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Lack of controllability of the viscous Burgers equation.
Part I: The L∞ setting.

Boris Andreianov, Shyam Sundar Ghoshal and Konstantinos Koumatos

Abstract. We contribute an answer to a quantitative variant of the question raised in [Coron, Con-
temp. Math 2007] concerning the controllability of the viscous Burgers equation ut+(u2/2)x = uxx

for initial and terminal data prescribed for x ∈ (0, 1). We investigate the (non)-controllability under
the additional a priori bound imposed on the (nonlinear) operator that associates the solution to
the terminal state. In contrast to typical techniques on the controllability of the viscous Burgers
equation invoking the heat equation, we combine scaling and compensated compactness arguments
along with observations on the non-controllability of the inviscid Burgers equation to point out
wide sets of terminal states non-attainable from zero initial data by solutions of restricted size. We
prove in particular that, given L ≥ 1, for sufficiently large |C| and T < (1 + ∆)/|C| (where ∆ > 0
depends on L), the constant terminal state u(·, T ) := C is not attainable at time T , starting from
zero data, by weak solutions of the viscous Burgers equation satisfying a bounded amplification
restriction of the form ‖u‖∞ ≤ L|C|. Our focus on L∞ solutions is due to the fact that we rely
upon the classical theory of Kruzhkov entropy solutions to the inviscid equation. In Part II of this
paper, we will extend the non-controllability results to solutions of the viscous Burgers equation
in the L2 setting, upon extending the Kruzhkov theory appropriately.

MSC (2010): 93B03, 35L65, 35D30, 47J35.

Keywords: Burgers equation, exact controllability, scaling, compensated compact-
ness, backward characteristics

1. Introduction

We are concerned with the controllability of the viscous Burgers equation

ut +
(
u2/2

)
x

= uxx in D, (BE)

where (x, t) ∈ D = R× (0, T ) (“the strip setting”) or (x, t) ∈ D = (0, 1)× (0, T ) (“the box setting”),
with a given T > 0. Our primary motivation comes from [13], where J.-M. Coron asked the following
question (Open Problem 4). Let T > 0 and C ∈ R \ {0}.

Question: Does there exist u ∈ L2((0, 1)× (0, T )) satisfying (BE)
such that for all x ∈ (0, 1), u(·, 0) = 0 and u(·, T ) = C ?

(Q)

With the method explored in this paper and in its sequel [6], we focus on non-controllability issues
under additional “bounded amplification” assumptions, which essentially mean that the size of the
desired solutions is limited relative to the size of the target datum; this can be witnessed through the
“amplification factor” L present in the main statements. The difference with the original question is
highlighted in the sequel (see Remark 1.1).
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1.1. Overview of the results of the paper, and further investigations

In the present paper, we bring a partial negative answer to (Q) (which counterbalances the partial
positive answers given in [13, 15, 21], see § 1.2 below) in the L∞ setting instead of the original L2

setting. We highlight the existence of many triples (M,C, T ), with 0 < |C| ≤ M and 0 < T ≤ 1/|C|,
such that the target state uT = C is not reachable by solutions of (BE) satisfying ‖u‖∞ ≤M .

We find it convenient to introduce L = M/|C| as an amplification factor; we show that for any
given L ≥ 1 there exist pairs (C, T ), with roughly speaking |C|T ≤ 1, such that the system has no
solution u ∈ L∞((0, 1) × (0, T )) satisfying the bound ‖u‖∞ ≤ L|C|. More generally, we point out
several families of weakly-∗ compact sets of states uT ∈ L∞ not attainable at time T , starting from
zero data, by solutions of (BE), under the a priori amplification assumption ‖u‖∞ ≤ L‖uT ‖∞. This
happens for small values of T and somewhat large (but smaller than T−1) values of C. The details
can be found in Section 3 (Corollary 3.16 and more generally, Theorem 3.12). Refinements concerning
the non-sharpness of the restriction CT ≤ 1 and the case of the strip domain are given in Section 4.

Note that in the sequel [6], we will extend this negative answer – with the ideas developed
in this paper and under the adequate amplification assumption – to question (Q) in its original L2

setting, both for the strip problem and for the box problem. This will require the ad hoc amplification
assumptions and an additional L2 − L3

loc regularisation assumption on the solutions. The uniqueness
theory for unbounded solutions of scalar conservation laws, necessary for the sake of such an extension,
will be developed on purpose.

Remark 1.1. Following the arguments developed in the paper, one can see that they apply as well to the
classical heat equation replacing the viscous Burgers equation. Indeed, the key scaling observation, the
different bounds on solutions, and the underlying non-attainability results of the inviscid case carry on
to this linear setting. Here, one can clearly see that the question we answer negatively is different from
the mere question of controllability. Indeed, it is classical that the heat equation on an interval is null
controllable at any time by boundary controls starting from any initial datum (cf. [19]), which by the
linearity means that all constant states are controllable starting from zero initial datum. It is clear that
the “cost” of the controls, which can be quantified by amplification factor L as in our assumptions,
increases as the desired control time decreases. This is why we should interpret the results obtained in
this paper as a quantitative version (with limited “costs”) of the original Coron’s question (Q). The
issue of (non)-controllability of constant states C at arbitrarily small times T for an unbounded cost
remains open; the example of the heat equation shows that our method is not suitable for answering
negatively this qualitative question.

1.2. The state of the art on controllability of the viscous Burgers equation

Several positive results on exact controllability of constant states for the viscous Burgers equation
exist in the literature. One such result is the following:

Theorem 1.2. (See [13, 15]) Let T > 0. There exists N = N(T ) > 0 such that for every |C| ≥ N ,
there exists u ∈ L2((0, 1)× (0, T )) satisfying (BE) and such that u(·, 0) = 0, u(·, T ) = C for x ∈ (0, 1).

Another related result in the space L∞((0, 1)× (0, T )) can be found in Glass and Guerrero [21]
where the authors consider boundary controls for the viscous Burgers equation with small dissipation.
They prove that any nonzero constant state C can be reached after sufficiently large time. As an
immediate consequence of [21], one has the following theorem:

Theorem 1.3. (See [21]) There exist N > 0 and β ≥ 1 such that for every |C| > N , there exists
u ∈ L∞((0, 1) × (0, T )) satisfying (BE) and such that u(·, 0) = 0, u(·, T ) = C for x ∈ (0, 1) and all
T > β/|C|.

In particular, Glass and Guerrero [21] showed that large constant states can be reached in large
time by two boundary controls for viscous Burgers equation with small viscosity coefficient. Later
Leautaud in [25] extended this result to scalar viscous conservation laws with more general fluxes.
Null-controllability (Marbach, [26]) and small time local controllability (Fursikov and Imanuvilov,
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[20]) have been achieved with source and one boundary control. It is worth mentioning the result of
Guerrero and Imanuvilov [22] where the authors deal with (BE) and two boundary controls and show
that exact null controllability indeed fails for small time. Also, they prove a negative result to null
exact controllability even for large time. In [18] Fernández-Cara and Guerrero have given an estimate
of the time of null controllability depending on the L2-norm of the initial data.

On the other hand, the problem has also been investigated under one control and we refer the
reader to [20, 18] and references therein.

