composing data services, through the use of
mature query rewriting techniques to devise a novel service com-
position algorithm. Furthermore, [19] provided a solution to the
problem of allowing interoperation while preserving autonomy and
security of the local sources, by using wrappers and a mediator. The
authors used query folding to resolve the semantic heterogeneity
of the information sources, that was based on manually expressed
rules. The work in [40] proposed a Semantic Access Control model
(SAC) that extends RBAC by considering the semantics of objects
and associates permission with concepts instead of objects. Based
on this model, a mediator-based interoperation system (SACE), was
introduced to resolve semantic heterogeneity and enable access
control in one process. It was also shown that SACE incurs only
minor performance degradation in comparison to non-secure inter-
operation systems. Another effort for enabling privacy-preserving
secure semantic access control was PACT [39]. PACT allows sharing
of data among heterogeneous databases while providing privacy
and confidentiality for metadata. It is a mediator-based solution,
incorporating encrypted ontologies, encrypted ontology-mapping
tables and conversion functions, encrypted role hierarchies and
encrypted queries. The encrypted results of queries are sent di-
rectly from the answering system to the requester, bypassing the
mediator to further improve the security of the system. One of
the distinctive features of PACT is that very few changes to the
underlying databases are required. Moreover, [20] showed how the
specification and enforcement of authorization can be implemented
in federated database systems. The authors in [42] introduced a
concept-level semantic access control for the Semantic Web, that
deals with how access controlled resources names can be rewritten
using other terms subject to logical rules expressed with Web On-
tology Language (OWL) [38]. In addition, an ontology-based rights
expression language built on top of OWL to express access rights
of resources was presented in [43].

However, all these efforts used semantic mediation techniques
to enforce the a priori access control. Since we are working on
the a posteriori access control, the semantic mediation will be
used in a different way, particularly, for extracting information
from multiple log sources. This process of information extraction
from logs falls under the first component of the a posteriori access
control, and which this paper focuses on, that is “log processing”.
Therefore, we have a different view of “log processing”, to be “log
query processing”, and by “query processing” we mean “query
rewriting”.

3 PRELIMINARIES
In this section, we will provide a background on the semantic web
standards we will rely on to build our semantic mediator.

The ResourceDescription Framework (RDF) [35] is aW3C “model
for data interchange on the Web”. RDF represents real world objects
and relationships between them, by using URIs. This graph-based
representation is often called as a triple, that is the association of a
subject, predicate (i.e. property representing the relationship) and
an object.

TheWeb Ontology Language OWL [38] is a family of knowledge
representation languages based on Description Logic (DL) [8] with
a representation in RDF. It forms an ontology by defining real world
concepts, and their relationships in vocabularies. The concepts in an
OWL ontology are named as classes, and relationships as properties.
Moreover, OWL ontologies include axioms that assert constraints
over their concepts and individuals. These axioms can be realized
as simple assertions or as simple rules.

In Addition, these ontologies can be queried with SPARQL [41],
a standard query language for RDF proposed by the World Wide
Web Consortium (W3C).
A SPARQL query consists of triple patterns (RDF triples where each
of the subject, predicate and object may be a variable), conjunc-
tions, disjunctions, and optional patterns. The evaluation of the
query is based on graph pattern (a set of triple patterns) matching.
This graph pattern, located in the “WHERE” clause of the query,
is defined recursively and contains triple patterns and SPARQL
operators.

4 OUR PROPOSAL
As mentioned earlier, instead of putting all log types in one unique
format, we will adopt semantic mediation techniques for query
rewriting, to retrieve information from the different log sources.
Let S = {S1, S2, ..., Sn } be the set of log sources, and f = {f1, f2, ..., fn }
the set of their corresponding formats.

In an a posteriori access control system, policies are checked after
granting access to users. Once authenticated, access to information
will be governed by an access control policy that is contextual to
the application domain. A reconciliation between policy rules and
logged actions is then needed, in order to verify whether access
rules are fully respected or not. Therefore, queries will be sent
automatically from the defined security policy to the logs. Let P be
this policy, supposedly represented in an ontological model [31, 44].

A semantic mediator exists between the policy and the logs
for query processing. It is used to overcome the semantic hetero-
geneity of different log sources, by rewriting a request expressed
on one source schema into another request expressed on a target
schema. This rewriting process is done using previously established
semantic correspondences between the different schemas (ontolo-
gies in our case). In addition, the process is divided into two stages:
semantic query rewriting and syntactic query rewriting.

