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In this paper, we propose a regional dynamic traffic assignment framework for Macroscopic Fundamental

Diagram (MFD) models that explicitly accounts for trip length distributions. The proposed framework

considers stochasticity on both the trip lengths and the regional mean speed. Consequently, we can define

utility functions to assess the cost on alternatives, depending on which terms are considered stochastic. We

propose a numerical resolution scheme based on Monte Carlo simulations and the Method of Successive

Averages is used to solve the network equilibrium. Based on our test scenarios, we show that the variability of

trip lengths inside the regions cannot be neglected. Moreover, it is also important to consider the stochasticity

on the regional mean speeds to account for correlation between regional paths. The proposed regional

dynamic traffic assignment is an extension of that discussed by Yildirimoglu and Geroliminis (2014). We

also discuss an implementation of the proposed dynamic traffic assignment framework on the 6th district of

the Lyon network, where trip lengths are explicitly calculated. The traffic states are modeled by considering

the accumulation-based MFD model. The results highlight the influence of the variability of trip lengths on

the predicted traffic states.

Key words : Dynamic traffic assignment; Distributions of trip lengths; Macroscopic Fundamental Diagram;

Regional network; Regional paths
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Highlights

• We discuss a regional dynamic traffic assignment framework for MFD-based models.

• The proposed framework explicitly accounts for trip length distributions and the evolution of

traffic states in a regional network.

• This framework is able to capture the correlation between regional paths.
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• We show the importance of considering the combined effect of trip lengths and the evolution

of traffic states on the network equilibrium calculation.

1. Introduction

Aggregated traffic models were first introduced by Godfrey (1969), Herman and Prigogine (1979)

and Mahmassani, Williams, and Herman (1984). This approach was later revisited by the seminal

works of Daganzo (2007) and Geroliminis and Daganzo (2008). The concept relies on partitioning

the city network into a set of regions and then to represent flow exchanges. In Fig. 1 (a), we

show an example of a city network. To divide the city network into regions, clustering techniques

discussed in the literature can be used (e.g. Saeedmanesh and Geroliminis 2016, Lopez et al. 2017,

Saeedmanesh and Geroliminis 2017, Casadei et al. 2018, Ambühl et al. 2019). The city network has

to be transformed into a regional network, as shown in Fig. 1 (b) and Fig. 1 (c), to define routing

options inside the regions. Let X be the set of regions. Inside each region, the traffic conditions

are characterized by a well-defined Macroscopic Fundamental Diagram (MFD). An MFD is a

relationship between the average circulating flow qr ([veh/s]) and the accumulation nr ([veh]) inside

region r. The existence of this relationship was initially proved by Geroliminis and Daganzo (2008)

using experimental data from Yokohama city (in Japan) and later confirmed by other authors

(Geroliminis and Sun 2011, Ambühl and Menendez 2016, Loder et al. 2017). The traffic dynamics

is defined by the following conservation equation for one region r:

dnr(t)

dt
=Qin,r(t)−Qout,r(t), t > 0 (1)

where nr(t) is the accumulation of vehicles inside region r at a given instant t; Qin,r(t) and Qout,r(t)

are the inflow and outflow functions, respectively.

Depending on the assumptions made on the outflow function Qout,r, two MFD-based models can

be distinguished in the literature: the accumulation-based model (Daganzo 2007, Geroliminis and

Daganzo 2008); and the trip-based model (Arnott 2013, Fosgerau 2015, Lamotte and Geroliminis

2016, Mariotte, Leclercq, and Laval 2017, Leclercq, Sénécat, and Mariotte 2017, Mariotte and

Leclercq 2019).

The definition of a regional network (see Fig. 1 (b)) brings new challenges to build a dynamic

traffic assignment framework for MFD-based models. The latter is related to the scaling of a city

into a regional network and the definition of paths to define routing options. The city network

(Fig. 1 (a)) includes all connected links corresponding to the existing roads. Local trips are defined

by the sequence of links from the origin (o) to the destination (d) nodes inside the city network.

The regional network is shown in Fig. 1 (b). A regional path is defined as the ordered sequence of
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Figure 1 (a) City network with three trips represented. The partition of the city network is also shown. (b)

Regional network where the gray circles represent the regions and the gray arrows represent the con-

nections between the different regions. (c) Partition of the city network with the respective green and

blue regional paths associated with the three trips. (d) Zoom of the gray region with a well-defined

MFD function and crossed by the green and blue regional paths, each with a corresponding trip length

L1 and L2.

regions that are crossed from the regional Origin (O) to Destination (D). Generically, a regional

path p can be defined as:

p= (p1, . . . , pm, . . . , pR),∀m= 1, . . . ,R∧m∈X (2)

where R is the number of regions that define p; p1 and pR are the Origin (O) and Destination (D)

regions, respectively.

The literature on dynamic traffic assignment applied to regional networks and MFD based models

is recent and not yet extensive. The first efforts to combine a dynamic traffic assignment framework

with an MFD model were discussed by Leclercq and Geroliminis (2013) in the simplest case of
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parallel networks without path overlapping. Laval, Leclercq, and Chiabaut (2017) analyzed the

analytical solutions of the Dynamic driver Equilibrium for a network composed of one Origin-

Destination and two alternatives: one freeway with a fixed capacity; and a city street modeled by

MFD dynamics. For this simple network, the authors were able to determine analytical solutions

for a non-overlapping network with constant trip lengths. Yildirimoglu and Geroliminis (2014)

were certainly the first to propose a framework that can be applied to multi-regional MFD models.

However, their framework did not have an explicit description of trip lengths in the regional network

as trip lengths were updated at each iteration of the network loading. In Fig. 1 (a), we show three

examples of trips highlighted in green and blue. The corresponding regional paths are shown in

Fig. 1 (c). As highlighted by the green trips, several trips may exist in the city network that cross

the same sequence of regions and consequently define the same regional path. The latter gives an

interesting property to the regional paths. As can be observed in Fig. 1 (a), the green trips travel

different distances inside each region they cross. The green regional path is then characterized by

distributions of trip lengths inside each region. Let Lrp be the set of trip lengths of regional path p

(∀p ∈ΩOD ∧∀(O,D) ∈W ) inside region r (∀r ∈ p). ΩOD is the regional choice set for the OD pair

and W is the set of all OD pairs of the regional network. Batista et al. (2018) and Batista, Leclercq,

and Geroliminis (2019) discuss several methods to characterize the trip length distributions of each

regional path for a region, given the local trips in the city network as well as its partitioning. The

methods differ from each other as a function of the level of aggregation of the trip length information

inside regions, when scaling up the city into the regional network. As discussed in Batista et al.

(2018) and Batista, Leclercq, and Geroliminis (2019), a similar distribution of trip lengths can

be considered for all the regional paths that cross the same region. However, the description of

regional trip lengths can be refined by considering the trip length of a regional path inside a region

and taking into account the successive and/or previous regions, or even the specific regional path

itself. In this paper, we will consider only the most detailed description, i.e. all regional paths have

a specific trip length distribution inside each region.

An important aspect in dynamic network loading models is the correlation between paths. This

dictates the sharing of information between different paths and how the path choices of different

drivers will affect each other. In the city network, two trips are correlated if they share links in

common (see for example the red links in Fig. 1 (a) that are shared by green and blue trips).

The correlation between regional paths is different. To better emphasize this, we zoom on the

gray region crossed by the blue and green regional paths (Fig. 1 (d)). The traffic states inside

this region are described by a single MFD, e.g. in Fig. 1 (d). The correlation between the blue

and green regional paths occurs due to the MFD assumption of homogeneous traffic conditions

inside the gray region, i.e. all vehicles traveling inside this region are assumed to have the same
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speed. In fact, due to the MFD dynamics, a vehicle that enters the gray region will increase its

accumulation nr. This will automatically affect the region speed vr(nr) and the travel times of all

the vehicles already traveling inside this region, whatever their regional paths are. The dynamic

traffic assignment framework discussed by Yildirimoglu and Geroliminis (2014) is based on the

Multinomial Logit that does not account for correlations between regional paths.

In short, two important variables influence vehicles’ travel times in the regional network: the trip

length distributions of regional paths and the evolution of mean speed inside each region. The first

element stems from the spatial distribution of local trips that are gathered to form a single regional

path inside each region. The second element is related to the temporal distribution of regional

speed over the assignment period, i.e. the period of time when regional path flow distributions are

maintained constant. In this paper, we formulate a dynamic traffic assignment framework for MFD

models that (i) is based on the explicit description of regional trip length distributions and (ii)

accounts for the correlation between regional paths and traffic dynamics inside the regions. For this,

we define different utility functions. In practice, only the more detailed utility function accounts

for both factors simultaneously. The other definitions are set for the purposes of comparison and

precisely assess the influence of these two factors. Network equilibrium is calculated through the

Method of Successive Averages. Monte Carlo simulations are used to accommodate the regional

path trip length distributions and the regional mean speed evolution over time. The methodology

is described in more detail in Sect. 2. In Sect. 3, two simple test cases with one and two regions are

presented to analyze in detail the components of the utility function definitions and to assess the

importance of considering trip length and mean speed distributions. In Sect. 4, we then investigate

the application of the proposed regional dynamic traffic assignment framework on the 6th district

of the Lyon network (France), where the trip lengths are explicitly scaled from the city network

in accordance with the methodology discussed in Batista et al. (2018) and Batista, Leclercq, and

Geroliminis (2019). In Sect. 5, we outline the conclusions of this paper.