Regarding the exact controllability for the inviscid Burgers equation (more generally convex
conservation laws or even to some particular hyperbolic systems of conservation laws), one can use
tools, such as backward characteristics, in order to construct suitable initial and boundary controls.
The theory is nevertheless very delicate due to the occurrence of shocks. For more details, we refer
the reader to [1, 2, 4, 7, 23, 28].

In Theorems 1.2 and 1.3 stated above, there is clearly a gap in the range of pairs (C, T ) for
which the question has not been resolved. Specifically, the range T < 1/|C| is not covered by these
results and we stress the fact that at the level of the inviscid Burgers equation, such states cannot be
controlled; see [1] and Propositions 3.7 and 4.2 below. This has been the motivation for the present
work in which we provide a partial negative result to question (Q) precisely for such pairs (C, T ),
along with some generalizations directly coming from the techniques we employ.

1.3. Outline of the paper, key ideas and techniques

In this paper, we interpret question (Q) as an initial-value problem on D = R × (0, T ) or as an
underdetermined initial-value problem on D = (0, 1) × (0, T ) for solutions understood in the appro-
priate weak sense (see Section 2 for definitions) and under adequate limitations on the L∞ size of
the solution relative to the size of the target state. We give a series of negative answers for couples
(C, T ) satisfying T ≤ 1/|C| (and sometimes T < (1 + ∆)/|C| with some ∆ > 0), for C sufficiently
large. More generally, such results concern sufficiently large data and the accordingly small times
(uT (·), T ) ∈ BV ((0, 1))× (0,+∞) satisfying properties of the type (NA) (see Proposition 3.7); precise
statements are given in Section 3 (see also [6] for the L2 versions of the statements). Our method relies
on a scaling argument which reduces (BE) to the viscous Burgers equation

uεt +
( (uε)2

2

)
x

= εuεxx,

while leaving invariant the product TuT (·) for states uT (·) attainable at time T .

Note that the scaling argument is restricted to the quadratic non-linearity. It is appropriate e.g.
to the Navier-Stokes equation and the corresponding inviscid (Euler) equations (see, e.g., [14] for
examples of control problems), which are far beyond the scope of this paper. However, the extension
to the L2 setting ([6]) of the method we develop here for L∞ solutions (Sections 3,4) is motivated
in particular by the fact that the L∞ setting, most natural for scalar problems, is not natural for
systems.

The conclusion on non-controllability for the viscous Burgers equation follows, upon a careful
use of the scaling (Zoom) of solutions of (BE) with ε = T (see Section 3), i.e. for small times T , from
uniform in ε bounds ensuring compactness of sequences of solutions (uε), and from rather elementary
non-controllability results for the inviscid Burgers equation

ut +
(u2

2

)
x

= 0.

The latter is understood in the standard framework of Kruzhkov entropy solutions (Sections 3 and
4) or in the framework of unbounded entropy solutions described for this purpose ([6]) . An a priori
bound on solutions is required in our argument which we interpret as an amplification assumption
limiting the size of the solutions in terms of the size of the target data. The core arguments are given in
Section 3, in the simplest setting; Section 4 presents more technical extensions of the results, achieved
with the same strategy of proof (see [6] for further technical extensions).
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We would like to emphasise that, unlike a large number of works on the controllability of the
viscous Burgers equation which invoke the heat equation via the Hopf-Cole transformation, our work is
not only motivated by, but also based on the inviscid equation through a vanishing viscosity argument.
We remark that for the inviscid equation, the most classical solution space is L∞ and therefore the
focus of this paper is on L∞ solutions of the viscous Burgers equation. In Part II of this paper ([6]), we
will extend the arguments to L2 solutions by refining the underlying solution concept slightly beyond
the classical Kruzhkov setting.

2. Precise setting for question (Q)

In addition to the aforementioned interpretations of the original question (Q) raised in [13] (the
quantitative “bounded amplification” assumptions, the choice of L∞ or L2 functional framework, the
choice (0, 1) or R for the space domain), we also need to make explicit the underlying notion of solution
to the viscous Burgers equation. Let us detail the framework(s) we explore.

We discuss the two following situations:{
ut +

(
u2/2

)
x

= uxx in (0, 1)× (0, T ),
u(·, 0) = 0 and u(·, T ) = uT for x ∈ (0, 1),

(Pbbox)

and 
ut +

(
u2/2

)
x

= uxx in R× (0, T ),
u(·, 0) = u0 with u0 = 0 for x ∈ (0, 1),
and u(·, T ) = uT for x ∈ (0, 1).

(Pbstrip)

If one puts aside the assigned terminal conditions for a moment, we recognize in (Pbstrip) a standard
Cauchy problem. So the question is a particular instance of control by the initial data (which we will
instead refer to as attainability in the sequel of the paper). Similarly, one possible interpretation of
(Pbbox) would be in terms of boundary control in the Cauchy-Dirichlet (or even Cauchy-Neumann)
setting; however, we prefer to consider (Pbbox) as an underdetermined problem with solutions defined
locally in (0, 1) × [0, T ] (attention is paid to the initial and terminal times t = 0, T but not to the
boundaries x = 0, 1). Indeed, prescribing boundary traces of the solution u or of the convection-
diffusion flux u2/2− ux at x = 0, 1 would restrict the generality of problem (Pbbox).

It is obvious that a solution u to the problem (Pbstrip) in the strip can be seen as well as a
solution to (Pbbox): it is enough to consider its restriction u|(0,1)×(0,T ) to the box. Therefore it is
more difficult to attain a given state uT in the strip setting (Pbstrip) than in the box setting (Pbbox).
Because our focus in this paper is on non-attainability (i.e. on the impossibility to reach the desired
states at desired times), we see (Q) in the strip setting (Pbstrip) as a simpler question than the same
question in its box setting (Pbbox).

Next, although question (Q) is originally about L2 solutions of (BE), our techniques primarily
drive us to replace L2 by L∞ (see Section 3). In order to get closer to the original L2 setting we need
to rely upon a theory of unbounded (more precisely, L2) entropy solutions to the inviscid Burgers
equation that we will develop in [6]. At this point, insufficiency of the L2 uniqueness theory for the
Cauchy-Dirichlet problem will push us to consider also the L3((0, 1)× (0, T )) solutions of the viscous
Burgers equation.

In our non-attainability results, we will not merely ask that the solutions belong to some Lp

spaces, but also that they obey some uniform bounds that we state in terms of “amplification”. The
amplification constants are denoted by L throughout the paper; their role is to control the size of the
solution in terms of the size of the target data uT .

Finally, the precise meaning of what a “solution” of (BE) is in our paper is different from the
one found in [13], where solutions are meant in the sense of distributions (usually called “very weak”
solutions). Our approach requires that the solution satisfy a local L2 in time, H1 in space, energy
estimate which means that it should be a weak solution (sometimes called variational solution or
finite energy solution) locally in D; moreover, the entropy inequalities of parabolic conservation laws
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are required. Because for non-degenerate parabolic conservation laws weak formulation implies the
entropy formulation (see e.g. [12]), in the sequel we use the term weak solution of the viscous Burgers
equation (supplemented with initial and terminal data) meaning the following.