4.1 Ontologies for a conceptual view of logs
Each log format has its specific fields, which values vary from one
event log to another. Considering that these fields are well known,
static local ontologies can be created to provide a conceptual view
of log sources. These ontologies can be designed by experts to rep-
resent the field names managed by each source. Without modifying
any Si , each field name that is a part of fi , will constitute a concept
of a local ontology Oi .
Let O = {O1,O2, ...,On } be the set of local ontologies relating to the
log sources in S.
These local ontologies will contain only the main concepts of each
log and not the individuals. For example, if we have a database log
that contains the following columns: UserID, Action, and TimeL-
ogged, only these concepts will appear in the ontology and not their

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom F. Dernaika, et al.

Figure 1: Global Log Ontology OG .

values e.g “100”, “View”, and “2019-02-11 21:31:48” respectively. We
should always remember that the logs will remain intact, and that
the ontologies are used for query rewriting purposes.

Nevertheless, one global ontology is needed to represent all log
types. As log contents may vary a lot from one source to another,
they all have a common thing: all of them simply register the event
that occured, more precisely, “what happened? when? by whom?”.
Therefore, every log type essential element, the Subject, Action,
Object, and Timestamp, will constitute a concept (a class) of the
global ontology. Each class will have a relation with the LogEvent
class, in which the corresponding attributes appeared. This domain
ontology is presented in Figure 1, and is denoted as OG .

4.2 Mappings between Ontologies
To rewrite a SPARQL query, expressed overOG , to a SPARQL query
expressed over Oi , mappings between OG and Oi should be estab-
lished.
A mapping is a set of correspondences between different entities
of different ontologies. A correspondence is defined as stated in
Definition 1.

Definition 1 (Correspondence) LetO1 andO2 be two ontologies. A
correspondence µ is a triplet <e1, e2, r> where

- e1 and e2 are two alignable entities of O1 and O2 respectively.
- r ∈ R denotes an existing relation between e1 and e2.

An entity in an ontology can be a class, an object property, a
datatype property, or an individual. In our case, individuals don’t
exist in the ontologies, so there will not be any relative entities.
The relationship between entities can be an equivalence (≡) or a
subsumption (⊆). Additionally, complex expressions in the corre-
spondences between entities can be found as well, using union (∪)
and intersection (∩) operations. For example, µ: OG :Timestamp ≡

O1:Date ∪ O1:Time. As every Oi is static, mappings can be done
manually or semi-automatically to set correspondences between
each of the concepts Subject, Action, Object, Timestamp in OG , and
their relative concepts in Oi .

4.3 Query Rewriting Process
This process is governed by the security policy P, and is about send-
ing SPARQL queries, expressed in terms of the global log ontology
OG , to be transformed subsequently, semantically and syntacti-
cally, in the mediator. The resulting queries will be executed on
multiple log sources to extract information. We also consider that
the initial query QG is sent to the log sources that include the re-
quested attribute (e.g concept), to which a mapping was found in
the representing ontology.

Figure 2: Query Rewriting Process.

4.3.1 Semantic Query Rewriting. The semantic mediator takes QG
as input, decomposes it into multiple subqueries if needed, and
rewrites it (or its subqueries) to a semantically corresponding SPARQL
query Qi , for each Oi , with respect to the mappingMi that exists
betweenOG andOi . We define SP as the domain of SPARQL queries,
M as the domain of mappings between OG and Oi , and SemRW as
the function responsible of the semantic rewriting of a SPARQL
query.
SemRW : SP ×M → SP, (QG ,Mi) → SemRW(QG ,Mi) = Qi
The rewritten query is generated by replacing the graph pattern
of the initial query with the rewritten graph pattern. Variables ap-
pearing in the rewritten graph pattern are the same as the variables
that appeared in the initial graph pattern. In addition, the rewriting
process is independent of the query type (i.e., Select, Ask, etc.), the
SPARQL solution sequence modifiers (i.e., Order By, Distinct, etc.)
and the SPARQL algebra operators (i.e., Union, Optional, etc.). Since
a lot of works treated the SPARQL rewriting problem, we refer to
[36] for more rewriting rules details.

