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Abstract. The ternary betweenness relation of a tree, B(x, y, z),
indicates that y is on the unique path between x and z. This notion can be
extended to order-theoretic trees defined as partial orders such that the
set of nodes greater than any node is linearly ordered. In such generalized
trees, the unique "path" between two nodes can have infinitely many
nodes.

We generalize some results obtained in a previous article for the
betweenness of join-trees. Join-trees are order-theoretic trees such that
any two nodes have a least upper-bound. The motivation was to define
conveniently the rank-width of a countable graph. We have called quasi-
tree the betweenness relation of a join-tree. We proved that quasi-trees
are axiomatized by a first-order sentence.

Here, we obtain a monadic second-order axiomatization of between-
ness in order-theoretic trees. We also define and compare several induced
betweenness relations, i.e., restrictions to sets of nodes of the betweenness
relations in generalized trees of different kinds. We prove that induced
betweenness in quasi-trees is characterized by a first-order sentence. The
proof uses order-theoretic trees.
Keywords : Betweenness, order-theoretic tree, join-tree, first-order logic,
monadic second-order logic, quasi-tree.

Introduction

In order to define the rank-width of a countable graph in such a way that it
be the least upper-bound of those of its finite induced subgraphs, we defined in
[3] generalized undirected trees called quasi-trees such that the unique "path"
(in a precise sense extending the usual notion) between any two nodes can have
infinitely many nodes, in particular, can have the order-type of the interval [0, 1]
of rational numbers. A related notion is that of an order-theoretic tree defined
as a partial order such that the set of nodes greater than any node is linearly
ordered. It is a join-tree if any two nodes have a least upper-bound. It may have
no root, i.e., no largest element. Quasi-trees can be seen as undirected join-trees.



The betweenness relation of a usual tree is the ternary relation B, such that
B(x, y, z) holds if and only if x, y, z are distinct and y is on the unique path
between x and z. This notion can be generalized to order-theoretic trees. A
quasi-tree is the betweenness relation of a countable (which means possibly finite)
join-tree, and quasi-trees are the countable structures (N,B) that satisfy (hence,
are axiomatized by) a first-order sentence. We also obtained in [2, 3] an algebraic
characterization of the join-trees and quasi-trees that are the unique countable
models of monadic-second order sentences. This type of characterization will be
extended to order-theoretic trees in a future work. In this article, we obtain a
monadic second-order axiomatization for betweenness in order-theoretic trees.

We also define and study several induced betweenness relations, i.e., the re-
strictions to sets of nodes of betweenness in generalized trees of different kinds.
An induced betweenness in a quasi-tree need not be a quasi-tree. However, in-
duced betweenness in quasi-trees is also characterized by a single first-order
sentence, which does not follow immediately from the first-order characteriza-
tion of quasi-trees by a general logical argument. The proof uses order-theoretic
trees.

We obtain four types of betweenness and induced betweenness relations S =
(N,B). In each case, such a structure S is defined from an order-theoretic tree
T . Except for the case of induced betweenness in order-theoretic trees, some
defining tree T can be described in S by monadic second-order formulas. In
technical words, T is defined from S by a monadic second-order transduction
(see [6] for a thorough study).

In order to obtain a concrete view of our generalized trees, we embed them
in topological trees, defined as connected unions of segments of straight lines in
the plane that have no subset homeomorphic to a circle. Induced betweenness
relations in topological trees and in quasi-trees are the same.

Other works on betweenness.

Betweenness in partial orders of any cardinality is axiomatized by J. Lihova
in [7] by an infinite set of universal first-order sentences. It is not stated whether
this set can be replaced by a finite one, but presumably not. It can be by a
monadic second-order sentence1 .

Motivated by the study of convex geometries, V. Chvatal studies in [1] be-
tweenness in finite triangulated graphs. It is relative to induced paths : y is
between x and z if it is an intermediate vertex on a chordless path between x
and z. No axiomatization is provided.

Complete proofs for all stated results and counter-examples can be found in
[5], which can be read on line at : https://hal.archives-ouvertes.fr/hal-02205829.