2. Regional dynamic traffic assignment: methodological framework

In this section, we describe the methodological framework of the dynamic traffic assignment for

multi-regional MFD models. In Table 1 we summarize the notations of all the symbols and variables

used in this paper.

Table 1: Nomenclature used in this paper.

City network:
o Origin node of a local trip in the city network.
d Destination node of a local trip in the city network.

Continued on next page
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Table 1 – Continued from previous page
k Local trip in the city network.
Ωod Route choice set of od pair.
Ξ Set of all od pairs.
U od

k Perceived travel time of local trip k connecting the od pair.
TCod

k Monetary cost associated with local trip k.
βod Value of Time.
TT od

k Travel time of trip k.

TT
od

k Average travel time of local trip k.
εodk Error term that accounts for the trip travel time uncertainty.
θod Scale parameter of the Multinomial Logit model.

Regional network:
r Region r.
O Origin region of a regional path.
D Destination region of a regional path.
X Set of regions that define the regional network.
p Regional path p.
R Number of regions that define are regional path.
W Set of all regional OD pairs.
Ψ Set of all regional paths.
ΩOD Regional choice set of regional OD pair.
TTOD

p Travel time of regional path p.
QOD Total demand for OD pair.
δrp Binary variable that equals 1 if regional path p crosses region r, or 0

otherwise.
Lrp Distribution of trip lengths of regional path p inside region r.
vr(nr) Speed-MFD of region r.
UOD

p Perceived cost of regional path p.
σL Standard deviation of the Lrp distribution.
σv Standard deviation of vr(nr) distribution.

MFD-based models:
t Time instant.
qr Average circulation flow inside region r in [veh/s].
nr Accumulation of vehicles inside region r in [veh].
Qin,r(t) Inflow function.
Qout,r(t) Outflow function.
njam Jam accumulation of the MFD in [veh].
Pcritical Critical production of the MFD in [veh.m/s].
u Free-flow speed in [m/s].

Other variables and Method of Successive Averages:
j Iteration j of the Method of Successive Averages.
ηj Descent step of the Method of Successive Averages.
QOD,j+1

p Path flow of regional path p at iteration j+ 1.
QOD,j

p Path flow of regional path p at iteration j.
QOD,∗

p New temporary path flow of regional path p.
Ll

rp Trip length sample obtained from the set {Lrp}.
vhr Mean speed sample obtained from the set vr(nr).

Continued on next page
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Table 1 – Continued from previous page
NMC

Lrp
Total number of samples gathered from {Lrp}.

NMC
vr

Total number of samples gathered from vr(nr).
tol Pre-defined tolerance for the Gap criterion.
N(λ) Number of violations.
Φ Pre-defined threshold for the number of violations.
α Relative differences between regional path utilities.
Nmax Maximum number of descent step iterations.
T Simulation period.

2.1. Traffic assignment models on city networks: a literature review

The goal of traffic assignment models is to reproduce the patterns of vehicles travels in the city

network. The first question related to traffic assignment is the definition of the choice set of plausible

trips, i.e. a set of routes that drivers might probably choose. Note that, a route or a trip in the

city network is represented by a sequence of links, with a fixed physical length, from the origin

to the destination nodes. Let Ωod be this trip choice set for the origin-destination (od) pair in

the city network and Ξ be the set of all od pairs in the city network. In the literature, there are

several models designed for calculating Ωod. To name a few examples, we have the K-shortest path

algorithm (van der Zijpp and Catalano 2005), the link elimination (Azevedo et al. 1993), the link

penalty (de la Barra, Perez, and Anez 1993), the labeling approach (Ben-Akiva et al. 1984), the

branch-and-bound algorithm (Prato and Bekhor 2006), the simulation approach (Nielsen 2000,

Nielsen, Daly, and Frederiksen 2002, Ramming 2002, Bierlaire and Frejinger 2005, Bliemer, Bovy,

and Li 2007) or the Metropolis-Hastings algorithm (Flötteröd and Bierlaire 2013).

The next question is how to reproduce the drivers’ choices for their trips in the city network.

The first ideas of traffic assignment date back to the two principles of Wardrop (Wardrop 1952).

The first principle of Wardrop states that drivers are selfish and aim to minimize their own trip

travel times. This is often referred in the literature as the User Equilibrium or Deterministic User

Equilibrium (DUE). The second principle of Wardrop, also referred to as the System Optimum

(SO), states that drivers choose their trips such that the sum of all travel times correspond to the

minimum of the system.

The User Equilibrium principle assumes that drivers are perfectly rational and fully information

about all possible routes choices as well as their travel times. However, the traffic conditions in the

city network change over time and the increase of the congestion level leads to uncertain travel

times. Generally, drivers evaluate their trip choices based on the perceived utility U od
k :

U od
k = TCod

k +βodTT od
k ,∀k ∈Ωod ∧∀(o, d)∈Ξ (3)
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where TCod
k is the monetary cost associated trip k for od pair; βod is the Value of Time (e.g.

Lu, Mahmassani, and Zhou 2008, Zhang, Mahmassani, and Lu 2013); and TT od
k is the perceived

travel time for trip k for od pair. The monetary costs can be associated, for example, with tolls,

fuel consumption or public transport tickets. The Value of Time is the marginal cost between the

trip monetary cost TCod
k and its travel time TT od

k . For the sake of simplicity and without loss of

generality, in this paper we only consider the trip travel times, i.e. there are no moneraty costs

TCod
k associated with the drivers’ choices and β is set to 1. We then re-write the trip utility U od

k

as:

U od
k = TT od

k

= TT
od

k + εodk ,∀k ∈Ωod ∧∀(o, d)∈Ξ (4)

where TT od
k is the mean travel time for trip k and od pair; and εodk represents the error term that

accounts for the travel time uncertainty. Eq. 4 represents an extesion of the User Equilibrium.

The city network is said to be under Stochastic User Equilibrium (SUE) conditions when no

driver can reduce his/her own perceived travel time by unilaterally switching their trip choice. The

mathematical formulation of the SUE was introduced by Daganzo and Sheffi (1977) and Daganzo

(1982).

Random Utility models (McFadden 1978) aim to incorporate the uncertainty term εodk in the

modeling of the users’ trip choices. These uncertainty terms are unobserved and one needs to make

prior assumptions about their statistical distributions. The simplest model is the Multinomial Logit

model (MNL) (Dial 1971), where εodk are assumed to be independently and identically Gumbel

distributed, with a scale paramter θod. The advantage of this model is the closed form for the

calculation of the choice probabilities. However, it has two strong limitations. First, the scale

parameter θod is calibrated at the od level (Chen et al. 2012). This implies that the travel times

of all local trips connecting the same od pair have similar variances. Second, the MNL lacks the

ability to capture the correlation between overlapping trips, i.e. trips that share one or a sequence

of links in common. One solution to the previous limitation is to include a disutility correction

factor, called Commonality Factor, in the deterministic term of the trip utility (see Eq. 4). This

factor measures the similarity between two trips. Examples of this extension of the MNL are the

C-Logit (Cascetta et al. 1996, Cascetta 2001), the Path Size Logit (Ben-Akiva and Bierlaire 1999,

Frejinger, Bierlaire, and Ben-Akiva 2009) and the Path Size Correction (Bovy, Bekhor, and Prato

2008) models. Other authors propose to use the Paired Combinatorial Logit (Chu 1989, Prashker

and Bekhor 2000, Bekhor and Prashker 2001) or the Cross Nested Logit (Vovsha 1997, Prashker

and Bekhor 1998), where the correlation is taken into account in the stochastic term of the trip

utility (see Eq. 4). The Mixed or Hybrid Logit (Bolduc 1999, Bekhor, Ben-Akiva, and Ramming



Batista and Leclercq: Regional dynamic traffic assignment framework for MFD multi-regions models
Article submitted to Transportation Science; manuscript no. TS-2018-0395 9

2002, Frejinger and Bierlaire 2007) is a more sophisticated model, where the trip travel times are

assumed to be the result of a sum of a Gumbel distributed term and a normally distributed term

with zero mean and unit variance. The Probit model (Daganzo and Sheffi 1977) considers that the

trip travel times are normally distributed. It allows a flexible definition of the covariance matrix and

therefore the model is able to capture the correlation between overlapping trips. Contrary to the

MNL, the Probit model does not have a closed form for the calculation of the choice probabilities,

requiring the integration of multi-normal variate distributions over all alternative trips listed in

Ωod. This largely increases the computational burden required for the implementation of the Probit

model. One solution is to utilize Monte Carlo simulations (Sheffi 1985) and discretize the trip travel

time distributions into several realizations and locally solve deterministic assignment problems.

For each realization set, drivers are assigned to the trip with the minimal travel time, similarly

to the User Equilibrium principle. The final choices correspond to the average of all local choices.

Prato (2009) provides a comprehensive review about the Random Utility models in the trip choice

context.