4.3.2 Syntactic Query Rewriting. In this second step, a syntactic
transformation of the rewritten SPARQL queries (each Qi) will be
achieved.
Different concepts can be used to structure the information in log
files such as relationship in the relational model, XML tag, CSV, etc.
Thus, the SPARQL query can be converted to an SQL query, XQuery,
or any other type of query depending on the existing log formats.
Let QR be the domain of all query types excluding SPARQL. We
define SynRW the function for syntactically rewriting a SPARQL
query as follows.
SynRW : SP × f → QR, (Qi , fi) → SynRW(Qi ,fi) = qi knowing that
qi is understandable by fi
For each log storage format, specific algorithms for syntactically
rewriting SPARQL should be defined. Moreover, mappingsmi be-
tween log sources and their corresponding local ontologies can also
exist depending on the rewriting algorithm, and the source’s type
format. These mappings can be manually specified.
Finally, qi will be executed on Si , and all the obtained answers will
be combined to respond to the initial QG .

The proposed solution is presented in Figure 2. Without loss of
generality, we will treat the case of two log formats in the rest of
the paper, logs in the relational model and in XML, as the corre-
sponding syntactic rewriting algorithms of SPARQL already exist
in the literature [12, 26].

Semantic Mediation for A Posteriori Log Analysis ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

4.4 Policy Reconciliation
From the obtained query results, corresponding axioms and asser-
tions will be generated. As any security policy can be represented
as a set of quadruples <subject, action, object, time>, it is possible
to establish links between the query responses and the security
attributes used to express the access control policy, to check their
compliance and detect if there was any violation. In contrast, for
an expressive security policy, fetching metadata of the extracted
information is also needed [24].

5 PROOF OF CONCEPT
5.1 Scenarios
5.1.1 Scenario 1. Two hospitals A and B use an Electronic Health
Record (EHR) application to share information between each other.
However, the server in hospital B generates logs in a database ta-
ble, while hospital A’s server generates XML logs. The two servers
record almost the same information about the users actions in the
application domain. Evidently, the users appearing in the logs of
each server correspond to the employees of the corresponding hos-
pital. In January 2019, a patient X entered the emergency room in
hospital A. In order, to access to his medical record, hospital A asks
hospital B to send her the patient’s medical history. The patient’s
designated health care professional (HCP) from hospital B sends the
patient’s medical record to hospital A. Two weeks later, this same
patient went to consult his designated HCP in hospital B, when his
HCP noticed that there was something wrong in the prescription
given from hospital A.
This fact triggered the investigation process to search for the prin-
cipal cause of the prescription mistake.

5.1.2 Scenario 2. A certain HCP in hospital B took a 4-day leave
from work for illness. In consequence, a substitute HCP was called
to replace him during this period. On his return, the HCP would
like to know which medical records have been modified during his
absence, for patients follow-up reasons.

5.1.3 Scenario 3. Going deeper in scenario 1, the reason why the
patient went to consult his HCP in hospital B, was his affection with
a very low blood pressure, in addition to a lot of vomiting. The error
in the prescription was that the medicine prescribed from hospital A
is not compatible with the patient’s previously prescribed medicine,
when he had a bacterial pneumonia, a less than one month before.

Figures 3 and 4 show excerpts of the logs generated on each hos-
pital’s server, supposedly configured by the security administrators
of each hospital. Besides, the corresponding generated ontologies
and mappings are shown in Figure 5.

5.2 Mediator Implementation
The objective of using a semantic mediator is to enforce the informa-
tion extraction from logs, in a posteriroi access control. Therefore,
we built our semantic mediator by combining different existing
open source tools.

To accomplish the semantic rewriting of a SPARQLQuery (SPARQL
- to - SPARQL), we used a publicly available toolkit for ontological
mediation over RDF [2]. This tool rewrites the initial SPARQL query,
taking into account the mapping representation, between the global

Figure 3: XML Log.

Figure 4: Database Log.

Figure 5: Mappings between ontologies.

ontology and the different local ontologies, expressed with the Ex-
pressive and Declarative Ontology Alignment Language (EDOAL)
[18]. EDOAL is a highly expressive and serializable language built
upon the Alignment Format [29], a well-known specification ex-
tensively used for representing alignments in ontology matching
tasks.
However, this toolkit has some limitations since it supports only
SELECT and CONSTRUCT queries, and is not able to rewrite the
SPARQL query when there is a complex correspondence between

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom F. Dernaika, et al.

ontologies entities using the union operator. We can overcome this
limitation by extending the tool with a function that handles this
case. For the sake of simplicity, our defined mappings are currently
limited to the exact equivalence of two different entities from two
different ontologies.