1 Definitions and basic facts

All sets, trees, graphs and logical structures are countable, which means, finite
or countably infinite. If n is a positive integer, then [n] := {1, 2, ..., n}.

1 Betweenness in partial orders, work in preparation.



1.1 Trees

A tree is a possibly empty, undirected graph that is connected and has no cycles.
Hence, it has no loops and no two edges with same end vertices. The set of nodes
of a tree T is NT .

A rooted tree is a nonempty tree equipped with a distinguished node called
its root. We define on NT the partial order ≤T such that x ≤T y if and only if y
is on the unique path between x and the root. The least upper-bound of x and
y, denoted by x ⊔T y is their least common ancestor, also called their join. The
minimal elements are the leaves, and the root is the greatest node.

Fact 1 : A partial order (N,≤) is (NT ,≤T ) for some rooted tree T if and only
if it has a largest element and, for each x ∈ N , the set L≥(x) := {y ∈ N | x ≤ y}
is finite and linearly ordered. These conditions imply that any two nodes have a
join.

1.2 Order-theoretic forests and trees

Definition 2 : O-forests and O-trees.
In order to have a simple terminology, we will use the prefix O- to mean

order-theoretic and to distinguish these generalized trees from those of [4].
(a) An O-forest is a pair F = (N,≤) such that:
1) N is a possibly empty set called the set of nodes,
2) ≤ is a partial order on N such that, for every node x, the set L≥(x) is

linearly ordered.
It is an O-tree if furthermore:
3) every two nodes x and y have an upper-bound.
An O-forest is thus the disjoint union of O-trees that are its connected com-

ponents, with respect to its Gaifman graph2 . Two nodes are in a same composing
O-tree if and only if they have an upper-bound.

The leaves are the minimal elements. If N has a largest element r (x ≤ r for
all x ∈ N) then F is a rooted O-tree and r is its root.

(b) An O-tree T is a join-tree3 if every two nodes x and y have a least
upper-bound denoted by x ⊔T y and called their join (cf. Subsection 1.1). �

Examples and remarks 3 :
(1) If T is a rooted tree, then (NT ,≤T ) is a join-tree. Every finite O-tree is

a join-tree of this form.
(2) Every linear order is (trivially) a join-tree.
(3) Let S := N ∪ {a, b, c} be strictly ordered by <S such that a <S b, c <S b

and b <S i <S j for all i, j ∈ N such that j < i, and a and c are incomparable.
Then (S,≤S) is a join-tree. In particular a ⊔S c = b. It is not the partial order

2 Defined for a relational structure: two elements are adjacent if they belong to some
tuple of some relation.

3 An ordered tree is a rooted tree such that the set of sons of any node is linearly
ordered. This notion is extended in [4] to join-trees. Ordered join-trees should not
be confused with order-theoretic trees, that we call O-trees for simplicity.



associated with any rooted tree by Fact 1. If S′ := S−{b}, we obtain an O-tree
with set of nodes S′. It is not a join-tree because a and c have no join.

(4) We can consider N∪ {a, b} as forming a path4 in the join-tree(S,≤S) (of
(3)) between a and 0, the largest element.

2 Quasi-trees and betweenness in O-trees

In this section, we will define a betweenness relation in O-trees, and compare it
with the betweenness relation induced by sets of nodes of join-trees or O-trees.
We generalize the notion of quasi-tree defined and studied in [3] and [4].

For a ternary relation B on a set N and x, y ∈ N , we define [x, y]B :=
{x, y} ∪ {z ∈ N | (x, z, y) ∈ B}. If n > 2, then the notation 	= (x1, x2, ..., xn)
means that x1, x2, ..., xn are pairwise distinct.

2.1 Betweenness in trees and quasi-trees

Definition 4 : Betweenness in linear orders and trees.
(a) Let L = (X,≤) be a linear order5 . Its betweenness relation BL is the

ternary relation on X defined by :

BL(x, y, z) :⇐⇒ x < y < z or z < y < x.

(b) If T is a tree or a forest, its betweenness relation BT is the ternary relation
on NT defined by :

BT (x, y, z) :⇐⇒ x, y, z are pairwise distinct and y is on the unique path
between x and z.