Survey data (e.g. Zhu and Levinson 2015) shows that drivers do not always choose trips with the

minimal travel times. The behavior assumptions of the User Equilibrium are relaxed to account

for bounded rational users (Simon 1957, 1966, Mahmassani and Chang 1987, Di et al. 2013, 2014,

Batista, Zhao, and Leclercq 2018). The trip choices of drivers are driven by aspiration levels that

represent a set of target variables that should be satisfied, i.e. drivers choose trips that have a

perceived travel time inferior to their aspiration level. This behavior is coined as satisficing, which

results from the concatenation of the words suffice and satisfy. In traffic assignment problems, the

calibration of the aspiration levels are in general based on the indifference band (Mahmassani and

Chang 1987) concept. Other studies have considered that drivers are regret-averse (Chorus 2014,

Li and Huang 2016) and aim to minimize their own regret with respect to the unselected trips.

The first implementations of traffic assignment models in a dynamic context, i.e. dynamic traf-

fic assignment, date back to the works of Merchant and Nemhauser (1978a) and Merchant and

Nemhauser (1978b) and have significantly evolved since then as discussed in the review papers

of Peeta and Ziliaskopoulos (2001) and Viti and Tampère (2010). In the literature, one can find

two approaches to solve a dynamic traffic assignment problem. The analytical approach (e.g. Wie,

Tobin, and Carey 2002, Nie and Zhang 2010, Iryo 2011, Corthout et al. 2012) is suitable to study

the unicity and uniqueness properties of the city network equilibrium. The simulation approach

(e.g. Ben-Akiva, Gao, and Wen 2012, Mahmassani, Saberi, and Zockaie 2013, Shafiei, Gu, and

Saberi 2018) utilizes traffic simulators to determine time-dependent trip travel times that account

for congestion, shock-waves and spillback effects. In this paper, we focus on this second approach.

Drivers are assigned to their trips based on a quasi-static approximation as function of the trips’
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travel times. This means that the total simulation period is split into several time intervals. The

city network equilibrium is then calculated for each time interval, i.e. the path flow distribution

for od pair is constant during a time interval. We can adjust the length of these time intervals to

update more frequently the path flows for cases when the demand suffers quick changes or when

the traffic states are quickly evolving.

2.2. Scale-up of city into regional networks: motivation for the regioanl DTA
framework

In this paper, we focus on the development of a network loading framework to solve the dynamic

traffic assignment problems in regional networks. Fig. 2 depicts a flowchart that summarizes each

step of the regional dynamic traffic assignment framework. It requires as an input the definition

of the city network partitioning, i.e. the set X, and a set of trips in the city network. The city

network can be partitioned into regions using any of the techniques described in the literature

(Saeedmanesh and Geroliminis 2016, 2017, Lopez et al. 2017, Casadei et al. 2018, Ambühl et al.

2019). The challenging question is how to define the set of trips in the city network. The full trip

patterns in a city network are unknown and change over time. One solution to address this issue

is to construct a set of virtual trips (Batista and Leclercq 2018, Batista, Leclercq, and Geroliminis

2019). This is done by randomly sampling several origin-destination pairs in the city network and

then calculate the shortest-path in distance for each one. Each virtual trip represent an individual

travel in the city network. The scale-up of this virtual trips into paths in the regional network

brings new challenges. The first question is how to define the regional paths and the regional choice

set ΩOD. The second question is related with the characterization of the regional paths through

distributions of trip lengths. The answers to these two questions make the difference between the

regional and the classical city-network based dynamic traffic assignment frameworks.

In city networks, the trip choice set Ωod is obtained either by shortest-paths calculations or by

any other model described in the previous Sect. 2.1. Regional paths are the result of the scaling-up

of virtual trips in the city network following the sequence of regions they cross according to the city

network partitioning (Batista and Leclercq 2018). We define the frequency of a regional path by

the number of virtual trips it has associated. For each OD pair, the regional path with the largest

number of virtual trips associated is then the most frequent one. The regional choice set ΩOD is

composed by the three most frequent regional paths. We define Ψ as the set of all regional paths.

The next step consists in calculating of the trip length distributions. Virtual trips in the city

network are composed by a sequence of links that have a fixed length. However, the case of regional

paths is more complex. As depicted in Fig. 1, the virtual trips that define the same regional

path have different travel distances in the regions they cross. Batista, Leclercq, and Geroliminis

(2019) propose a methodological framework to explicitly calculate trip length distributions given
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the virtual trips set and different levels of information from the regional network. The latter ranges

from no information about the previous and next regions to be traveled by the virtual trips, to

their associated regional path. The first level of information determinates trip length distributions

based on all virtual trips that cross one region. Therefore, this distribution is similar to all regional

paths that cross one region. The most detailed level of information only considers the associated

virtual trips to one regional path to calculate the trip length distributions. Batista, Leclercq, and

Geroliminis (2019) show that the first level of information is not able to capture the variability

of the trip lengths of all regional paths crossing the same region. The authors also show that the

calibration of trip lengths clearly influence the traffic dynamics in the regions. The authors conclude

that filtering the virtual trips by their associated regional path to explicitly distributions of trip

lengths should be considered.

In regional networks there are two factors that influence the travel times of the regional paths.

The travel times evolve with the changes of the traffic conditions in each link of the city network.

In regional networks, travel times are not only influenced by changes of the traffic conditions inside

regions, but also by the trip length distributions. We notice here a clear difference with the city

network, where link lengths are constant and similar for all paths that take the same link. Not only

do the regional paths that cross the same region have different mean trip lengths, they also have

different trip length distributions (Batista et al. 2018, Batista, Leclercq, and Geroliminis 2019,

Batista and Leclercq 2018). Therefore, the travel time of a p of regional OD pair, TTOD
p , can be

calculated as:

TTOD
p =

∑
r∈X

(
Lrp

vr(nr)

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (5)

where δrp is a binary variable that equals 1 if regional path p crosses region r, or 0 otherwise.

2.3. Formulation of the regional DTA framework and solution algorithm

The question is how to calculate the regional network equilibrium given the evolution of the traffic

conditions in the regions as well as the explicitly calculated distributions of trip lengths that

characterize the regional paths. To answer this question, we consider that the following two terms

can be distributed:

• the empirical set of trip lengths {Lrp}, for each region r that defines p.

• the time varying speed-MFD set vr(nr) of each region r that defines p.

Depending on which distributions are considered, four utility functions can be defined to describe

all regional path alternatives for each OD pair. In this paper, we target the User Equilibrium,

considering different formulations of the utility function. They are defined based on a first order

Taylor expansion of Eq. 5 around the mean values of Lrp and vr as well as on which terms we

consider to be distributed. Then, we define the four following utility functions:
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Figure 2 Flowchart that summarizes the different steps of the regional dynamic traffic assignment framework.

• Utility 1: neither the set of trip lengths Lrp nor the set of mean speeds vr(nr) are considered

distributed. The perceived cost UOD
p is:

UOD
p =

∑
r∈X

(
Lrp

vr

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (6)

where Lrp is the average trip length of regional path p inside region r; and vr is the mean speed of

region r.
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• Utility 2: only the set of trip lengths Lrp is considered distributed. The perceived cost UOD
p is:

UOD
p =

∑
r∈X

(
Lrp

vr
+

1

vr
(Lrp−Lrp)

)
δrp

=
∑
r∈X

(
Lrp

vr

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (7)

• Utility 3: only the set of mean speed vr(nr) is considered distributed. The perceived cost UOD
p

is:

UOD
p =

∑
r∈X

(
Lrp

vr
− Lrp

v2
r

(vr− vr)

)
δrp

=
∑
r∈X

(
2
Lrp

vr
− Lrpvr

v2
r

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (8)

• Utility 4: both the sets of trip lengths Lrp and mean speeds vr(nr) are considered distributed.

The perceived cost UOD
p is:

UOD
p =

∑
r∈X

(
Lrp

vr
+

1

vr
(Lrp−Lrp)−

Lrp

v2
r

(vr− vr)

)
δrp

=
∑
r∈X

(
Lrp

vr
+
Lrp

vr
− Lrpvr

v2
r

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (9)

where vr is a conditional distribution of Lrp during the simulation period.

These four utility function definitions, defined by Eq. 6 to Eq. 9, allow calculating different

network equilibria. Hereafter, we refer to the network equilibrium related to the utility definitions

from Eq. 6 to Eq. 9 as Equilibrium 1 to Equilibrium 4, respectively. In this paper, we consider Equi-

librium 4 as the reference because it accounts for distributions of the two key elements mentioned

in the introduction, i.e. Lrp and vr(nr).

To calculate the regional network equilibrium defined by any of the utility functions Eq. 6 to

Eq. 9, we consider the Method of Successive Averages (MSA). The MSA is based on a descent

step finding procedure. The new regional path flows QOD,j+1
p , at descent step j + 1, are updated

according to the regional path flows QOD,j
p , at descent step j, and to the new temporary regional

path flows QOD,∗
p ,∀(O,D)∈W , as:

QOD,j+1
p =QOD,j

p + ηj{QOD,∗
p −QOD,j

p },∀p∈ΩOD ∧∀(O,D)∈W (10)

The question is how to determine the new temporary regional path flows QOD,∗
p , considering the

utility functions defined in Eq. 6 to Eq. 9. Let POD
p be the probability of choosing regional path
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p from ΩOD,∀(O,D) ∈W . The regional path flows QOD,∗
p are calculated as follows (Daganzo and

Sheffi 1977, Daganzo 1982):

QOD,∗
p =QODPOD

p

=QODPOD
p (UOD

p ≤UOD
j ),∀j 6= p∧∀(j, p)∈ΩOD ∧∀(O,D)∈W (11)

where QOD is the total demand of OD pair; and POD
p is the probability of choosing regional path

p from the regional choice set ΩOD,∀(O,D)∈W .