Definition 2.1 (Adopted notion of solution for the viscous Burgers equation).
Let D = I × (0, T ) with I = (0, 1) or I = R. Let u0 and uT belong to L2

loc(I). A function u ∈ L2(D) is
called a weak solution of (BE) with initial data u0 and terminal data uT if u ∈ L2(0, T ;H1

loc(I)) and
for all ξ ∈ C∞c (I × [0, T ]), there holds∫ T

0

∫ 1

0

(
uξt +

u2

2
ξx − uxξx

)
dx dt+

∫
R
u0(x)ξ(x, 0) dx−

∫
R
uT (x)ξ(x, T ) dx = 0 (1)

and, furthermore, for all ξ ∈ C∞c (I × [0, T )), ξ ≥ 0, for all k ∈ R there holds

−
∫ T

0

∫ 1

0

(
|u− k|ξt + |u− k|u+ k

2
ξx − |u− k|xξx

)
dxdt−

∫
R
|u0 − k|ξ(x, 0) dx ≤ 0. (2)

In particular, solutions to (Pbbox) or (Pbstrip) are understood in the sense of Definition 2.1 in the
sequel; they will be supplemented with additional bounds in Lp(D) for different choices of p.

Let us stress that the more usual, in the context of such definitions, L∞ assumption on u is not
needed for the above definition to make sense, indeed, under the L2

loc assumptions on u, ux all terms
in (1),(2) are well defined.

Remark 2.2. The L2
loc regularity of ux assumed in Definition 2.1 implies in particular that the solution

satisfies variants of classical chain rules in space (following from the Sobolev regularity of u in space),
like |u− k|x = sign(u− k)ux, and chain rules in time (see e.g. [3, Lemma 2.3]); these chain rules are
necessary technical ingredients of the entropy formulation (2). In particular, local L1 estimates on the
term |ux|2 (we refer to the proof of Lemma 3.10), obtained by formally multiplying the equation by u,
are justified using chain rules.

In this respect, let us recall that classical solutions to the Burgers equation are related to classical
solutions of the heat equation by the Hopf-Cole transformation (see, e.g., [17]) which is a nonlinear
change of the unknown; the equivalence relies on chain rules for derivatives. While considering very
weak solutions to (BE) as suggested in [13], we do not have any kind of chain rule at our disposal;
thus not only the classical regularity cannot be derived from the formal link with the heat equation, but
also the entropy formulation cannot be guaranteed. For this reason, we cannot rely upon the notion of
merely distributional (very weak) solutions to (BE).

As a matter of fact, we could go beyond the weak L2
loc setting and even the very weak setting,

by considering L1 data and the appropriate notions of solution developed in the literature.

Remark 2.3. Recall that the L1 setting is sharp for inviscid conservation laws provided the solutions
are interpreted either in abstract semigroup terms (like in [5]) or in the renormalized setting (like in
[10, 30]) or else, in the setting of the kinetic formulation (see [29] and references therein). Because
all these solutions can be seen as pointwise limits of Kruzhkov entropy solutions for truncated data
(like the unbounded entropy solutions we construct in the sequel [6] of this paper, the results can be
extended to the L1 setting similarly to what is done in [6] for the L2 setting. Let us remark that, for
example, the notion of kinetic solution can be applied in parallel to the viscous and to the inviscid
Burgers equations. In general, these solutions are not even solutions in the sense of distributions (very
weak solutions) because u2/2 may fall out of L1

loc, or at least their L1
loc regularity is far from being

straightforward ([32]). This line of investigation would provide yet another functional and solution
framework for interpretation of question (Q).

Making precise the notion of solution strongly impacts the results we can prove concerning
question (Q); we refer in particular to the final discussion of the paper [6].
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3. Sets of terminal data non-attainable by bounded weak solutions

This section is devoted to partial (negative) answers to question (Q) in the setting where we assume
that the solutions u are bounded and moreover, the ratio of the L∞ norm of u and the L∞ norm of
the target data uT is controlled by a constant L given beforehand. Clearly, only L ≥ 1 makes sense.
For general uT , asking L = 1 means roughly speaking that we look for solutions u with the same
amplitude as uT ; while letting L > 1 allows for a controlled amplification. For this reason, in the
sequel we call L the amplification factor.

Our argument essentially relies upon the scaling

(t, v) 7→ ( tε ,Sεv),
Sεv := εv(·, ε·), i.e. t = ετ , Sε(v)(x, τ) = εv(x, ετ),

(Zoom)

where v is a function of (x, t) ∈ (0, 1)× (0, T ); this scaling permits to link (BE) to the viscous Burgers
equation with viscosity parameter ε > 0. The inviscid Burgers equation, under the standard notion of
admissibility of solutions, can be seen as the singular limit of the latter as ε→ 0. Also note that the
inviscid Burgers equation is invariant under the scaling (Zoom).

Remark 3.1. Let us point out that a study analogous to the one we conduct in this section (see [6] for
the L2 extension) can be conducted for the problem

ut + |u|p−1ux =
(
|ux|p−2ux

)
x

for p ∈ (1,∞); it possesses a scaling invariance which generalizes (Zoom).

Note that it is well known that weak (energy) solutions of scalar conservation laws regularized with
p-laplacian viscosity ε(|ux|p−2ux)x converge to entropy solutions of the corresponding inviscid problem.
Also note that the theory of the Cauchy problem developed in [6] applies to the flux F (u) = sign(u)|u|p/p
and Lp initial data.

We start by constructing a wide family of non-attainable (from initial data u0 verifying u0 = 0
in (0, 1)) at time T = 1 states in the classical setting of Kruzhkov entropy solutions to the inviscid
Burgers equation. The scaling (Zoom), along with the classical vanishing viscosity characterization of
the admissible solutions to the inviscid Burgers equation, will permit to transfer the non-attainability
result to our target problem (BE). In order to do so, in this paper we restrict our attention to L∞

solutions of the latter (we relax this restriction in [6]).

3.1. Non-attainable states for the inviscid Burgers equation in the classical entropy solutions setting

The initial value problem addressed in question (Q) is underdetermined (its formulation does not
implicitly include boundary data); therefore we first make precise what we mean by solution of the
analogous underdetermined inviscid Burgers problem.

Definition 3.2. A function u ∈ L∞((0, 1) × (0, T )) is a local Kruzhkov entropy solution of the under-
determined problem ut +

(u2

2

)
x

= 0 in D = (0, 1)× (0, T ),

u(x, 0) = 0 on (0, 1),
(Pb0

box)

if for all k ∈ R, for all ξ ∈ C∞c ((0, 1)× [0, T )), ξ ≥ 0 there holds

−
∫ T

0

∫ 1

0

|u− k|ξt + |u− k|u+ k

2
ξx dx dt−

∫ 1

0

|k|ξ(x, 0) dx ≤ 0. (3)

Moreover, uT ∈ L∞((0, 1)) is the terminal state of a local Kruzhkov entropy solution u if for all
ξ ∈ C∞c ((0, 1)× [0, T ]) ∫ T

0

∫ 1

0

uξt +
u2

2
ξx dxdt−

∫ 1

0

uT (x)ξ(x, T ) dx = 0.
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Having in mind a variant of question (Q), we are also interested in the Cauchy problem set on
the whole real line: ut +

(u2

2

)
x

= 0 in R× (0, T ),

u(x, 0) = u0 with u0(x) = 0 for x ∈ (0, 1).
(Pb0

strip)

An analogous definition with u0 ∈ L∞(R) is classical [24]; we refer to the corresponding solutions as
(global) Kruzhkov entropy solutions.