If R is a rooted tree, we define its betweenness relation BR as BUnd(R) where
Und(R) is the tree obtained from R by forgetting its root and its edge directions.
We have :

BR(x, y, z) ⇐⇒ x, y, z are pairwise distinct, x and z have a join x ⊔R z
and (x <R y ≤R x ⊔R z or z <R y ≤R x ⊔R z).

(c) With a ternary relation B on a set X, we associate the ternary relation
A, also on X :

A(x, y, z) :⇐⇒ B(x, y, z) ∨B(x, z, y) ∨B(y, x, z).

4 Formal definition in [5].
5 This definition can be used in partial orders. The corresponding notion of between-
ness is axiomatized in [7]. We will not use it for defining betweenness in order-
theoretic trees, although these trees are defined as partial orders.



It is to be read : x, y, z are aligned.
If n ≥ 3, then B+(x1, x2, ..., xn) stands for the conjunction of the conditions

B(xi, xj , xk) for all 1 ≤ i < j < k ≤ n and all 1 ≤ k < j < i ≤ n.

Proposition 5 [Proposition 5.2 in [4]] : (a) The betweenness relation B of
a linear order (X,≤) satisfies the following properties for all x, y, z, u ∈ X.

A1 : B(x, y, z)⇒	= (x, y, z).
A2 : B(x, y, z)⇒ B(z, y, x).
A3 : B(x, y, z)⇒ ¬B(x, z, y).
A4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).
A5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).
A6 : B(x, y, z) ∧B(x, u, z)⇒ y = u ∨ [B(x, u, y) ∧B(u, y, z)]

∨[B(x, y, u) ∧B(y, u, z)].
A7’ : 	= (x, y, z)⇒ A(x, y, z).

(b) The betweenness relation B of a tree T satisfies the properties A1-A6 for
all x, y, z, u in NT together with the following weakening of A7’ :

A7 : 	= (x, y, z)⇒ A(x, y, z) ∨ ∃w.(B(x,w, y) ∧B(y,w, z) ∧B(x,w, z)).

Remarks 6 : (1) A7’ says that if x, y, z are three elements in a linear order,
then, one of them is between the two others. Property A7 says that, in a tree T ,
if x, y, z are three nodes not on a path, then there is some node w between any
two of them. Actually :

{w} = Px,y ∩ Py,z ∩ Px,z where Pu,v is the set of nodes on the path
between u and v,

so that we have B(x,w, y) ∧B(y,w, z) ∧B(x,w, z).
If T is a rooted tree, then w is the least common ancestor of x, y and z. In

the tree T of Figure 3(b) below, we have w = 1 if x = a, y = d and z = e.
(2) Properties A1-A6 imply that the two cases of the conclusion of A7 are

exclusive6 and that, in the second one, there is a unique node w satisfying
B(x,w, y) ∧ B(y,w, z) ∧ B(x,w, z) (by Lemma 11 of [3]), that is denoted by
MS(x, y, z).

(3) Properties A1-A5 belong to the axiomatization of betweenness in partial
orders given in [7].

The letter B and its variants, BT , B1, etc. will denote ternary relations.

Definitions 7 : More betweenness properties.
We define the following properties of a structure (N,B) :

6 The three cases of A(x, y, z) are exclusive by A2 and A3.



Fig. 1. Structure S of Example 8.

A8 : ∀u, x, y, z.[	= (u, x, y, z) ∧B(x, y, z)⇒
B(u, x, y) ∨B(u, y, z) ∨B(x, y, u) ∨B(y, z, u)].

A8’ : ∀u, x, y, z.[	= (u, x, y, z) ∧B(x, y, z) ∧ ¬A(y, z, u)⇒ B(x, y, u)].

If (N,B) satisfies A1-A6, the four cases of the conclusion of A8 are not
exclusive : B(u, x, y) implies B(u, y, z) (because of B(x, y, z) and A4).

Example 8 : A1-A6 do not imply A8’.
Consider S := ([5], B) where B satisfies (only) B+(1, 2, 3, 4) ∧ B+(5, 3, 4).