As for the syntactic query rewriting (SPARQL - to - OtherType-
OfQuery), we were interested in converting SPARQL to SQL and
XQuery for test purposes. Many efforts have been made in the lit-
erature to do this task, from which we cite [12, 26]. Nevertheless,
we relied on open source tools.
For rewriting SPARQL into SQL we used Ontop [14]. Ontop is
an open-source Ontology-Based Data Access (OBDA) system that
maps data sources to ontologies representing the domain of inter-
est, and through which querying these relational data sources is
possible. Advantages of Ontop are its compliance to all relevant
W3C recommendations (including SPARQL queries, R2RML map-
pings, and RDFS ontologies), and its support for all major relational
databases. Furthermore, each mapping axiom defined in Ontop
corresponds to a pair of source and target. The source is an SQL
query over the database, and the target is a graph pattern that con-
tains placeholders that refer to the column names mentioned in
the source query. These mapping axioms generate RDF triples, by
replacing the placeholders in the target with the values returned
when evaluating the source SQL query.
For converting SPARQL to XQuery we used the open-source SPAR-
QLToXQuery [3]. This tool handles only SPARQL SELECT queries
in three different cases: (1) the subject and object are variables, (2)
the subject is a variable and the object is a literal, and (3) the subject
is a variable and the object is an URI. The fact that it only allows
the subject of a triple pattern to be a variable, makes the Object and
Datatype properties correspond to a subchild of an element in the
XML file. Thus, the domain of the property will refer to the parent
element, and the range will correspond to its subchild value. It is
also worth to mention that the SPARQLToXQuery tool is made to
address RDF/XML data. We modified it so that it queries XML.

Figure 6 shows our open-source based semantic mediator archi-
tecture.

Figure 6: Semantic Mediator Architecture.

5.3 Query Rewriting Applied in the Scenarios
Starting with Scenario 1, and considering that the patient’s medical
id (MID) is 314160, the investigation consists of searching for the
actions done, by which subjects, in January 2019, on this patient’s
medical record. The medical record is noted as “MR314160”.
A query rewriting example for this investigation is shown in Table
1 and is explained below.

The initial SPARQL query is transformed into a conjunction of
SPARQL queries expressed in terms of the local ontologies. For in-
stance, the object properties action, subject, timestamp, object from
the global ontology are mapped to the object properties Action,
loggedInMID, timelogged, Resource and action, executedBy, execute-
dAt, executedOn from the ontologies representing the XML log
and the Database log respectively. Afterwards, each of the resulted
SPARQL queries will be syntactically transformed depending on the
underlying log structure. From SPARQL to XQuery, the transaction
class of the XML ontology refers to the transaction element of the
XML log and the object property loggedInMID refers to the subchild
loggedInMID of the element transaction.
Besides, the other SPARQL query is converted to an SQL query,
based on the mappings defined in Ontop. Excerpts of these map-
pings are shown in Figure 7.

Figure 7: Mappings defined in Ontop.

As for the second scenario, we suppose that the medical ID
(MID) of the substituting HCP is “9000000085”. Thus, the query is
about retrieving the resources that this HCP has edited. Using the
same mappings as scenario 1, the SPARQL query is subsequently
rewritten semantically and syntactically. Since both HCPs executed
their actions in Hospital B, it is obvious to not get an answer from
the source log of Hospital A. The query rewriting process of this
scenario is shown in Table 2.

We note that log, db, xml shown in the tables refer to the prefix
URI of each ontology.

Moving on to the third scenario, we consider that the logs have
a finer granularity where the medicines prescribed are logged too,
and that more complex mappings are defined between the ontolo-
gies (e.g the class Object inOG is mapped to more than one class in
Oi). The query consists then of searching for the doctors who pre-
scribed the conflicting medicines, medicine 1 (med1) and medicine
2 (med2), for this patient, on a 2 month period. We also consider
that a query decomposition layer is added to the mediator, which
will be used before performing any rewriting. Therefore, the corre-
sponding query of this investigation will be:
SELECT ?x ?y ?z WHERE {

?t log:action ?x.

Semantic Mediation for A Posteriori Log Analysis ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

?t log:object log:MR314160.

{?t log:object log:med1.}

UNION

{?t log:object log:med2.}

?t log:timestamp ?z.

FILTER regex(?z, “^(2018-12|2019-01)”)}

And will be decomposed into two queries, each one relating to one
medicine: SPARQL1 ∪ SPARQL2 where SPARQLk=
SELECT ?x ?y ?z WHERE {

?t log:action ?x.