Further, Kruzhkov entropy solutions can be restricted and they can be glued together:

Remark 3.3. Similarly to Definition 3.2, one defines local Kruzhkov entropy solutions on any open

domain D ⊂ R× (0, T ) by localizing the support of the test functions to D∪
(
D∩ (R×{0})

)
. Non-zero

initial data are easily included.

It is obvious that a restriction of a local Kruzhkov entropy solution on an open subdomain D̃ of

D = (0, 1)× (0, T ) is a local Kruzhkov entropy solution in D̃. Further, it is easily checked that gluing

continuously local Kruzhkov entropy solutions in domains D̃, D̂ separated by a Lipschitz curve Γ (by
continuity we mean coincidence of strong traces from the right and from the left of Γ), we obtain a

Kruzhkov entropy solution in D̃ ∪ Γ ∪ D̂.

Note that a terminal state exists for every local Kruzhkov entropy solution; further, every such
solution can be seen as the solution of the initial-boundary value problem with appropriately chosen
boundary data. In the following Remark, we give precise sense to the initial datum and to the Dirichlet
boundary data denoted by b0 (the Dirichlet datum at x = 0−) and b1 (the Dirichlet datum at x = 1−.)
More precisely, we have

Remark 3.4. Local entropy solutions of (Pb0
box) possess the following properties:

(i) u ∈ C([0, T ]; L1((0, 1)), and in particular, the initial data u0 = 0 and the terminal data u(·, T ) = uT
can be understood as traces of u, in the strong L1 sense, on (0, 1)×{0} and on (0, 1)×{T}, respectively
(see [27, 11]).

(ii) There exist traces (in the strong L1 sense) b0(·) = u(0+, ·) and b1(·) = u(1−, ·), b0, b1 ∈ L∞((0, T ))
(see [33, 27]), which can also be seen as the boundary data for the Cauchy-Dirichlet problem understood
in the BLN sense (see Bardos, LeRoux and Nédélec [9], see also [8]). One can see u as the unique
solution in the BLN sense corresponding to the initial data u0 = 0 and boundary data u(·, 0+),u(·, 1−).

Remark 3.5. Recall that the L1 comparison and contraction property is valid (see e.g. [24, 31, 17]) for
any two Kruzhkov entropy solutions u, û corresponding to the L∞(R) initial data u0, û0, respectively:

‖(u− û)±‖L∞(0,T ;L1) ≤ ‖(u0 − û0)±‖L1 , (4)

where z± := max{0,±z}. Property (4) makes sense whenever the right-hand side is finite; it implies in
particular that smaller initial data (u0 ≤ û0 on R) give rise to smaller solutions (u ≤ û in R× (0, T )).
Note that the comparison principle under the form

u0 ≤ û0 on (0, 1), b0 ≤ b̂0, b1 ≤ b̂1 on (0, T ) =⇒ u ≤ û in (0, 1)× (0, T )

is known also for Cauchy-Dirichlet problems (see, e.g., [8]), here in addition to the initial data, bound-

ary data b0, b1 (respectively, b̂0, b̂1) for u (resp., for û) are prescribed.

With the above preliminaries at hand, let us introduce some convenient notation. For T > 0,
denote by

NAL∞,box
T :=

{
uT ∈ L∞(0, 1)

∣∣∣ @u solution in the sense of Definition 3.2 (5)

to problem (Pb0
box) with u(·, T ) = uT

}
the set of states non-attainable at time T by local Kruzhkov entropy solutions of the inviscid Burgers
equation in (0, 1)×(0, T ) with zero initial data. Consider the scaling (Zoom) of the solution of (Pb0

box)
where we take ε = T so that the scaled equation is posed in the time interval τ ∈ (0, 1). It is readily
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checked that the notion of local Kruzhkov entropy solution is invariant under this scaling. For this
reason, we have

NAL∞,box
T =

{
uT ∈ L∞(0, 1)

∣∣∣TuT ∈ NAL∞,box
1

}
= T−1NAL∞,box

1 , (6)

i.e. we can fix T = 1 in our study of states non-attainable for the inviscid Burgers equation.

Remark 3.6. It is classical that for (Pb0
box), states that do not belong to BVloc((0, 1)) are not attainable

at any time. In the sequel, and having in mind the constant terminal states of question (Q), we will
not focus on the BV regularity restrictions but the reader may always suppose that uT is at least BVloc
regular.

Non-attainability for the inviscid equation is naturally studied using the insight from the theory
of maximal backward characteristics ([16, 17]), see e.g. [4]. In particular, we have the following key
observation.

Proposition 3.7. Let u1 ∈ BVloc((0, 1)) verifying

∃ x∗ ∈ [0, 1] such that
either 0 < u1(x∗) ≤ x∗ ,
or −(1− x∗) ≤ u1(x∗) < 0 ,

(NA)

where u1(·) (respectively, u1(·)) stands for the left-continuous in x (respectively, right-continuous in
x) representative of the BV function x 7→ u1(x). Then there exists no local Kruzhkov entropy solution

verifying (Pb0
box) and the terminal datum u(·, 1) = u1. In other words, u1 ∈ NAL∞,box

1 and for all

T > 0, T−1u1 ∈ NAL∞,box
T . In particular, for all couples (C, T ) ∈ (0,+∞) × R+ verifying |C|T ≤ 1,

there holds C ∈ NAL∞,box
T .

Proof. We argue by contradiction; let u be a solution of (Pb0
box) corresponding to the terminal data

u1. We can assume without loss of generality that there exists x∗ ∈ (0, 1] such that u1(x∗) ≤ x∗, where
u1 is normalized by the right-continuity in the variable x; the case where u1(x∗) ≥ −(1− x∗) and the
normalization is by the left-continuity is fully analogous.

Let u∗ = u1(x∗); we set x∗ = x∗ − u∗ ∈ [0, 1). We draw from the point (1, x∗) the maximal
backward generalized characteristic ([16, 17]); it crosses the axis t = 0 at the point x∗, see Figure 1.
It follows from the theory of generalized characteristics that u(x∗ + tu∗, t) = u(x∗, 1) = u∗ for all
t ∈ [0, 1], where we recall that u is normalized to be right-continuous.

Since u(x, 0) = 0 for x ∈ (0, 1), we reach a contradiction whenever x∗ > 0, which corresponds to
the strict inequality u∗ < x∗. In order to include the special case x∗ = 0, and also in order to prepare
the ground for different extensions of Proposition 3.7 (see Proposition 4.4 and [6]), we construct an
auxiliary local entropy solution ũ of the Burgers equation as follows. We set for (x, t) ∈ [0, 1]× (0, 1]

ũ(x, t) :=

 u(x, t), x ≥ x∗ + tu∗,
(x− x∗)/t, x∗ ≤ x ≤ x∗ + tu∗,
0, x ≤ x∗.