It is shown in Figure 1. (There is no curve line going through 1,2,5 because
B(1, 2, 5) is not assumed to be valid).

Conditions A1-A6 hold but A8’ does not, because we haveB(1, 2, 3)∧¬A(2, 3, 5)
: A8’ would imply B(1, 2, 5) that is not assumed. By the next lemma, A1-A6 do
not imply A8 either. �

In the following proofs and discussions about a structure (N,B), we will
always assume (unless otherwise specified) that A1-A6 hold, and we will not
make their use explicit. We say that (N,B) is trivial if B = ∅. In this case,
Properties A1-A6, A8 and A8’ hold trivially.

Lemma 9 : Let (N,B) satisfy A1-A6.
(1) A8 is equivalent to A8’.
(2) A7 implies A8, and thus, A8’.
(3) If A8 holds, then the Gaifman graph of (N,B) is either edgeless (if B = ∅)

or connected.

Definition 10 : Quasi-trees [3].
(a) A quasi-tree is a structure S = (N,B) such that B is a ternary relation on

N , called the set of nodes, that satisfies conditions A1-A7. To avoid uninteresting
special cases, we also require thatN has at least 3 nodes. We say that S is discrete
if [x, y]B := {z | B(x, z, y)} is finite for all x, y.

(b) From a join-tree J = (N,≤), we define a ternary relation BJ on N by :



BJ(x, y, z) :⇐⇒	= (x, y, z) ∧ ([x < y ≤ x ⊔J z] ∨ [z < y ≤ x ⊔J z]),

called its betweenness relation. Here, we take as a definition, the characteri-
zation of BR for rooted trees given in Definition 4(b). Note that x⊔J z is always
defined.

Theorem 11 [Proposition 5.6 of [4]] :
(1) The structure qt(J) := (N,BJ) associated with a join-tree J = (N,≤)

with at least 3 nodes is a quasi-tree. Every quasi-tree is qt(J) for some join-tree
J .

(2) A quasi-tree is discrete if and only if it is qt(T ) for some rooted tree T
(that is a join-tree defined as the partial order (NT ,≤T )).

In this article, we will rather think of quasi-trees as betweenness relations of
join-trees, axiomatized by A1-A7.

2.2 Other betweenness relations

If B is a ternary relation on V and X ⊆ V , then B[X] := B ∩ (X ×X ×X) is
the induced relation of B on X.

Definition 12 : Induced betweenness in a quasi-tree
If Q = (N,B) is a quasi-tree, X ⊆ N , we say that Q[X] := (X,B[X]) is

an induced betweenness in Q. It is induced on X. It need not be a quasi-tree
because A7 does not hold for a triple (x, y, z) such that MQ(x, y, z) is not in X
(cf. Proposition 5 and Remarks 6).

We will prove that a ternary relation is an induced betweenness in a quasi-tree
if and only if it satisfies Properties A1-A6 and A8. The proof uses O-trees.

Proposition 13 : An induced betweenness in a quasi-tree satisfies properties
A1-A6 and A8.

Proof: The sentences expressing A1-A6 and A8 are universal.The validity of
such sentences is preserved under taking induced substructures (we are dealing
with relational structures). The result follows from Theorem 11 and Lemma 9(2)
showing that a quasi-tree satisfies A8. �

Definition 14 : Betweenness in O-forests.
(a) From an O-forest F = (N,≤), we define a ternary relation BF on N ,

called its betweenness relation, by :

BF (x, y, z) :⇐⇒	= (x, y, z) ∧ [(x < y ≤ x ⊔ z) ∨ (z < y ≤ x ⊔ z)].

where the join x ⊔ z must be defined.
(b) If F = (N,≤) is an O-forest and X ⊆ N , then (X,BF [X]) is an induced

betweenness relation in F .



Remark 15 : The difference with Definition 10(b) is that if x and z have
no least upper-bound, i.e., if x ⊔ z is undefined, then BF contains no triple of
the form (x, y, z). If F is a finite O-tree, it is a join-tree and thus, (N,BF ) is a
quasi-tree.�

Thus we have four classes of betweenness relations S = (N,B) : quasi-trees,
induced betweenness in quasi-trees, betweenness and induced betweenness in
O-forests.