?t log:object log:MR314160.

?t log:object log:medk.
?t log:timestamp ?z.

FILTER regex(?z, “^(2018-12|2019-01)”)}

These resulting subqueries will be rewritten according to the dif-
ferent defined mappings and will be sent to each log source, that
has the concept medicine. Due to space limitation, the whole query
rewriting process of this scenario is not shown, but it will be similar
to the one shown in Table 1.

The obtained answers can form quadruples <subject, action, object,
time>, to compare them with the rules defined in the security policy,
and detect possible violations. However, if the security policy is
modeled with a higher level of expressivity, for example, according
to ABAC or OrBAC, we will need to enrich these results with more
attributes. For instance, in scenario 1, the LDAP directory can be
consulted to check the roles associated with the extracted MIDs.
Therefore, a possible violation can be that the medical record of
the patient was consulted and edited by a Lab Technician, who is
not supposed to be allowed to do that. As for scenario 2, we can
fetch in a database to see if the modified medical records are not
related to other than the patients who had an appointment during
that period of time.
Finally, decisions can be taken to apply sanctions and reparations
or not.

6 DISCUSSION
Every a posteriori access control is built on the base of log pro-
cessing, more precisely, extracting information from logged data. It
is a very important step, since it is the starting point from which
the analysis begins, to lead to decisions and set responsibilities.
Thus, the use of semantic mediation techniques to accomplish this
mission offers many advantages that we detail below.

To start with, it is economical in terms of processing. Unlike the
existing log management tools, our approach neither parses nor
filters provenance logs. The only process it has is the Query Rewrit-
ing process, which is quite fast since only one query is handled at a
time. The duration of query rewriting and execution is in the range
of 300 ms, which is evidently less than any parsing time that varies
relatively to the log file size.

Next, it provides scalability. Our model is scalable since each data
source is autonomous and independent from the other sources. New
data sources can be added to the model. As the use case showed
how the approach can work for both XML and Database logs, other
log formats could be considered. For instance, for a CSV file, we will
need to implement a SPARQL to R rewriting algorithm to fulfill the
need. However, this current architecture can support CSV files since

they can be queried with SQL using specific (java) libraries. One
limitation can be that this approach is only suitable for structured
or semi-structured log files, since ontologies and mappings have to
be defined in advance.

Moreover, the use of SPARQL as a query language enables us to
reap the benefits of federation, thereby it makes all the log sources
look like one big database. Representing the different log formats in
RDF serves as a standard lingua franca (least common denominator).
As such, querying RDF with SPARQL hides the details of a source’s
particular data structure. This reduces costs and increases robustness
of our model that issues queries. Furthermore, SPARQL enables
specific questions to be sent to the logs to retrieve directly the
precised information instead of sending queries with limited number
of operations to get an answer.

Besides, the use of the semantic mediation solves the problem of
the disparity of the multiple log sources, and makes them interop-
erable.

Last but not least, our proposal satisfy the requirements of the
environment in which the a posteriori access control is deployed,
such as the end-to-end policy enforcement. It is an end-to-end like
question/answer system, from the security policy to the logs. All the
query treatments are done transparently in the semantic mediator.

7 CONCLUSIONS AND FUTUREWORKS
In this paper, we proposed a new solution for an a posteriori log
analysis based on a semantic mediator. We pictured how it can
enforce information extraction from multiple log sources. Besides,
we built our approach from existing open source tools. Despite
the limitations that they imposed, we showed how our idea can be
efficient and economical by testing it on both Database and XML
logs.

In connection with this study, our future works consist of enrich-
ing the obtained results by fetching information from other types
of data sources (other than logs), hence, it will be possible to detect
violations of an expressive security policy (e.g ABAC or OrBAC).
In addition to the violation detection mechanism.

8 ACKNOWLEDGMENTS
This research is funded by be-studys, Meyrin 123, c/o BDO SA,
1219 Châtelaine, GENEVE, a mark of the group be-ys dedicated to
research and innovation.

REFERENCES
[1] [n. d.]. Elasticsearch Logstash. https://www.elastic.co/products/logstash.
[2] [n. d.]. Mediation toolkit. https://github.com/correndo/mediation.
[3] [n. d.]. SparqlToXQuery. https://sourceforge.net/projects/sparqltoxquery/.
[4] Mohamed Karim Aroua and Belhassen Zouari. 2012. Modeling of A-Posteriori

Access Control in Business Processes. In 2012 IEEE 36th Annual Computer Software
and Applications Conference Workshops. IEEE, 403–408.