The probability terms are calculated through Monte Carlo simulations. From the sets {Lrp} and

vr(nr), we gather samples Ll
rp and vhr , respectively, depending on the specificities of each utility

function definition. Note that vr(nr) time series is given considering the simulation time-step of 1

second. Moreover, vr(nr) is a conditional distribution given the distribution of trip lengths {Lrp}

throughout the simulation period. The dynamic network loading is performed given trip length

distributions for regional paths, directly influencing vr(nr). For each Monte Carlo trial and each

OD pair, we calculate the regional path utilities and assign drivers based on an all-or-nothing

procedure to the regional path with the minimal utility. The new temporary regional path flows

QOD,∗
p are updated by averaging all the drivers choices over all Monte Carlo samples. In more detail

for each regional network equilibrium:

• Equilibrium 1: For each regional OD pair, we calculate the mean speed vr and mean trip length

Lrp and then the regional path costs following Eq. 6. The probability POD
p = 1 when regional path

p has the minimal travel time for the OD pair. Then, QOD,∗
p = 1,∀p∈ΩOD ∧∀(O,D)∈W .

• Equilibrium 2: For each regional path, we uniformly draw trip length samples Ll
rp from {Lrp}.

Let NMC
Lrp

be the total number of samples considered for the trip lengths. We also calculate the

mean speed vr for each region. The trip length distribution Lrp in Eq. 7 is discretized into the Ll
rp

samples. From Eq. 7, the regional path cost U l
p is calculated as:

U l
p =

∑
r∈X

(
Ll

rp

vr

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (12)

• Equilibrium 3: For each regional path, we uniformly draw mean speed samples vhr from vr(nr)

time series. Let NMC
vr

be the total number of samples for the mean speed vr(nr) set. We calculate

the mean speed vr for each region and the average trip lengths of each regional path p inside region

r. The mean speed distribution vr(nr) in Eq. 8 is discretized into the vhr samples. From Eq. 8, the

regional path cost Uh
p is calculated as:

Uh
p =

∑
r∈X

(
2
Lrp

vr
− Lrpv

h
r

v2
r

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (13)
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• Equilibrium 4: For each regional path, we independently draw uniform trip length samples Ll
rp

from {Lrp} and mean speed samples vhr from vr(nr). The mean speed vr for each region and the

average trip lengths of each regional path p inside region r are also calculated. In Eq. 9, both the

Lrp and vr(nr) distributions are discretized into the Ll
rp and vhr samples, respectively. From Eq. 9,

the regional path cost U lh
p is calculated as:

U lh
p =

∑
r∈X

(
Lrp

vr
+
Ll

rp

vr
− Lrpv

h
r

v2
r

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (14)

For the MSA implementation, we also have to define the descent step ηj, where j is the descent

iteration, to ensure good convergence properties. In this paper, we consider that ηj = 1
j
. On the

other hand, we must also define the convergence criteria of the MSA algorithm. To do this, we

follow the work of Sbayti, Lu, and Mahmassani (2007) and consider:

• the relative Gap:

Gap=

∑
O

∑
D

∑
p∈ΩOD QOD

p (V OD
p −min(

−−→
V OD))∑

O

∑
DQ

OD min(
−−→
V OD))

(15)

where
−−→
V OD = {V OD

p },∀p∈ΩOD∧∀(O,D)∈W . The Gap function is also an indicator of the network

equilibrium quality that indicates how far we are from the driver Equilibrium. We consider that

the network equilibrium is achieved if Gap≤ tol, where tol is a pre-defined tolerance.

• the number of violations N(λ). It consists in comparing the regional path flows at descent

iteration j + 1, QOD,j+1
p , with those at descent iteration j, QOD,j

p . N(λ) represents the number of

cases where |QOD,j+1
p −QOD,j

p | is higher than a pre-defined threshold Φ (Sbayti, Lu, and Mahmassani

2007), where Φ is an upper bound. Convergence is achieved if N(λ)≤Φ.

• a maximum number of iterations Nmax.

The MSA loop is repeated until the convergence criteria are satisfied. Algorithm 1 summarizes

the MSA loop and Monte Carlo implementations for the four utility functions.

In the next sections, we investigate the relevance of considering both the empirical set of trip

lengths {Lrp} as well as the time-varying speed-MFD set vr(nr) in the calculation of the regional

network equilibrium.

3. Analysis of the regional dynamic traffic assignment framework on
simple regional networks

In this section, we analyze the implementation of the regional dynamic traffic assignment frame-

work, discussed in the previous section, in two simple regional networks: one region and one regional

OD pair (Sect. 3.2); and two regions and two regional OD pairs (Sect. 3.3). In Sect. 3.4, we inves-

tigate if the proposed framework properly handles the correlation between regional paths.



Batista and Leclercq: Regional dynamic traffic assignment framework for MFD multi-regions models
16 Article submitted to Transportation Science; manuscript no. TS-2018-0395

Input the regional choice set ΩOD,∀(O,D)∈W , the set of trip lengths Lrp,∀p∈Ψ∧∀r ∈X.
Input the demand scenario and simulation duration T .
Initialize j = 1, αj=1 = 1, tol, φ and Nmax.
if Equilibrium 2, 3 or 4 then

Initialize NMC
Lrp

and NMC
vr

.

end
Initialize the route flows QOD,j=1

p ,∀p∈ΩOD ∧∀(O,D)∈W .
Perform an initial network loading.
while Gap≥ tol and/or N(λ)≥Φ and j ≤Nmax do

Set QOD,j
p =QOD,j+1

p ,∀p∈ΩOD ∧∀(O,D)∈W .
if j=1 then

For all regions r ∈X, the mean speed vr corresponds to the free-flow speed.
else

For all regions r ∈X, calculate the average mean speed vr based on vr.
end
if Equilibrium 1 then

Calculate UOD
p ,∀p∈ΩOD ∧∀(O,D)∈W according to Eq. 6.

For each (O,D)∈W , drivers are assigned based on an all-or-nothing procedure to the regional route p with the
minimal UOD

p .
Update the new route QOD,∗

p ,∀p∈ΩOD ∧∀(O,D)∈W .
end
if Equilibrium 2 then

for l=1 to NMC
Lrp

do

For each region r ∈ p∧∀p∈ΩOD, draw one trip length sample Ll
pr from

Lrp,∀r ∈ p∧∀p∈ΩOD ∧∀(O,D)∈W .
Calculate U l

p according to Eq. 12 ∀p∈ΩOD ∧∀(O,D)∈W .
For each (O,D)∈W , assign drivers based on an all-or-nothing procedure to the regional path p with the

minimal perceived utility.
end

end
if Equilibrium 3 then

for h=1 to NMC
vr

do
For each region r ∈ p∧∀p∈ΩOD, draw one mean speed sample vhr from vr,∀r ∈ p∧∀p∈ΩOD ∧∀(O,D)∈W .
Calculate Uh

p according to Eq. 13 ∀p∈ΩOD ∧∀(O,D)∈W .
For each (O,D)∈W , assign drivers based on an all-or-nothing procedure to the regional path p with the

minimal perceived utility.
end

end
if Equilibrium 4 then

for l=1 to NMC
Lrp

do

for h=1 to NMC
vr

do
For each region r ∈ p∧∀p∈ΩOD, draw one trip length sample Ll

pr from Lrp and one mean speed
sample vhr from vr, ∀r ∈ p∧∀p∈ΩOD ∧∀(O,D)∈W .

Calculate U lh
p according to Eq. 14 ∀p∈ΩOD ∧∀(O,D)∈W .

For each (O,D)∈W , assign drivers based on an all-or-nothing procedure to the regional path p with
the minimal perceived utility.

end
end
Update the new temporary regional path flows QOD,∗

p by averaging all the drivers choices over all Monte Carlo
samples.

end
Update the route flows based on QOD,j+1

p based on Eq. 10.
Run the MFD-based model (either the accumulation- or trip-based MFD model).
Update vr,∀r ∈X, based on the traffic states resulting from the MFD-based model.
Calculate Gap (Eq. 15) and N(λ).
Update ηj = 1

j
.

Set j = j+ 1.
end
Save the route flows: QOD,j+1

p ,∀p∈ΩOD ∧∀(O,D)∈W .

Algorithm 1: Regional dynamic traffic assignment framework for MFD-based models.

3.1. Test scenarios definition

For the first test scenario, we consider a regional network consisting of one region and one regional

OD pair connected by two regional paths. We show the regional network in Fig. 3, where the two
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regional paths are highlighted in orange. Let L1 and L2 be the distributions of trip lengths inside

the region. We consider a bi-parabolic MFD function with: jam accumulation njam = 1000 veh;

critical production Pcritical = 3000 veh.m/s; and free-flow speed u= 15 m/s.

For the second test scenario, we consider a regional network consisting of two regions and two

regional OD pairs connected by two regional paths each. We show the regional network in Fig. 4.