(7)

In particular, ũ is continuous across the lines x = x∗ and x = x∗+ tu∗. Because we glued continuously
three patches and each of them is a Kruzhkov entropy solution in the corresponding subdomain (a
constant, a rarefaction and our solution u, from the left to the right), according to Remark 3.3 we find
that ũ is a local Kruzhkov entropy solution on D = (0, 1) × (0, 1). Moreover, ũ assumes zero initial
data and zero boundary data on the left boundary (cf. Remark 3.4).

The finite speed of propagation (recall that ũ ∈ L∞) ensures that ũ should be zero in some vicinity
of the point (x∗, 0), which is contradictory because for all t ∈ (0, 1) we have u(x∗ + tu∗, t) = u∗ > 0.
This contradiction proves the non-existence of u and the non-attainability of u1 at time T = 1. The
remaining claims follow from the fact that u1 = CT satisfies (NA) when |C|T ≤ 1, and from the
scaling observation (6). �
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ũ = x−x∗
t

x
=
x ∗

+
tu
∗
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Figure 1. The construction of ũ
.

To formulate in an optimal way our non-attainability results for the viscous Burgers equations, we

will be interested in compact subsets of NAL∞,box
1 with respect to the weak-* topology of L∞((0, 1)).

Below are the main examples we consider.

Remark 3.8. The following subsets of NAL∞,box
1 are weakly-* compact in L∞:

(i) Kα,β :=
{
u : x 7→ C

∣∣∣α ≤ |C| ≤ β}, for any given α, β with 0 < α ≤ β ≤ 1;

(ii) K+
E,m(·) :=

{
u ∈ L∞((0, 1))

∣∣∣∀x ∈ E m(x) ≤ u(x) ≤ x
}

,

for a given E ⊂ (0, 1) of non-zero Lebesgue measure and a given measurable m : E → (0, 1];

(iii) K−E,m(·) :=
{
u ∈ L∞((0, 1))

∣∣∣ ∀x ∈ E − (1− x) ≤ u(x) ≤ −m(x)
}

, for (E,m(·)) like in (ii).

In this remark, the fact that Kα,β ,K±E,m(·) ⊂ NA
L∞,box
1 follows from Proposition 3.7. Their weak-∗

precompactness follows from their boundedness; moreover, it is easily seen that they are weakly-∗
closed. For example, condition m(x) ≤ u(x) for a.e. x ∈ E can be rewritten as

for all measurable subsets F of E,

∫
F

m(x) dx ≤
∫
F

u(x) dx

which is stable with respect to the weak-∗ convergence in L∞ because the indicator function 11F of F
belongs to L1((0, 1)). Therefore Kα,β ,K±E,m(·) are indeed weakly-∗ compact in L∞((0, 1)).

Remark 3.9. It turns out that the sets K̊α,β , K̊±E,m(·) of Kα,β ,K±E,m(·) defined with strict inequalities

“<” in place of “≤” belong not only to the set NAL∞,box
1 – the set of states not attainable by classical

(bounded) Kruzhkov entropy solutions – but also to the topological interior of NAL∞,box
1 with respect

to the L1 convergence.

This observation will allow us to extend the non-attainability results to unbounded (L2) entropy
solutions of the inviscid Burgers equation, see [6].
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3.2. The viscous Burgers equation inherits non-attainability

The key idea of our work is that, in the appropriate regime uncovered via the scaling (Zoom) and
under the natural amplification assumptions compatible with this scaling, the viscous Burgers equation
inherits the non-attainability of the inviscid one.

We start with the following lemma which is a consequence of Proposition 3.7 and the main
technical ingredient of the proof of our main result, Theorem 3.12. The lemma relies on a standard
compensated compactness argument.

Lemma 3.10. Let K be a subset of NAL∞,box
1 compact in the weak-* topology of L∞((0, 1)). Let L ≥ 1.

Then there exists ε0 = ε0(K, L) > 0 such that for all ε ∈ (0, ε0) and all u1 ∈ K, the small viscosity
Burgers equation

ut +
(
u2/2

)
x

= εuxx in D = (0, 1)× (0, 1), (Pbεbox)

has no weak solution (in the sense of Definition 2.1, with ε = 1 replaced by ε > 0 in the diffusion
term) with initial data u(·, 0) = 0 and terminal data u(·, 1) = u1 within the class of functions verifying
‖u‖L∞((0,1)×(0,1)) ≤ L‖u1‖L∞((0,1)).

Remark 3.11. Let us stress that in this and the subsequent results on the viscous Burgers equation,
we work with the precise notion of weak solution from Definition 2.1, meaning in particular that
u ∈ L2(0, T ;H1

loc((0, 1))), and such solutions verify the entropy formulation proper to parabolic con-
servation laws (cf. [12] for the L∞ theory and [3] for extensions that cover, in particular, the L2

loc case).
This entropy formulation is an essential tool in our method, due to its link with the Kruzhkov entropy
solutions of the inviscid Burgers equations and to its central role in the compensated compactness
argument applied below.

While it is obvious that classical solutions of (Pbεbox) are entropy solutions (and classical so-
lutions exist in many situations like the pure Cauchy problem, due to the link between the Burgers
equation and the heat equation provided by the Hopf-Cole formula, see e.g. [17]), it is not clear that
merely distributional local solutions of the Burgers equation are entropy solutions.

Proof of Lemma 3.10. We argue by contradiction. Assuming that the statment is false, there exists a
sequence (which we do not relabel) of values ε converging to zero and a sequence (uε1) ⊂ K of terminal
data such that problem (Pbεbox) has a weak solution uε with zero initial data and the terminal data
uε1 satisfying the desired L∞ bound. Due to the assumption of weak-∗ compactness of K we can find
a subsequence (still not relabelled) such that the corresponding terminal data uε1 converge weak-∗
in L∞((0, 1)) to some u1 ∈ K. The associated solutions uε fulfill ‖uε‖L∞((0,1)×(0,1)) ≤ const because
K is bounded and due to the amplification assumption, therefore up to a further extraction of a
subsequence uε converge weak-∗ in L∞((0, 1)× (0, 1)) to some function u.

Using the compensated compactness technique and passing to the limit

• in the local entropy inequalities satisfied by uε

• in the weak formulation of (Pbεbox) including the terminal and the initial data,

we will show that u is a local Kruzhkov entropy solution of (Pb0
box) with the terminal data u1; this

contradicts the non-attainability of u1 ∈ K ⊂ NAL∞,box
1 .

First, recall that according to Definition 2.1 weak solutions of the viscous Burgers equation satisfy
the associated local entropy inequalities. Moreover, the uniform L∞ bound on uε implies the uniform
L1
loc((0, 1)× (0, 1)) bound on ε|uεx|2. Indeed, for compact sets of the form Kδ = [δ, 1− δ]× [δ, 1− δ] ⊂

(0, 1) × (0, 1) choose a test function ξ ∈ C∞c ((0, 1) × (0, 1)) such that ξ ≡ 1 on Kδ and 0 ≤ ξ ≤ 1.
Recall that arbitrary convex functions can be approximated in the locally uniform sense by linear
combinations of Id and Kruzhkov entropies | ·−k|. Applying this approximation to the convex entropy
η : u 7→ u2/2, with the associated entropy flux q : u 7→ u3/3, we find that the entropy formulation of
the type (2) (written for ε > 0 in place of ε = 1) implies

ε

∫ ∫
K

|uεx|2 dxdt ≤ ε
∫ 1

0

∫ 1

0

|uεx|2ξ dxdt =

∫ 1

0

∫ 1

0

1

2
(uε)2ξt +

(uε)
3

3
ξx +

1

2
ε(uε)2ξxx dx dt. (8)
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But (uε) is bounded in L∞((0, 1) × (0, 1)) so that (ε|uεx|2) is indeed bounded in L1(Kδ); δ > 0 being
arbitrary, the claim of L1

loc((0, 1)× (0, 1)) boundedness is justified.