[5] Hanieh Azkia, Nora Cuppens-Boulahia, Frédéric Cuppens, and Gouenou Coa-
trieux. 2010. Reconciling IHE-ATNA profile with a posteriori contextual access
and usage control policy in healthcare environment. In 2010 Sixth International
Conference on Information Assurance and Security. IEEE, 197–203.

[6] Hanieh Azkia, Nora Cuppens-Boulahia, Frédéric Cuppens, and Gouenou Coa-
trieux. 2011. A posteriori access and usage control policy in healthcare envi-
ronment. Journal of information assurance and security (JIAS) 6, 192 (2011),
389–397.

[7] Hanieh Azkia, Nora Cuppens-Boulahia, Frédéric Cuppens, and Gouenou Coa-
trieux. 2012. Ontology based log content extraction engine for a posteriori
security control. Studies in health technology and informatics 180 (2012), 746–750.

https://www.elastic.co/products/logstash
https://github.com/correndo/mediation
https://sourceforge.net/projects/sparqltoxquery/

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom F. Dernaika, et al.

Table 1: SPARQL Rewriting Process in Scenario 1

Original SPARQL Query
SELECT ?x ?y ?z WHERE

{?t log:action ?x;
log:subject ?y;

log:timestamp ?z.
Filter regex(?z, “^2019-01”)
?t log:object log:MR314160. }

Rewritten SPARQL with XML Mappings Rewritten SPARQL with DB Mappings
SELECT ?x ?y ?z WHERE
{ ?t xml:Action ?x ;
xml:loggedInMID ?y ;
xml:timelogged ?z ;
xml:Resource xml:MR314160 .
FILTER regex(?z, “^2019-01”)|
}

SELECT ?x ?y ?z WHERE
{ ?t db:action ?x;
db:executedBy ?y ;
db:executedAt ?z;
db:executedOn db:MR314160 .
FILTER regex(?z, “^2019-01”)
}

Generated XQuery Generated SQL Query
import module namespace rdffunc;
let $ts := doc(’log.xml’)//*
for $t in $ts
let $xs:=$t/Action
for $x in $xs
let $ys:=$t/loggedInMID
for $y in $ys
let $zs:=$t/timelogged
for $z in $zs
where $t/Resource=‘MR314160’ and matches($z,“^2019-01”)
return <result>
{rdffunc:objectResult($x,$xs)}
{rdffunc:objectResult($y,$ys)}
{rdffunc:objectResult($z,$zs)}
</result>

Select Action, FirstMID, Time
FROM table_log
WHERE Time REGEXP ‘^2019-01’
AND Resource= ‘MR314160’;

Query Response Query Response
<result>
<literal>VIEW</literal>
<literal>9000000003</literal>
<literal>2019-01-09 10:03:51</literal>
</result>
<result>
<literal>VIEW</literal>
<literal>5000000001</literal>
<literal>2019-01-10 12:24:38</literal>
</result>

db:VIEW,
db:9000000013,
db:2019-01-09 10:15:01,

db:SEND,
db:9000000013,
db:2019-01-09 10:15:13,

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-Schneider, and
Daniele Nardi. 2003. The description logic handbook: Theory, implementation and
applications. Cambridge university press.

[9] Leila Bahri, Barbara Carminati, and Elena Ferrari. 2015. CARDS-collaborative
audit and report data sharing for a-posteriori access control in DOSNs. In 2015
IEEE Conference on Collaboration and Internet Computing (CIC). IEEE, 36–45.

[10] D Bell, Leonard J LaPadula, M Ben-Ari, G Benson, G Benson, B Appelbe, I Akyildiz,
C Date, D Denning, P Denning, et al. 1988. Secure computer system unified
exposition and multics interpretation. Commun. ACM 1 (1988), 271–280.

[11] Djamal Benslimane, Mahmoud Barhamgi, Frédéric Cuppens, Franck Morvan,
Bruno Defude, Ebrahim Nageba, Michael Mrissa, Francois Paulus, Stephane
Morucci, Nora Cuppens, et al. 2013. PAIRSE: a privacy-preserving service-
oriented data integration system. ACM SIGMOD Record 42, 3 (2013), 42–47.