Let: L1 and L2 be the regional trip length distributions for the orange regional paths; and L3

and L4 be the regional trip length distributions for the green regional paths. The traffic states

inside each of the two regions are defined by a parabolic MFD function with: jam accumulation

njam = 1000 veh; critical production Pcritical = 2000 veh.m/s; and free-flow speed u= 15 m/s.

For all the MFD simulations performed in this section, we consider a simulation period of T = 800

seconds. For the network equilibrium convergence, we set a maximum number of violations of Φ = 0

and/or a Gap tolerance tol ≤ 0.01 and a maximum of descent step iterations of Nmax = 100. For

the Monte Carlo simulations, we consider NMC
Lrp

=NMC
vr

= 10000 samples.
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D
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d 
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Demand OD1

Figure 3 Left: Regional network. One regional OD pair is shown, with two regional paths with distributions of

regional trip lengths L1 and L2. Right: The demand scenario for the OD pair and for the tests of

Sect. 3.2 and Sect. 3.4.

3.2. Analysis of the regional path flows at equilibrium: 1-region test case

We analyze the regional path flows calculated for the four network equilibrium definitions (i.e.

defined Eq. 6 and Eq. 9). We investigate how different the regional path flows for the reference

Equilibrium 4 are in comparison to the other three network equilibria. The trip lengths for the two

regional paths are sampled according to a normal distribution with: a fixed mean L2 = 1500 [m]

for regional path 2; and a varying mean values between 1300 to 1700 [m] increasing step size by 25

[m] for regional path 1. We consider three values of the standard deviation σL = 50,100,200 [m],

similar for both regional paths.

In Fig. 5, we show the regional path flows for the four network equilibria as a function of L1 and

the three values of σL.
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Figure 4 Left: Regional network consisting of two regions labeled R1 and R2. Two DO pairs are shown with two

regional paths connecting each one. Right: Demand scenario for the two OD pairs and for the tests of

Sect. 3.3 and Sect. 3.4.

Equilibrium 1 is purely deterministic since we consider that neither the Lrp nor vr are distributed.

For this equilibrium, since the MFD dynamics is the same for both regional paths, only the average

trip lengths L1 and L2 modify the perceived utility functions. When L1 <L2, implying U1 <U2, all

vehicles choose the minimum utility that corresponds to regional path 1. For L1 = L2 = 1500 [m],

implying U1 = U2, vehicles equally choose regional paths 1 and 2. For L1 >L2, implying U1 >U2,

all vehicles choose regional path 2. The evolution of the regional path flows as a function of the

increase of L1 is completely different to those obtained by our reference, i.e. Equilibrium 4.

For Equilibrium 3, the regional path flows at equilibrium depend on the average trip lengths

L1 and L2 and on the mean speed distribution vr(nr) (see Eq. 8). This definition of the network

equilibrium is independent of σL. Consequently, only one evolution of the regional path flows is

shown by the dashed black line in Fig. 5. In Fig. 6, we show the evolution of the speed vr [m/s] for

Equilibrium 3 and four values of L1 [m]. In Fig. 7, we show the evolution of the mean speed v1 and

of the standard deviation σv1 as a function of the L1 increase. In Fig. 8, we show the distributions

of the regional path utilities UOD1
1 and UOD1

2 . We also set a criterion α that defines the normalized

difference between the regional path utilities:

α=
UOD1

2 −UOD1
1

UOD1
2

(16)

The α criterion allows predicting the route flow distributions. If α> 0, the vehicles choose regional

path 2 for these Monte Carlo trials. The distributions of α directly gives an immediate overview

of the flow distribution between the two regional paths. The distributions of the α criterion are
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Figure 5 Regional path flows for the four network equilibria as function of L1 and for the 1 region network

(Fig. 3). For Equilibrium 2 and 4, three values of σL are considered.

also shown in Fig. 8, for four values of L1 [m]. In Fig. 8, we observe the presence of two peaks

for the regional path utilities UOD1
1 and UOD1

2 . These peaks correspond to the fluid and congested

regimes of the traffic states inside the region. This is also observed in the evolution of the speed

v1 in Fig. 6. In Fig. 7, we observe that both the mean speed v1 and the standard deviation σv1

do not vary greatly as L1 increases. Moreover, σv1 is small. The regional path flows at equilibrium

will then be more dependent on how close the average trip lengths are L1 and L2. We depict this

in more detail, analyzing the regional path utility distributions shown in Fig. 8. For L1 = 1300

[m], σv1 is not sufficiently large to compensate the distance between L1 and L2. From the Monte

Carlo trials, we obtain UOD1
2 >UOD1

1 for all the samples, as shown by the α distribution in Fig. 8.
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Figure 6 Evolution of the speed vr [m/s] as a function of the simulation time t [s] for Equilibrium 3 and four

values of L1 = 1300,1400,1500,1600 [m].
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Figure 7 Evolution of the mean speed v1 [m/s] (left panel) and of the standard deviation σv1 [m] (right panel)

as a function of the average trip length L1 [m], for Equilibrium 3.

Thus, all vehicles choose regional path 1, since α < 0. The average trip length for L1 = 1400 [m]

is closer to L2 = 1500 [m] and the effect of σv1 has an impact on the regional path flows. UOD1
2 is

perceived as the minimal one for several Monte Carlo samples, as evidenced by the overlap between

the regional path utility distributions and the α criterion. Hence, some vehicles choose regional

path 2 (see Fig. 5). For L1 ∈ [1375,1475] [m], the regional paths are approximately similar because

the intersection between the regional path utilities is relatively small. This is due to the fact that

σv1 is approximately constant as a function of L1 (see Fig. 7). Since all the demand of the OD

pair can cross only this region, the evolutions of the traffic states are approximately similar. As L1

increases, vehicles switch from regional path 1 to 2. This offsets the evolution of the speed v1 inside

the region. For L1 =L2 = 1500 [m], both regional path utility distributions are equal and vehicles
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Figure 8 Left: Distributions of the regional path utilities UOD1
1 and UOD1

2 . Right: α criterion distribution. The

results are shown for Equilibrium 3 and four values of L1 [m]. The vertical red dashed line represents

the value at α= 0.
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Figure 9 Regional path utility distributions UOD1
1 and UOD1

2 , for Equilibrium 2 (left) and 4 (right) and L1 = 1600

[m]. The results are shown for the three values of σL.

choose both regional paths equally as shown in Fig. 5. For L1 = 1600 [m], the distribution of UOD1
1 is

shifted towards larger values compared to UOD1
2 due to the increase of L1. As L1 increases, vehicles

that choose regional path 1 need more time to complete their trips inside the region, reducing the

speed v1. This shifts the distribution of UOD1
1 towards higher values compared to the distribution

of UOD1
2 . Thus, around 80% of the vehicles choose regional path 2. For larger values of L1 ≥ 1700

[m] all vehicles choose regional path 2 since UOD1
1 >UOD1

2 . The evolution of the regional path flows

as L1 increases for Equilibrium 3 is completely different from that of Equilibrium 4 for the three

σL values considered (see Fig. 5). This enhances the importance of taking into account the trip

length distributions, when calculating the regional path flows distributions.
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Figure 10 α distributions for Equilibrium 2 (left) and 4 (right), L1 = 1600 [m] and three values of σL = 50,100

and 200 [m]. The vertical red dashed line represents the value at α= 0.

Equilibrium 2 considers that only the trip lengths Lrp are distributed. Equilibrium 2 and 4 give

similar regional path flows for larger values of σL = 200. This is because the influence of σv1 becomes

less significant for large σL values. For the three σL values and for L1 =L2 = 1500 [m], the regional

path utilities of Equilibrium 2 and 4 are similar. Consequently, vehicles choose both regional paths

equally. To investigate the similarities and differences between Equilibrium 2 and 4 in more detail,

we fix L1 = 1600 [m] and analyze the regional path utility distributions (Fig. 9) for the three values

of σL. We also consider the respective distributions of α (Fig. 10). The similarities between both

network equilibria depend on the standard deviation σL and on the position of the two peaks of the

regional path utilities for Equilibrium 3 compared to those of Equilibrium 2 (see e.g. Fig. 9). This is
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because the reference Equilibrium 4 is a convolution of Equilibrium 2 and 3 regional path utilities

(see Eq. 9). For σL = 50 [m], the convolution between the regional path utilities of Equilibria 2 and

3, leads to a bi-variate shape for the regional path utilities of Equilibrium 4 (Fig. 9). The latter

occurs since the σL value is not sufficiently large to offset the distance between the two peaks of the

regional path utilities of Equilibrium 3, i.e. the effect due to σv1 . For larger σL = 200 [m] values, the

σL offsets the influence of σv1 and the regional path flows between Equilibrium 2 and 4 are similar.

These two effects offset each other and lead to similar regional path flows between Equilibria 2 and

4, as also shown by the α criterion. For larger σL = 100,200 [m] values, these two peaks vanish from

the regional path utilities as observed in Fig. 9. Nevertheless, after convolution, they still control

where the largest fraction of the regional path utilities for Equilibrium 4 will be located. For the

case shown in Fig. 9, the overlap between UOD1
1 and UOD1

2 is similar for both Equilibrium 2 and

the reference Equilibrium 4. Therefore, as also evidenced by the α criterion, the regional path flows

are similar between both regional paths.