With these ingredients at hand, standard application of the compensated compactness method
(see e.g. [31, Sect. 9.2]) guarantees that (uε) converges to u a.e. on (0, 1)× (0, 1) as ε→ 0. Using again
the above L1

loc((0, 1) × (0, 1)) bound on ε|uεx|2 to make the diffusion term vanish in the limit ε → 0,

we find that u fulfils the local entropy formulation (3) of (Pb0
box).

As for the terminal data, for ε > 0, we write the weak formulation analogous to (1) (it is contained
in Definition 2.1); we pass to the limit in the latter, using the a.e. convergence in the integrals over
(0, 1) × (0, 1) and using the weak-∗ convergence in the linear in uε1 term accounting for the terminal
data. The proof is complete. �

We are now in a position to state and prove our central result in the setting of uniformly bounded
weak solutions to problem (Pbbox).

Theorem 3.12. Let K be a subset of NAL∞,box
1 compact in the weak-* topology of L∞((0, 1)). Let

L ≥ 1. Then there exists a constant ε0 > 0 (depending on K and L only) such that for all couples
(T, uT ) ∈ (0,∞)× L∞((0, 1)) satisfying TuT ∈ K, T ≤ ε0 problem (Pbbox) has no weak solution – in
the sense of Definition 2.1 – satisfying the amplification assumption

‖u‖L∞((0,1)×(0,T )) ≤ L‖uT ‖L∞((0,1)). (9)

The simplest way to interpret this uniform (over states in K) non-attainability result is to par-
ticularize it to singletons K = {uT }. Then Theorem 3.12 provides information on no-attainability of
profiles w with the shape prescribed by the shape of uT (namely, w = T−1uT ), the amplitude of w
being entangled with the non-attainability times T . In particular, we will do so for constant profiles
in Corollary 3.16 below.

Remark 3.13. Note that given K, the non-attainability times T for uT ∈ T−1K are small. Let us stress
that, due to this fact, the associated non-attainable data in Theorem 3.12 are somewhat large; indeed,

uT ∈ T−1K, being understood that the targets in the weakly-∗ compact subset K of NAL∞,box
1 satisfy

dist(K, 0) > 0 due to the fact that 0 /∈ NAL∞,box
1 .

Remark 3.14. We underline that in Theorem 3.12, we assume that the solutions are not too large
in the L∞ norm (compared to the L∞ norm of the desired terminal data), and we assume that the
solutions are weak (and not merely very weak) solutions. In the sequel [6] of the paper, we will get
closer to the pure L2 setting suggested in [13], however, some a priori bound on the size of the desired
solutions (measured via the amplification constant L) will always be required.

Proof of Theorem 3.12. It is enough to scale a solution of (BE) with terminal data u(·, T ) = uT ,
uT ∈ T−1K, by (Zoom) with ε = T ; we need T ≤ ε0 in order to apply Lemma 3.10. It is easily checked
that uε = Sε(u) solves (Pbεbox) (also in the weak sense) on the time interval (0, 1). Also note that the
amplification assumption (9) is invariant under this scaling. �

Now we concentrate on the case of constant solutions addressed in (Q); to do so, we apply
Theorem 3.12 to the sets Kα,β defined in Remark 3.8(i) and we employ the following elementary
observation:

Lemma 3.15. If a constant state C is non-attainable at time T by weak solutions of (Pbbox) verifying
the amplification restriction ‖u‖L∞((0,1)×(0,T )) ≤ L|C|, then for all T ′ < T the state C remains non-
attainable, under the restriction ‖u‖L∞((0,1)×(0,T ′)) ≤ L|C|.

Proof. Arguing by contradiction, one assumes that u(·, T ′) = C for some T ′ < T . Gluing continuously
u on the time interval [0, T ′] and the constant function C on the time interval [T ′, T ], we find that the
resulting function is a weak solution to (Pbbox) with terminal state C; moreover, the amplification
restriction at time T is inherited from the one that was assumed at time T ′. �
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Combining specific choices of K (Remark 3.8(i)) in Theorem 3.12 with Lemma 3.15, we find
the following partial negative answer to (the quantitative version of) the question (Q) in the L∞

setting. We provide two closely related formulations, the first one focusing on individual states and
their guaranteed non-attainability times, the second one highlighting the fact that the result naturally
applies to non-attainability of families of target states.

Corollary 3.16. Fix L ≥ 1 and consider problem (Pbbox) under the amplification assumption (9).

(i) (non-attainability of individual constant states)
There exists C0 = C0(L) such that whenever |C| ≥ C0, the state C is non-attainable
at all times T ∈ [0, 1/|C|].

(ii) (non-attainability of families of constant states at a given time)
Given α ∈ (0, 1] there exists ε0 = ε0(α,L) such that for all T ≤ ε0 and all C
with αT−1 ≤ |C| ≤ T−1, C is not attainable at time T (as well as at any smaller time).

Proof.
(i) Theorem 3.12 yields, for K := K1,1 = {1}, the existence of ε0 = ε0(L) such that for T ≤ ε0, the
constant state C = T−1 is not attainable at time T ; in addition, Lemma 3.15 ensures that this state
is not attainable at any smaller time. Setting C0 = C0(L) := 1/ε0(L), we infer claim (i).

(ii) Theorem 3.12 yields, for K := Kα,1, the existence of ε0 = ε0(α,L) such that for T ≤ ε0, the
constant states C with CT ∈ Kα,1 – i.e. C such that α ≤ |C|T ≤ 1 – are not attainable at time T .
Fixing a value T ≤ ε0 we find non-attainable states C at this time; then by Lemma 3.15 these states
are also not attainable at any time smaller than T . This proves claim (ii). �

Remark 3.17. If instead of taking K := K1,1 = {1} we take K := Kβ,β = {β} for some 0 < β < 1, it
is not difficult to see that we find a smaller threshold C0 in Corollary 3.16(i). However, in this case
the intervals of non-attainability for the target C take the form [0, β/|C|] which makes them shorter.

To conclude this paper, let us refine the above result of non-attainability by L∞ solutions.

4. Some extensions of the non-attainability results by bounded solutions

Within the L∞ interpretation of (Q), in § 4.1 we address the strip setting (Pbstrip); then in § 4.2 we
point out the non-optimality of the restriction T |C| ≤ 1 in our non-attainability results.