[12] Nikos Bikakis, Chrisa Tsinaraki, Ioannis Stavrakantonakis, Nektarios Giolda-
sis, and Stavros Christodoulakis. 2015. The SPARQL2XQuery interoperability

framework. World Wide Web 18, 2 (2015), 403–490.
[13] Béatrice Bouchou and Cheikh Niang. 2014. Semantic mediator querying. In Pro-

ceedings of the 18th International Database Engineering & Applications Symposium.
ACM, 29–38.

[14] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Da-
vide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. 2017. Ontop:
Answering SPARQL queries over relational databases. Semantic Web 8, 3 (2017),
471–487.

[15] JG Cederquist, R Conn, MAC Dekker, Sandro Etalle, and JI Den Hartog. 2005. An
audit logic for accountability. In Sixth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY’05). IEEE, 34–43.

[16] JG Cederquist, RJ Corin, MAC Dekker, Sandro Etalle, Jeremy den Hartog, and
Gabriele Lenzini. 2006. The audit logic: Policy compliance in distributed systems.
(2006).

Semantic Mediation for A Posteriori Log Analysis ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Table 2: SPARQL Rewriting Process in Scenario 2

Original SPARQL Query
SELECT ?x WHERE

{?t log:action log:EDIT;
log:subject log:9000000085;

log:object ?x. }
Rewritten SPARQL with XML Mappings Rewritten SPARQL with DB Mappings
SELECT ?x WHERE
{ ?t xml:Action xml:EDIT ;
xml:loggedInMID xml:9000000085;
xml:Resource ?x .
}

SELECT ?x WHERE
{ ?t db:action db:EDIT;
db:executedBy db:9000000085;
db:executedOn ?x .
}

Generated XQuery Generated SQL Query
import module namespace rdffunc;
let $ts := doc(’log.xml’)//*
for $t in $ts
let $xs:=$t/Resource
for $x in $xs
where $t/Action=‘EDIT’ and $t/loggedInMID=’9000000085’
return <result>
{rdffunc:objectResult($x,$xs)}
</result>

Select Resource
FROM table_log
WHERE Action=‘EDIT’
AND FirstMID=‘9000000085’;

Query Response Query Response
NO ANSWER db:MR322660,

[17] Ricardo Corin, Sandro Etalle, Jeremy den Hartog, Gabriele Lenzini, and I Staicu.
2004. A logic for auditing accountability in decentralized systems. In IFIP World
Computer Congress, TC 1. Springer, 187–201.

[18] Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos.
2011. The alignment API 4.0. Semantic web 2, 1 (2011), 3–10.

[19] Steven Dawson, Shelly Qian, and Pierangela Samarati. 2000. Providing security
and interoperation of heterogeneous systems. In Security of Data and Transaction
Processing. Springer, 119–145.

[20] Sabrina De Capitani di Vimercati and Pierangela Samarati. 1997. Authorization
specification and enforcement in federated database systems. Journal of Computer
Security 5, 2 (1997), 155–188.

[21] M A C Dekker and S Etalle. 2007. Audit-Based Access Control for. Electronic
Notes in Theoretical Computer Science 168, 1 (2007), 221–236. https://doi.org/10.
1016/j.entcs.2006.08.028

[22] Mari Antonius Cornelis Dekker and Sandro Etalle. 2007. Audit-based access
control for electronic health records. Electronic Notes in Theoretical Computer
Science 168 (2007), 221–236.

[23] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog : Anomaly
Detection and Diagnosis from System Logs through Deep Learning. (2017),
1285–1298.

[24] Gilles Dubois and Danielle Boulanger. 2000. A Multi-agent system using seman-
tic metadata for the cooperation among multiple information sources. In 4th
European Conf. on Principles and Practice of Knowledge Discovery in Databases.

[25] Anas Abou El Kalam, Rania El Baida, Philippe Balbiani, Salem Benferhat, Frédéric
Cuppens, Yves Deswarte, Alexandre Miege, Claire Saurel, and Gilles Trouessin.
2003. Or-BAC: un modèle de contrôle d’accès basé sur les organisations. Cahiers
francophones de la recherche en sécurité de l’information 1 (2003), 30–43.

[26] Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji, and Z Meral Ozsoyoglu.
2009. A complete translation from SPARQL into efficient SQL. In Proceedings
of the 2009 International Database Engineering & Applications Symposium. ACM,
31–42.

[27] Sandro Etalle, Fabio Massacci, and Artsiom Yautsiukhin. [n. d.]. The Meaning of
Logs. ([n. d.]).

[28] Sandro Etalle and William H Winsborough. [n. d.]. A Posteriori Compliance
Control Categories and Subject Descriptors. ([n. d.]), 11–20.