Equilibrium 2 gives the regional path flow distributions closest to those of Equilibrium 4, but

the differences become more significant for lower values of σL, showing the importance of also

considering that vr is distributed. Despite the regional path flows between Equilibrium 2 and 4

are similar for this test case and larger values of σL = 200 [m], this might not be true when there

are also interactions between different regional OD pairs. This is investigated in the next section.

In brief, we cannot neglect the variability of trip lengths and traffic states inside the region. The

variability of vr is particularly relevant for heterogeneous networks consisting of a mix of different

road categories (e.g. local roads and urban motorways). If we do so, we may obtain regional path

flows that are very different from those given by the reference Equilibrium 4.

3.3. Analysis of the regional path flows at equilibrium: the 2-region test case

In this section, we investigate how different the regional path flows calculated for the reference

Equilibrium 4 are compared to the other three network equilibria for a more complex two-region

test case. The trip lengths for the four regional paths are also sampled according to a normal

distribution with: fixed mean lengths L1 = 1400, L2 = 1500 and L4 = 1700 [m] for regional paths 1,

2 and 4, respectively; and an increasing mean trip length L3 between 1200 and 2200 [m] varying

stepwise by 25 [m]. We also consider three values of the standard deviation σL = 50,100,200 [m].

We focus our analysis on the regional OD2 pair since it is the most interesting one. In this test

setting, all the demand of the regional OD1 passes through region R1. This influences the regional

path flows of OD2, since regional path 3 passes through region R1.

In Fig. 11, we show the path flows as a function of L3, for regional paths 3 and 4 and the four

network equilibria. First, it can be observed that the flows of regional paths 3 and 4 are not equally
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Figure 11 Path flows as function of L3, for regional paths 3 and 4 that connect the OD2 pair. For Equilibria 2

and 4, three values of σL are considered.

distributed when L3 =L4 = 1700 [m], due to the interaction with the OD1. The regional path flows

are equally distributed for different values of L3, depending on the network equilibrium. Second,

the regional path flows for Equilibria 1 and 3 are those that differ most in comparison to the

reference Equilibrium 4. We start by analyzing Equilibrium 1 in more detail. Vehicles switch from

regional path 3 to 4 as L3 increases, such that the condition UOD2
3 = UOD2

4 ⇒ L3

L4
= v1

v2
is satisfied.

To analyze the differences and similarities between Equilibria 2 and 3 compared to the reference

Equilibrium 4, we analyze the regional path flows for a fixed value of L3 = 1850 [m]. To do this,

we consider the distributions of the regional path utilities UOD2
3 and UOD2

4 for L3 = 1850 [m]. The

results are shown in Fig. 12.
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Figure 12 Distributions of the regional path utilities UOD2
3 and UOD2

4 for Equilibrium 2 to 4. The results are

shown for L3 = 1850 [m]. For Equilibrium 2 and 4, two values of σL = 50,100 [m] are considered.

As with the analysis of the previous section test case, the shape and overlap between UOD2
3

and UOD2
4 for the reference Equilibrium 4 depend on the position of the distribution peaks for

Equilibrium 3 compared to the positions of the distributions for Equilibrium 2, and on the standard

deviation σL. We first consider the case of σL = 50 [m], in Fig. 12. The convolution between

the regional path utility distributions of Equilibria 2 and 3 leads to a bivariate distribution for

Equilibrium 4. The closeness between the two peaks of different regional path utility distributions

for Equilibrium 3, induces a large overlap between UOD2
3 and UOD2

4 for Equilibrium 4. Since this

overlap is larger for the reference Equilibrium 4 compared to Equilibrium 2, the regional path

utility UOD2
3 might be perceived as the minimal one for a larger number of Monte Carlo trials.
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Consequently, for L3 = 1850 [m], the path flow of regional path 3 is slightly larger for the reference

Equilibrium 4 than for Equilibrium 2. But the effects of the convolution between the regional

paths utility distributions of Equilibria 2 and 3 are offset for larger values of σL. For Equilibrium

3, the regional path utility distributions are similar for σL = 50 and σL = 100, since they do not

depend on σL. But for larger values of σL and for Equilibrium 2, the intersection between UOD2
3

and UOD2
4 increases. This increases the chance that UOD2

3 is perceived as the minimal utility for

a larger number of Monte Carlo trials. In this case, it leads to an approach between the regional

path flows calculated for Equilibria 2 and 4. In brief, Equilibrium 2 is the one which gives the

regional path flows closest to the reference Equilibrium 4. However, it is difficult to predict in which

circumstances this will occur. This backs the conclusion of the previous section, where we should

take into account the effects of the trip length variability as well as the time-evolution of regional

traffic states.

3.4. The effect of the correlation between regional paths on the network
equilibrium

In this section, we show that the framework proposed takes into account the correlation between

regional paths, thanks to the Monte Carlo trials performed at the region level. To this end, we

compare the regional path flows calculated for Equilibria 2 and 4 with the Multinomial Logit model.

The MNL assumes that the distribution of travel times over paths are independent and identically

Gumbel distributed, with a scale parameter θ. Following Chen et al. (2012), the scale parameter is

defined at the origin-destination od level, in city networks. In this paper, use the regional OD level

as baseline, i.e. θOD. The MNL model has the advantage of having a closed form for the calculation

of the regional paths’ choice probability. However, the MNL is not able to handle the correlation

between regional paths due to the θOD assumption.

We consider two test scenarios. The first test scenario corresponds to the 1-region network and

demand scenario shown in Fig. 3. The trip lengths are sampled according to a normal distribution

with a fixed mean L2 = 1500 [m] for regional path 2; and a mean value varying between 1300

to 1700 [m], increasing the step size by 25 [m] for regional path 1. The standard deviations for

both regional paths are fixed at σL = 50,100,200 [m]. The second test scenario corresponds to the

2-region network and demand scenario shown in Fig. 4 (a). The trip lengths are sampled according

to a normal distribution with: fixed mean lengths L1 = 1400, L2 = 1500 and L4 = 1700 [m] for

regional paths 1, 2 and 4, respectively; and an increasing mean trip length L3 between 1200 and

2200 [m] varying stepwise by 25 [m]. The standard deviations for the four regional paths are fixed

at σL = 50,100,200 [m].
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Figure 13 Top: Regional path flows at equilibrium as a function of L1, for the first test scenario. Bottom: Regional

path flows at equilibrium as a function of L3, for the second test scenario.

The scale parameter of the MNL, θOD, is calibrated according to the previous values of σL [m],

as:

θOD =

√
π2v2

r

6σ2
L

(17)

In Fig. 13, we show the regional path flows for both test scenarios, for Equilibria 2 and 4, and

for the MNL. For the first test scenario, we observe that the regional path flows for Equilibrium

2 are similar to those of the MNL. This occurs because we consider an independent sampling of

trip lengths, with a similar σL value for both regional paths. Moreover, the utility function defined

in Eq. 7 to calculate Equilibrium 2 does not consider that the regional mean speed set vr(nr) is

distributed and that the average mean speed vr is the same for both regional paths. On the other

hand, the calculation of Equilibrium 4 considers that both the mean speed and trip lengths are

distributed, capturing the correlation between the two regional paths. This is demonstrated by the
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different regional path flows for Equilibrium 4 and the MNL shown in Fig. 13. For large σL values,

the influence of σv is offset. Therefore, the regional path flows are similar for Equilibrium 2 and 4

and the MNL. Whilst, for low σL values, σv plays an important role and the regional path flows for

Equilibrium 2 and the MNL are different than those of the reference Equilibrium 4. For the second

test scenario, it can be seen that Equilibrium 2 gives regional path flows different from those of

the MNL. This occurs because in this test scenario, we have a correlation between regional paths

connecting different regional OD pairs. The latter influences the calculation of the mean speed vr

for this region and directly influences the utility function defined in Eq. 7. On the other hand, the

scaling of the θOD of the MNL is not sensitive to the mean speed vr,∀r= 1,2.

In brief, we show the importance of considering the effect of the traffic states in the calculation of

the network equilibrium, to capture the correlation between regional paths. Moreover, we show that

the reference Equilibrium 4 represents an extension of the dynamic traffic assignment framework for

regional networks proposed by Yildirimoglu and Geroliminis (2014). First, our framework accounts

for distributions of trip lengths that are explicitly calculated, while Yildirimoglu and Geroliminis

(2014) calculated them in an iterative process, as discussed in the introduction. Second, we do

not assume any prior statistical distribution for the regional path travel times. Yildirimoglu and

Geroliminis (2014) assumed that these terms are identically and independently distributed Gumbel

variables and made use of the MNL formulation. Third, our framework captures the correlation

between regional paths, while the MNL formulation does not.

4. Application to a real test case: the 6th district of the Lyon network

In this section, we demonstrate the importance of considering σL and σv in the definition of the

utility function for a real setting related to a real city network. We start by introducing the city

network and test scenarios (Sect. 4.1). We then analyze the influence of σL and σv on the network

equilibrium considering two different scenarios. In the first one, we analyze the individual influence

of the previous two factors on the traffic dynamics in the regions at equilibrium (Sect. 4.2). In the

second one, we analyze their combined influence on the traffic dynamics at equilibrium (Sect. 4.3).

In particular, we discuss the role of σv in the calculation of the network equilibrium.