Here are some easy observations.
(1) The induced betweenness (X,B) on a set X of leaves of a tree is trivial,

which means that B = ∅.
(2) The Gaifman graph of a betweenness structure S is connected in the

following cases : S is a quasi-tree, or it is a nontrivial induced betweenness in a
quasi-tree (by A8) or it is the betweenness relation of an O-tree with at least 3
nodes (easy proof). It may be not connected in the other cases.

(3) If S is an induced betweenness in an O-forest consisting of several disjoint
O-trees, then two nodes in the different O-trees cannot belong to a same triple,
and as a consequence, cannot be linked by a path in the Gaifman graph of
S. Hence, a structure (N,B) is the betweenness of an O-forest, or an induced
betweenness in an O-forest if and only if each of its connected components is
so in an O-tree. We will only consider betweenness of O-trees (class BO) and
induced betweenness in O-trees (class IBO).

We will denote by QT the class of quasi-trees and by IBQT the class of
induced betweenness relations in quasi-trees. Figure 2 illustrates the following
inclusions.

Proposition 16 : We have the following strict inclusions :

QT ⊂ IBQT, QT ⊂BO ⊂ IBO and QT ⊂ IBQT∩BO.

The classes IBQT and BO are incomparable. For finite structures, we have
QT = BO.

All inclusions are clear from the definitions. Examples S1, S2, S4 and S5 given
in [5] prove the strictness assertions.

3 Axiomatizations and logically defined transformations

The letter B designates always ternary relations.

3.1 First-order axiomatizations

Induced betweenness in quasi-trees. Theorem 17 [5] : A structure (N,B)
is an induced betweenness relation in a quasi-tree (is in IBQT) if and only if it
satisfies Axioms A1-A6 and A8.



Fig. 2. Four classes and witnesses of proper inclusions.

We present a few notions for its proof. Let S = (N,B) and r ∈ N.We define
a binary relation on N :

x ≤r y :⇐⇒ x = y ∨ y = r ∨B(x, y, r).

Lemma 18 : If S = (N,B) satisfies Axioms A1-A6 and r ∈ N , then
T (S, r) := (N,≤r) is an O-tree.

If S satisfies also A8, we will transform T (S, r) into a witness that S is an
induced betweenness.�

Lemma 19 : Let S := (N,B) satisfy A1-A6 and A8, and r ∈ N . We have
B ⊆ BT (S,r) if N is finite.�

Remark and example 20 : (a) In this lemma, we may have a strict inclu-
sion, and the inclusion B ⊆ BT (S,r) may be false if S is infinite.

(b) The following example indicates how we can prove Theorem 17.
Let S := (N,B) such that N := {0, a, b, c, d, e, f, g, h} and the following

conditions (and no other one) hold:

B+(0, a, b), B+(0, c, d), B+(0, e, f), B+(0, g, h),
B+(b, a, c, d), B+(f, e, g, h),
B+(b, a, 0, e, f), B+(d, c, 0, e, f), B+(b, a, 0, g, h), B+(d, c, 0, g, h).

Figure 3(a) shows this structure without showing the last four conditions for
the purpose of clarity. The curve line bacd represents B+(b, a, c, d).

By adding new nodes 1 and 2 to T (S, 0) such that a < 1 < 0, c < 1 < 0, e <
2 < 0 and g < 2 < 0, we get the rooted tree T of Figure 3(b). Then B = B[N ],
hence, is in IBQT. Because of the added node 1, we have B+(b, a, c, d) without
having B+(b, a, 0, c, d).

The proof of Theorem 17 consists in adding new nodes to T (S, r) for such
cases.

(c) If S = (N,B) satisfies A1-A7 (and thus A8 by Lemma 9(2)), then, for
each r ∈ N , T (S, r) is a join-tree and B = BT (S,r), cf. [4]. �



Fig. 3. (a) shows S and (b) shows T , Example 20.

We know from Definition 10 and Proposition 17 of [3] that a quasi-tree
(N,B) is the betweenness relation of a tree if and only if B is discrete, i.e., that
each set [x, y]B := {x, y} ∪ {z ∈ N | B(x, z, y)} is finite.