[29] Jérôme Euzenat. 2004. An API for ontology alignment. In International Semantic
Web Conference. Springer, 698–712.

[30] David Ferraiolo, Janet Cugini, and D Richard Kuhn. 1995. Role-based access
control (RBAC): Features and motivations. In Proceedings of 11th annual computer
security application conference. 241–48.

[31] Tim Finin, Anupam Joshi, Lalana Kagal, Jianwei Niu, Ravi Sandhu, William
Winsborough, and Bhavani Thuraisingham. 2008. R OWL BAC: representing
role based access control in OWL. In Proceedings of the 13th ACM symposium on
Access control models and technologies. ACM, 73–82.

[32] Bill Gregg, Horacio D’Agostino, and Eduardo Gonzalez Toledo. 2006. Creating
an IHE ATNA-based audit repository. Journal of digital imaging 19, 4 (2006),
307–315.

[33] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,
Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen
Scarfone, et al. 2013. Guide to attribute based access control (abac) definition and
considerations (draft). NIST special publication 800, 162 (2013).

[34] Karen Kent and Murugiah Souppaya. 2006. Guide to computer security log
management. NIST special publication 92 (2006).

[35] Graham Klyne and Jeremy J Carroll. 2006. Resource description framework (RDF):
Concepts and abstract syntax. (2006).

[36] Konstantinos Makris, Nektarios Gioldasis, Nikos Bikakis, and Stavros
Christodoulakis. 2010. Sparql rewriting for query mediation over mapped on-
tologies. Technical University of Crete (2010).

[37] Michael Mayhew, Michael Atighetchi, Aaron Adler, and Rachel Greenstadt. [n.
d.]. Use of Machine Learning in Big Data Analytics for Insider Threat Detection.
([n. d.]).

[38] Deborah L McGuinness, Frank Van Harmelen, et al. 2004. OWL web ontology
language overview. W3C recommendation 10, 10 (2004), 2004.

[39] Prasenjit Mitra, Chi-Chun Pan, Peng Liu, and Vijayalakshmi Atluri. 2006.
Privacy-preserving semantic interoperation and access control of heterogeneous
databases. In Proceedings of the 2006 ACM Symposium on Information, computer
and communications security. ACM, 66–77.

[40] Chi-Chun Pan, Prasenjit Mitra, and Peng Liu. 2006. Semantic access control for
information interoperation. In Proceedings of the eleventh ACM symposium on
Access control models and technologies. ACM, 237–246.

[41] Eric Prud, Andy Seaborne, et al. 2006. Sparql query language for rdf. (2006).
[42] Li Qin and Vijayalakshmi Atluri. 2003. Concept-level access control for the

semantic web. In Proceedings of the 2003 ACM workshop on XML security. ACM,
94–103.

[43] Yuzhong Qu, Xiang Zhang, and Huiying Li. 2004. OREL: an ontology-based
rights expression language. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters. ACM, 324–325.

[44] Nitin Kumar Sharma and Anupam Joshi. 2016. Representing attribute based
access control policies in owl. In 2016 IEEE Tenth International Conference on
Semantic Computing (ICSC). IEEE, 333–336.

https://doi.org/10.1016/j.entcs.2006.08.028
https://doi.org/10.1016/j.entcs.2006.08.028

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom F. Dernaika, et al.

[45] Sabrina De Capitani di Vimercati. 2011. Discretionary Access Control Policies
(DAC). Springer US, Boston, MA, 356–358. https://doi.org/10.1007/978-1-4419-
5906-5_817

[46] Jacques Wainer. [n. d.]. Anomaly Detection using Process Mining. ([n. d.]), 1–13.
[47] Gio Wiederhold. 1992. Mediators in the architecture of future information

systems. Computer 25, 3 (1992), 38–49.

https://doi.org/10.1007/978-1-4419-5906-5_817
https://doi.org/10.1007/978-1-4419-5906-5_817

	Abstract
	1 Introduction
	2 State of the Art
	3 Preliminaries
	4 Our Proposal
	4.1 Ontologies for a conceptual view of logs
	4.2 Mappings between Ontologies
	4.3 Query Rewriting Process
	4.4 Policy Reconciliation

	5 Proof Of Concept
	5.1 Scenarios
	5.2 Mediator Implementation
	5.3 Query Rewriting Applied in the Scenarios

	6 Discussion
	7 Conclusions and Future Works
	8 Acknowledgments
	References