4.1. Definition of the test scenarios

The traffic states are simulated through an accumulation-based MFD model (Daganzo 2007, Geroli-

minis and Daganzo 2008) for the 6th district of the Lyon network (Fig. 14 (a)). This network has

757 links and 431 nodes and is divided into 8 regions. The MFD functions (Fig. 14 (b)) have been

fitted considering microscopic simulations from Symuvia (Leclercq 2007) on the same network,

where the demand scenario mimics a morning peak. We further assume a bi-parabolic shape to fit

the simulated data.
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Figure 14 (a) Lyon 6th district network divided into 8 regions. (b) MFD function of each region.

The regional choice set ΩOD (Batista et al. 2018) and the distributions of trip lengths Lrp

(Batista, Leclercq, and Geroliminis 2019) that characterize the regional paths are explicitly calcu-

lated following the procedure previously discussed in Sect. 2.2. We randomly sample Nod = 10000

od pairs on the 6th district Lyon network and calculate the shortest-path in distance for each one.

Each trip represents an indivual travel in the city network. This step allows to define the set of

virtual trips Γ. We then consider the definition of the city network partitioning and verify the

sequence of regions that each virtual trip crosses, i.e. the path they define on the regional network

or also called as regional path. The virtual trips are then grouped by the regional path they define.
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Figure 15 (a) Demand scenario 1 with 2 OD pairs. (b) Demand scenario 2 with 6 OD pairs.

We are left in total with 205 regional paths. They are ranked with different levels of significance,

i.e. different regional paths are defined by a different number of virtual trips. We define the most

significant regional paths for one OD pair as those that are defined by the largest number of virtual

trips. In this paper, we assumes a maximum of the two most significant regional paths of each OD

pair to gather the regional choice set ΩOD. The distributions of trip lengths are calculated based

on the travel distances inside each region, of all virtual trips associated to the same regional path

(Batista, Leclercq, and Geroliminis 2019). The set of trip lengths of regional path p inside region

r is mathematically described as (Batista, Leclercq, and Geroliminis 2019):

Lrp = {δprklrk},∀k ∈ Γ (18)

where lrk is the length of trip k inside region r; and δprk is a binary variable that equals 1 if trip k

crosses region r and is associated to regional path p, or 0 otherwise.

As previously stated, in this section we investigate the influence of σL and σv on the traffic

dynamics in the regions at equilibrium, in two distinct scenarios. In the first scenario (scenario 1),
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we investigate the individual influence of the previous two factors on the traffic dynamics in the

regions at equilibrium conditions. We consider two OD pairs: 4-7; and 6-1. We have a total of 4

regional paths. Table 2 lists the regional paths and their average trip lengths in each region for

this scenario 1. In the second scenario (scenario 2), we investigate the influence of the combined

contributions of σL and σv on the traffic dynamics in the regions. We consider 6 regional OD pairs:

1-6; 3-2; 4-8; 5-7; 7-4; and 8-3. There are 17 regional paths in total. Fig. 15 depicts the demand

curves for these two scenarios.

Table 2 Average regional trip lengths (m) for the regional paths for the demand scenario 1.

Regional path
Region

1 2 3 4 5 6 7 8
4-5-7 ∼ ∼ ∼ 246 464 ∼ 387 ∼

4-6-8-7 ∼ ∼ ∼ 234 ∼ 414 130 464
6-5-2-1 242 427 ∼ ∼ 279 174 ∼ ∼
6-4-2-1 196 355 ∼ 318 ∼ 265 ∼ ∼

The total simulation period is set to T = 8000 seconds and is divided into 32 assignment periods

of 250 seconds each. The network equilibrium is calculated for each period. For the convergence

criteria, we consider a maximum number of violations of Φ = 0 and/or a Gap tolerance tol≤ 0.01

and a maximum of descent step iterations of Nmax = 100. For the Monte Carlo simulations, we

consider NMC
Lrp

=NMC
vr

= 10000 samples.

4.2. Analysis of the individual influence of σL and σv on the network equilibrium

In this section, we investigate the individual influence of σL and σv on the calculation of the network

equilibrium. Fig. 16 shows the traffic states modeled for scenario 1 and for the eight regions of the

6th district of the Lyon network. Fig. 17 depicts the regional path flows at equilibrium. The results

are shown for the four network equilibria. The analysis of σL and σv in the calculation of the network

equilibrium on a real network is more challenging than in the theoretical networks discussed in

the previous Sect. 3. This is because of the larger heterogeneity of average trip lengths and σL

assigned to the different regional paths (Batista, Leclercq, and Geroliminis 2019). As discussed by

Batista, Leclercq, and Geroliminis (2019), this directly influences the traffic dynamics since a larger

travel distance for one path inside a given region means a potential bottleneck. As an example,

let’s consider two regional paths that are crossing the same region. One of the regional paths has

an average travel distance of 500 meters inside this region, while the other one has 1000 meters.

The vehicles traveling on the longer regional path need more time to complete their trips inside

this region because of the speed-MFD assumption, i.e. all vehicles travel inside the same region

at the same average speed for a given time instant. This increases the vehicles accumulation for a
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Figure 16 Evolution of the mean speed v(t) as a function of the simulation time t for the eight regions and the

four network equilibria. The results depicted are for the demand scenario 1.
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Figure 17 Evolution of regional path flows QOD
p as function of the simulation time t [s], for all four regional

paths. Each subplot corresponds to each of the four network equilibrium.

larger period of time and reduces the mean speed v(t). The changes in the traffic dynamics induce

changes in the evolution of the mean speed profile in the regions and consequently on σv.

We start by analyzing the modeled traffic states in the regions for Equilibrium 1. We note that

for this demand scenario 1, none of the four regional paths cross region 3. This region is then

maintained at the free-flow speed during all the simulation. Between 0 and 1000 seconds, all drivers

choose regional paths p= {6421} and p= {457} as U 61
p={6421} <U 61

p={6521} and U 47
p={457} <U47

p={4687}.

The vehicles accumulation increases in all regions except in region 3 and the mean speed v(t)

decreases as observed in Fig. 16. There are two demand peaks in the period between 1000 and

6000 seconds (see Fig. 15 (a)). Initially, between 1000 and 4000 seconds, all drivers choose the

same regional paths (i.e. p= {6421} and p= {457}) as their travel times are still the minimal ones.

The increase of the demand traveling on OD 61 leads to an increase of the vehicles accumulation
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traveling on regional path p= {6421} between 1000 and 2750 seconds, reducing the mean speed

v(t) in these four regions. Between 2750 and 4000 seconds, the vehicles accumulation decreases and

the mean speed v(t) increases in the same regions. Between 4000 and 4250 seconds, the number

of vehicles traveling on regional path p = {6421} decreases while it increases on regional path

p= {457}. This leads to different evolution trends of the vehicles accumulation in regions 5 and 6.

There is an increase of the vehicles accumulation in region 5, leading to a reduction of the mean

speed v(t). In region 6, we observe an inverse trend. At t= 4250 seconds, drivers start to switch

from regional path p= {457} to p= {4687}. In order to better understand this switch, we analyze

the utilities (see Eq. 6) of the two regional paths of OD 47:

U 47
p={457} =

246

v4

+
464

v5

+
387

v7

(19)

U 47
p={4687} =

234

v4

+
414

v6

+
464

v8

+
130

v7

(20)

where the average trip length values are gathered from Table 2 and the mean speed values from

the inspection of Fig. 16.

We recall that drivers aim to minimize their own regional path travel times, i.e. they are utility

minimizers. Under User Equilibrium conditions, between 4250 and 6000 seconds, we have that

U 47
p={457} ≈U 47

p={4687}. The vehicles accumulation increases in region 5, reducing its mean speed v(t).

This leads to an increase of the travel time of regional path p= {457}, i.e. increasing Eq. 19. On

the other hand, during the period between 4000 and 4250 seconds, there are no vehicles traveling

on regional path p = {4687}, keeping region 8 still at the free-flow speed. Moreover, the average

travel distance of regional path p = {4687} in region 7 is 130 meters, which is much lower than

the 390 meters for regional path p= {457}. The travel time that is added by region 8 to Eq. 20

is compensated by the lower travel time in region 7. This is because of the smaller average travel

distance for regional path p= {4687} in region 7 in comparison with p= {457}. To maintain the

User Equilibrium conditions, the fraction of drivers switching to regional path p= {4687} increases

as region 5 becomes more congested, i.e. during the period between 4000 and 5000 seconds. After

5000 seconds, the number of vehicles traveling on these two regional paths decreases as the demand

traveling on OD 47 also decreases. The vehicles accumulation on region 5 decreases and its mean

speed v(t) increases, reducing the travel time of regional path p = {457}. Then, there are more

drivers choosing this regional path such that the User Equilibrium conditions are satisfied. After

6000 seconds, the demand levels on both OD pairs are constant and equal to 0.1 veh/s. The vehicles

accumulation in the regions are maintained at a constant level as well as their mean speeds v(t)

(see Fig. 16). All drivers choose regional paths p = {6421} and p = {457} as their travel times
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are perceived as the minimal ones. In this case, the User Equilibrium conditions correspond again

to U 61
p={6421} <U61

p={6521} and U 47
p={457} <U47

p={4687}, similar to the initial period between 0 and 1000

seconds.