4.1. Non-attainability by bounded solutions in the strip

We start by extending the non-attainability results to the simpler variant of problem (BE), namely

for the case D = R × (0, 1). We introduce the set NAL∞,strip
1 by analogy with NAL∞,box

1 , replacing

in (5) “solutions to (Pb0
box)” by “solutions to (Pb0

strip)”. It is obvious that states uT on (0, 1) non
attainable at time T by L∞((0, 1) × (0, T )) weak solutions of the viscous Burgers equation are also
non-attainable by L∞(R× (0, T )) weak solutions, i.e.,

∀T > 0 NAL∞,box
T ⊂ NAL∞,strip

T ; (10)

also note that the scaling property (6) extends to the strip case.
The strip setting (Pbstrip) is a pure initial-value problem, therefore it is simpler than (Pbbox)

in many respects. However, note that Lemma 3.15 does not extend to the strip setting. We state the
results analogous to Theorem 3.12 and Corollary 3.16 as a reference point for subsequent refinements
(see Corollary 4.3 in the next paragraph and further refinements in [6]). Its proof follows the lines of
the proofs in § 3.2.

Theorem 4.1. Let K be a subset of NAL∞,strip
1 compact in the weak-* topology of L∞((0, 1)). Let

L ≥ 1. Then there exists a constant ε0 > 0 (depending on K and L only) such that for all couples
(T, uT ) ∈ (0,+∞)× L∞((0, 1)) satisfying TuT ∈ K, T ≤ ε0 there exist no initial data satisfying

‖u0‖L∞(R) ≤ L‖uT ‖L∞((0,1)) (11)

such that the problem (Pbstrip) admits a weak solution in the sense of Definition 2.1.
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In particular, for given α ∈ (0, 1] there exists ε0 = ε0(α,L) such that for all T ≤ ε0 and all C
with αT−1 ≤ |C| ≤ T−1, the constant state C is not attainable at time T for problem (Pbstrip) with
initial data fulfilling the amplification restriction ‖u0‖L∞(R) ≤ L|C|.

The latter conclusion gives a partial negative answer to (the quantitative version of) (Q) in the
strip setting. Note that it can also be reformulated as follows: given L ≥ 1 and α ∈ (0, 1], setting
C0 = C0(α,L) := 1/ε0(α,L), there holds the following:

for all C with |C| ≥ C0, the constant target state uT (·) = C is not attainable

by weak solutions of (Pbstrip) under the restriction (11) at any T ∈
[
α|C|−1, |C|−1

]
. (12)

Note that we cannot extend the non-attainability to times smaller than α/|C| because we don’t have
the conclusion of Lemma 3.15 in the strip setting.

4.2. Non-attainability for some T > 1/|C|
It may seem from the proof of Proposition 3.7 that the non-attainability at T = 1 argument is limited
to constants C ≤ 1 (so that the scaling procedure yields the restriction T ≤ 1/|C| in the context
of Theorem 3.12, Corollary 3.16, Theorem 4.1) because they are based upon Proposition 3.7. Let us
point out that this restriction is not sharp. This condition can be weakened due to our introduction of
amplification conditions (9),(11) in the context of problems (Pbbox),(Pbstrip), respectively. Imposing
the analogous restrictions in the inviscid setting, in the case L = 1 (no amplification) we can extend
the result of non-attainability at time T = 1 in Proposition 3.7 to constants C with 0 < |C| < 2, in
place of 0 < |C| ≤ 1. More generally, for the case of constant targets we have the following observation.

Proposition 4.2. Let L ≥ 1 be given. For all C 6= 0 with |C| < 1 + ∆, ∆ = L−2, there exists no
local Kruzhkov entropy solution verifying (Pb0

box), the terminal data u(·, 1) = C and the amplification
restriction (9).

In the case of problem (Pb0
strip), the analogous result (under the amplification restriction (11))

holds with the even larger value of ∆, namely ∆ = (2L− 1)−1.

Proof. We give the proof in the box setting. The strip setting is similar and we only sketch the
argument. We divide the proof for (Pb0

box) into two parts. First, we address the elementary case
L = 1 and develop the argument based upon the comparison (see Remark 3.5) with an obvious
reference solution. Next, we consider L > 1 where the construction of an adequate reference solution
and an analogous comparison argument yields the desired result. It is enough to consider positive
constants C, the case of C < 0 being completely analogous (upon exchanging the role of the two
boundaries x = 0, x = 1).

In the case L = 1, the function uref (x, t) = C for 0 ≤ x < Ct/2, u = 0 otherwise, is an obvious

solution to (Pb0
box) and it attains the terminal data uT (·, T ) = C in (0, 1) if and only if CT ≥ 2.

For any smaller time T , there holds uref (x, T ) = 0 < C for x ∈ (CT/2, 1). Now, observe that uref
solves the Cauchy-Dirichlet problem in (0, 1) × (0, T ) with initial data u0 = 0 and boundary data
b0 = C (the Dirichlet datum at x = 0+), b1 = C (the Dirichlet datum at x = 1−), the boundary data
being assumed in the Bardos-LeRoux-Nédélec [9] sense, see Remark 3.4. In the sequel, we rescale this
solution to fit our reference setting T = 1; this ensures that for C < 2, uref (·, 1) = 0 < C in (C/2, 1).

Now, fix 0 < C < 2 and take any local Kruzhkov entropy solution u of (2) attaining the terminal
data C at time T ; according to Remark 3.4, it corresponds to some boundary data b0, b1 which
are [−C,C]-valued due to the restriction (9) and our assumption L = 1. The comparison principle
(Remark 3.5) for Cauchy-Dirichlet problems yields C = u(·, 1) ≤ uref (·, 1) which is a contradiction
on the interval (C/2, 1). This proves the claim for L = 1.

Now, we address the case L > 1. Let us indicate the reference solution which achieves the final
constant state C precisely at the critical time T = 1; it corresponds to the critical value C = 1 + L−2

and takes the following form. Introduce δ = 1− 1/C = 1/(1 + L2) and define the following curves in
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(0, 1)× (0, 1):

Γ1 := {(x, t) | δ ≤ t ≤ 1, x = C(t− δ)}, Γ2 := {(x, t) | δ ≤ t ≤ 2δ, x = LC(t− δ)},

Γ3 := {(x, t) | 0 ≤ t ≤ 2δ, x = LCt/2}, Γ4 := {(x, t) | 2δ ≤ t ≤ 1, x = LC(δ(t− δ)) 1
2 }.

Note that the choices C = 1 + L−2, δ = 1− 1/C ensure that Γ1 meets Γ4 at the point (x, t) = (1, 1).

Then (see Figure 2) we set uref = C above Γ1, uref (x, t) = x/(t − δ) between Γ1 and Γ2 ∪ Γ4,
uref = LC between Γ2 and Γ3, and uref = 0 below Γ3 ∪ Γ4. It is easily checked that uref is a

local Kruzhkov entropy solution to (Pb0
box), in particular, the Rankine-Hugoniot and the entropy

admissibility conditions on Γ3 ∪ Γ4 hold true.

x

t

u = LC

Γ2

Γ1

Γ3

Γ4

• u = 0

b0 = LC

b0 = C

T = 1

u = C

x = 0 x = 1

t = δ

t = 2δ

x = LCδ

Figure 2. Solution uref to (Pb0
strip) in the critical case C = 1 + L−2, L > 1.

It is also easy to verify that for any C < 1 + L−2 the solution constructed in the same way
(somewhat abusively, we will keep the notation uref for this solution) exhibits a crossing of Γ1 and
Γ4 before T = 1, and therefore it attains some state uref (·, 1) which takes zero values in a vicinity of
x = 1. It also assumes the boundary condition b1 = LC at x = 1− in the BLN sense.

Now by applying the maximum principle, we conclude that any solution u to (Pb0
box) with

u(·, T ) = C actually lies below uref . Recalling Remark 3.4(ii), let b0, b1 be boundary data that lead

to a local Kruzhkov entropy solution to (Pb0
box) with terminal data C at T = 1, then b0(t) = C

on (1 − 1/C, 1) (this follows by the backward characteristics construction [16]) and b0 ≤ LC on
(0, 1 − 1/C), b1 ≤ LC on (0, 1) due to assumption (9). Thus uref corresponds exactly to the largest
possible boundary data; yet in a vicinity of x = 1, its terminal state lies strictly below the target
state, so also u(·, 1) cannot achieve the target state C. This proves that states C < 1 + L−2 are not
attainable for (Pb0

box).

As for problem (Pb0
strip), the initial data leading to the reference solution uref are given by

u0,ref = 0 for x ∈ (0, 1), u0,ref = C for x ∈ (−∞, 1 − C), u0,ref = LC for x ∈ (1 − C, 0) ∪ (1,+∞).
With the choice C = 1+(2L−1)−1, the shock starting from the point (0, 0) encounters the rarefaction
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starting from the point (1−C, 0) at (C−1, 2(C−1)/(LC)), crosses the rarefaction and gets out of the
rarefaction precisely at the point (1, 1), quite similarly to what happens in Figure 2. For any smaller
value of C, the shock crosses the rarefaction before T = 1 and therefore leads to a reference solution
with uref (x, 1) = 0 in some vicinity of x = 1.

To conclude using the maximum principle as above, we have to remark first that, if we know
that a Kruzhkov entropy solution u assumes the target datum C for x ∈ (0, 1) and T = 1, then the
values of u0 for x < −C do not influence the values of u in the domain {(x, t) |x > C(t− 1)}, because
the boundary of this domain is a maximal backward generalized characteristic for the solution. For
x > −C, the initial data u0,ref taken to generate uref are the largest ones compatible with the
reconstruction of u0 in (−C, 1 − C) by backward characteristics, with the requirement u(·, 0) = 0 in
(0, 1) and with the amplification constraint (11). �

Using Proposition 4.2 in place of Proposition 3.7, following the same strategies of proof as in
§ 3.2, we can improve the result of Corollary 3.16(i) by extending the interval of non-attainability
times T by the factor (1 + ∆), ∆ = L−2 ∈ (0, 1):

Corollary 4.3. Let L ≥ 1 and restrict attention to weak solutions of (Pbbox) that verify the amplifi-
cation restriction ‖u‖L∞((0,1)×(0,T )) ≤ L|C|. There exists C0 = C0(L) such that whenever |C| ≥ C0,

the state C is non-attainable at all times T ∈ [0, (1 + ∆)/|C|] with ∆ = L−2.
Similarly, the last conclusion of Theorem 4.1 for problem (Pbstrip) holds for constants C satis-

fying the weaker restriction αT−1 ≤ |C| < (1 + ∆)T−1, ∆ = (2L − 1)−1, while the non-attainability
of large individual constants C in (12) can be extended to T ∈

[
α|C|−1, (1 + ∆)T−1

)
.

For more general target data, we have the following variant of Proposition 3.7. For simplicity,
we formulate it for the inviscid Burgers problem in the strip and only for half of the cases covered by
assumption (NA).

Proposition 4.4. Let L,M ≥ 1 and m > 0 be given. Consider target states u1 ∈ BVloc((0, 1)), normal-
ized by right-continuity, verifying

∃ x∗ ∈ (0, 1] such that m ≤ u1(x∗) ≤ (1 + ∆)x∗

and moreover, ‖u1‖∞ ≤Mu1(x∗).

Assume that ∆ < m(2LM(LM + 1))−1. Then there exists no Kruzhkov entropy solution verifying
(Pb0

strip), the terminal data u(·, 1) = u1 in (0, 1) and the bound ‖u‖∞ ≤ L‖u1‖∞.

Proof. We write u∗ = u1(x∗) and conduct the construction of the proof of Proposition 3.7, being
understood that this time, x∗ = 1− u∗ can be negative. In the sequel, we assume that x∗ is negative,
since otherwise the contradiction is readily given by the argument of Proposition 3.7. We define ũ by
(7), but this time for all x ∈ R. Define t̄ by the relation x∗ + u∗t̄ = 1− LMu∗t̄; this yields

t̄ =
1− x∗

LMu∗ + u∗
=

1

LM + 1
,

keeping in mind that 1−x∗ = u∗. Set x̄ = x∗+u
∗t̄; we refer to Figure 3 for the geometric interpretation

of the point (x̄, t̄).

In view of the bound ‖ũ‖∞ ≤ ‖u‖∞ ≤ LMu∗, the classical Kruzhkov propagation estimates [24]
imply in particular that ∫ x̃

−∞
|ũ(x, t̄)|dx ≤

∫ 1

−∞
|ũ(x, 0)|dx.

The expression (7) of ũ being explicit for t = t̄, x ∈ (−∞, x̄), the calculation of the left-hand side of
the above inequality, bearing in mind the bound |ũ0(x)| = |u(x)| ≤ L‖u1‖∞ for x ∈ (x∗, 0), yields

(u∗)2

2(LM + 1)
=

(u∗)2t̄

2
=

∫ x∗+u
∗ t̄

x∗

x− x∗
t̄

dx ≤
∫ 0

x∗

|ũ(x, 0)| ≤ LMu∗|x∗| = LMu∗(u∗ − 1) ≤ LMu∗∆.

Because u∗ ≥ 0, this leads to a contradiction as soon as 2LM(LM + 1)∆ < m. �
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x

t

x
=
x
∗ −

(1
−
t)
u
∗

••

•

•
t

T = 1

ũ = u

u = 0
u = u0

ũ = x−x∗
t

x =
1−

tL||u||∞

ũ = 0

x∗x∗ 0 1x

Figure 3. Construction of the point (x̄, t̄) in the proof of Proposition 4.4.

Note that a qualitatively analogous to Proposition 4.4 result can be formulated for the problem
(Pb0

box); but the explicit bound for ∆ in terms of L,M,m is more delicate to compute because the
control of the L1 norm of the solution in terms of the L1 norm of the boundary data makes the
Lipschitz constant of f : u 7→ u2/2 on [−‖u‖∞, ‖u‖∞] to appear (cf. the stability estimate in [30]).
We will not pursue this further.

Using Proposition 4.4 in place of Proposition 3.7, following the same strategy of proof as in § 3.2,
one can improve the results of Theorem 4.1 by requiring that

T (1 + ∆)uT ∈ K, ∆ < m(2LM(LM + 1))−1,

provided K consists of states verifying (4.4).

Remark 4.5. While we do not pursue the goal of giving optimal statements in this and related situations,
let us stress that the case |C| = T−1 (that appeared as critical in the non-attainability statements of
§ 3.2) is actually situated in the interior of the non-attainable (under amplification restrictions!) set,

and not on its boundary (cf. Remark 3.9); the same is true at least for terminal states uT ∈ NAL∞,box
T

having the shape (4.4) and the amplitude T−1. This fact will also become important in the sequel of
this paper [6].
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