We now investigate the influence of σv on the regional path flows at equilibrium. For this, we

analyze the differences in the evolution trends of the mean speed v(t) in the regions as well as the

differences of the regional path flows between Equilibrium 3 and 1. We start by stressing out the

fact that as σv→ 0 =⇒ vr→ vr, Eq. 8 is reduced to:

UOD
p →

∑
r∈X

(
Lrp

vr

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (21)

This formulation of the regional path utility UOD
p is similar to the one defined in Eq. 6 for

Equilibrium 1. The second term
Lrpvr
v2r

in Eq. 8 only plays a significant role in the drivers’ perception

of travel times for larger values of σv. This happens during the charging and discharging periods

of the regions, i.e. between 1000 and 6000 seconds. The first demand peak occurs between 1000

and 4500 seconds on OD 61. During this period and in the case of Equilibrium 1, all drivers choose

regional path p= {6421}. In the case of Equilibrium 3, the travel time of regional path p= {6521}

is perceived as the minimal one for an increasing number of Monte Carlo samples, as the demand

peak increases until 2750 seconds. After this time instant, the demand decreases and the travel time

of regional path p= {6421} is perceived as the minimal one for a larger number of Monte Carlo

samples. The fraction of drivers choosing regional path p= {6521} increases during the charging

period and decreases during the discharging period of the regions. A similar trend is observed

between 4000 and 6000 seconds for the second demand peak of OD 47. The travel time of regional

path p= {4687} is perceived as the minimal one for an increasing number of Monte Carlo samples

as the demand peak increases until 5000 seconds. Therefore, the fraction of drivers choosing this

regional path increases.

We now investigate the influence of σL on the regional path flows at equilibrium. For this purpose,

we analyze the differences between the evolution trends of the mean speed v(t) in the regions as

well as the differences of the regional path flows between Equilibrium 2 and 1. We note that as

σL→ 0 =⇒ Lrp→Lrp. The utility of regional path p defined in Eq. 7 is reduced to the one set up for

Equilibrium 1 in Eq. 6. Batista, Leclercq, and Geroliminis (2019) shows that the standard deviation

σL of the trip length distributions depends on the topology of the city network in connection

with the definition of the regions, i.e. the partition of the city network. The authors show that

for Origin and Destination regions of a regional path, the shape of the trip length distributions

depend on the spatial distribution of the origin and destination nodes inside these regions as well

as on the border nodes that allow to travel to the adjacent regions. The trip length distributions
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for intermediate regions depend on the topology of the city network as well as on the incoming

and outgoing links directions of the border nodes. For example, the standard deviation of the trip

length distribution of regional path p= {4687} inside region 6 is 0. This happens because the test

network represents an area of the Lyon city, where there are a lot of one-way streets. The definition

of the city network partitioning depicted in Fig. 14 (a) sets only one border node that allows regions

4 to 6 and then from 6 to 8. Therefore, there is only one shortest-path between these two border

nodes and the travel distance inside region 6 is always equal to 414 meters. Fig. 18 depicts the

distributions of the standard deviations σL for the total 205 internal and regional paths calculated

for the 6th district Lyon network. We distinguish these distributions between the internal paths and

the Origin, Intermediate and Destination regions for the regional paths. We observe that σL is in

general greater than 0. Even though we observe that ∼ 30% of the intermediate regions have a small

σL value, this value can go up to σL ∼ 150−200 meters. Generally, we observe that σL >> 0 meters,

giving σL a significant role in the calculation of the regional path flows at equilibrium. Fig. 17

depicts the differences between the regional path flows for Equilibrium 2 and 1. For Equilibrium 1,

all drivers choose regional paths p= {6421} and p= {457}, except between 4000 and 6000 seconds.

During the latter period, drivers choose between regional paths p = {457} and p = {4687}, such

that U 47
p={457} ≈ U 47

p={4687} as previously discussed. For Equilibrium 2, around ∼ 60% of the drivers

choose regional paths p= {457} and p= {6421}, while ∼ 40% choose the regional paths p= {4687}

and p= {6521}. The different drivers’ regional paths choices between Equilibrium 1 and 2 induce

significant changes in the traffic dynamics in the regions (see Fig. 16).

We now investigate the combined influence of σL and σv on the drivers choices for their regional

paths. For this purpose, we analyze the differences between the evolution trends of the mean speed

v(t) in the regions as well as the differences of the regional path flows between Equilibrium 4 and

3. We stress out that when σL >>σv, the regional path utility UOD
p defined in Eq. 9 reduces to:

UOD
p ≈

∑
r∈X

(
Lrp

vr
+
Lrp

vr

)
δrp,∀p∈ΩOD ∧∀(O,D)∈W (22)

where only the trip length distributions Lrp influence the regional paths utilities UOD
p and con-

sequently the drivers choices. When σL is dominant over σv, the regional path flows between

Equilibrium 2 and 4 will be close, as verified in Fig. 17. This also leads to similar traffic dynamics

in the regions between Equilibrium 2 and 4 (see Fig. 16). Nevertheless, σL is not always domi-

nant over σv and the previous result cannot be generalized. In more congested and more complex

demand scenarios, where there are more interactions between different regional paths crossing the

same region, the σv becomes more significant and plays an important role in the drivers choices

for their regional paths.
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Figure 18 Distributions of σL for the internal paths as well as for the Origin, Intermediate and Destination

regions of all 205 regional paths obtained for the 6th district Lyon network. The binwidth is set to 25

meters.

4.3. Analysis of the combined influence of σL and σv on the network equilibrium

In this section, we investigate the combined influence of σL and σv on the drivers choices for their

regional paths, for the demand scenario 2 introduced in Sect. 4.1. We can distinguish two important

time instants of this demand scenario. The first moment lies between 1000 and 2000 seconds where

there is a demand peak on OD 32 and a sudden increase of the demand traveling on OD 16. The

second moment occurs between 4000 and 6000 seconds, that coincides with the sudden decrease

of the demand on OD 16 and the three demand peaks on OD 48, 74 and 57. Fig. 19 depicts the

evolution of the traffic dynamics in the regions for this demand scenario 2. One can observe that

there are not significant differences between the traffic dynamics for Equilibrium 2 and 4, between

1000 and 2000 seconds. This happens because σL is dominant over σv, i.e. σL >> σv, similar to

the case that we have dissected in the previous section. During the second period between 4000

and 6000 seconds, the demand peaks lead region 5 to become more congested and the congestion

propagates to the adjacent regions 4, 6 and 7. This yields significant changes in the traffic dynamics

in these regions and therefore on the mean speed v(t), during the assignment period of 250 seconds

for which the network equilibria are calcualted. In this case, σv becomes more significant and also

plays an important role in the drivers choices for their regional path choices. The influence of σv on

the drivers’ choices for their regional paths leads to significative differences between the evolution
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Figure 19 Same as in Fig. 17, but for the demand scenario 2.
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trends of the traffic dynamics in regions 4, 5, 6 and 7 between 4000 and 6000 seconds as depicted

in Fig. 19.

5. Conclusions

In this paper, we propose a regional dynamic traffic assignment framework for MFD-based models

that explicitly account for trip length distributions Lrp and the evolution of the regional mean

speed vr(nr). We set four formulations of the network equilibrium, based on which terms are

considered distributed. We show that Equilibrium 4, which considers that both trip lengths and

regional mean speed are distributed, should be preferred. The results shown in this paper confirm

that we cannot neglect the variability of trip lengths inside the regions. In addition, we showed the

importance of considering that the regional mean speed is also distributed, in order to account for

the correlation between regional paths. The proposed regional dynamic traffic assignment in the

MFD context is an extension of the framework discussed by Yildirimoglu and Geroliminis (2014).

First, our framework explicitly accounts for multiple trip lengths inside the regions that are explic-

itly calculated. Second, we do not assume any prior statistical distribution for the regional path

travel times, whereas Yildirimoglu and Geroliminis (2014) considered that they are independent

and identically distributed variables. Moreover, the authors used the MNL formulation to calculate

the network equilibrium. Instead, we considered the distributions of trip lengths and regional mean

speed and used Monte Carlo simulations to calculate the network equilibrium. Contrary to the

MNL formulation, our framework was able to capture the correlation between regional paths. We

also analyzed the implementation of our framework on the 6th district of the Lyon network, where

the trip lengths are explicitly calculated following the specific regional path, as proposed in Batista

et al. (2018) and Batista, Leclercq, and Geroliminis (2019). Since we calculated the network equi-

librium for small simulation periods, the mean speed did not vary greatly and σv was low. In this

case, σL dominated in the calculation of the utility functions and was responsible for the changes in

the system dynamics observed. However, when there is an important interaction between demand

peaks of different OD pairs, σv becomes more significant and also plays an important role in the

drivers choices for their regional paths and on the modeled traffic dynamics in the regions.

In future research, we plan to investigate the time-dependence of trip lengths, i.e. their depen-

dence on the traffic dynamics in the regions, and propose a robust and computationally light

methodology to update the trip length distributions accordingly. This will allow to account for

the variation of the trip length distributions variances in the calculation of the regional network

equilibrium. We also plan to extend this methodological framework to account for different kinds

of drivers’ behavior, such as bounded rational (Mahmassani and Chang 1987, Di and Liu 2016,

Batista, Zhao, and Leclercq 2018) and regret-aversion (Chorus 2014, Li and Huang 2016), as well

as heterogeneous preferences for more reliable travel times.
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