Corollary 21 : A nontrivial structure (N,B) is an induced betweenness
relation in a tree if and only if it satisfies axioms A1-A6, A8 and is discrete.
These conditions are monadic second-order expressible.�

Axioms A1-A6, A8 are first-order. One cannot express by a first-order sen-
tence that a linear order (X,≤) is finite. This is expressed by the conjunction of
the following conditions :

(1) (X,≤) has a minimal element x0 and a maximal one x1.
(2) Each x ∈ X − {x1} has a successor.
(3) (x0, x1) belongs to the transitive closure of the successor relation, that

exists by (2).
Monadic second-order logic is necessary to express Condition (3).

Remark 22 : If S = (N,B) is an induced betweenness in a quasi-tree, then
any node r can be taken as root for defining an O-tree T (S, r) and from it, a
join-tree T such that B = BT [N ]. This fact generalizes the observation that the
betweenness in a tree T does not dependent on any root.

Informally, quasi-trees and induced betweenness in quasi-trees are "undi-
rected notions". This will not be the case for betweenness in O-trees.

Betweenness in O-trees. We let BOroot be the class of betweenness relations
of rooted O-trees. These relations satisfy A1-A6.

Proposition 23 : The class BOroot is axiomatized by a first-order sentence.
Proof: Consider S = (N,B). If B is the betweenness relation of an O-tree

(N,≤) with root r, then, ≤ is nothing but ≤r defined before Lemma 18 from B
and r. Let ϕ be the first-order (FO in short) sentence that expresses properties
A1-A6 (relative to B) and the following one :



A9 : there exists r ∈ N such that the O-tree T (S, r) = (N,≤r) whose
partial order is defined by x ≤r y :⇐⇒ x = y ∨ y = r ∨B(x, y, r) has a
betweenness relation BT (S,r) equal to B.

That S satisfies A1-A6 insures that (N,≤r) is an O-tree with root r. The
sentence ϕ holds if and only if S is in BOroot. When it holds, the found node r
defines, via ≤r, the relevant O-tree. �

An example detailed in [5] shows that BOroot is strictly included in BO.

3.2 Monadic second-order aximatisations

Our second main theorem (whose proof is not straightforward) is :

Theorem 24 : The class BO is axiomatized by a monadic second-order
sentence.

In the proof of Proposition 23, we have defined from S = (N,B) satisfying
A1-A6 and any node r a candidate partial order ≤r for (N,≤r) to be an O-tree
with root r whose betweenness relation would be B. The order ≤r being express-
ible by a first-order sentence, we finally obtained a first-order characterization of
BOroot. For BO, a candidate order will be defined from a line, i.e., an upwards
closed and linearly ordered subset, and not from a single node. (Lemmas 25 and
26 show this definition). It follows that we need for our proof, a set quantification.

Lemma 25 [Proposition 5.3 of [4]] : Let (L,B) satisfy properties A1-A7’
(for all u, x, y, z ∈ L, cf. Proposition 5). Let a, b be distinct elements of L. There
exists a unique linear order ≤ on L such that a < b and B(L,≤) = B. This order
is quantifier-free definable in the logical structure (L,B) in terms of a and b.�

We will denote this order by ≤L,B,a,b. There is a quantifier-free formula λ,
written with the ternary relation symbol B, such that, for all a, b, u, v in L,
(L,B) |= λ(a, b, u, v) if and only if u ≤L,B,a,b v.

A line in a structure S = (N,B) that satisfies A1-A6 is a set L ⊆ N of
at least 3 elements in which any 3 different elements are aligned (cf. Definition
4(c)) and that is convex, i.e., [x, y]B ⊆ L for all x, y in L.

Lemma 26 : Let T = (N,≤T ) be an O-tree, L a maximal line in T that has
no largest node. Let a, b ∈ L, such that a <L b, where <L is the restriction of
<T to L.

(1) The partial order ≤T is first-order definable in a unique way in the
structure (N,BT ) in terms of L,≤L, a and b.
(2) It is first-order definable in (N,BT ) in terms of L, a and b.



Proof sketch of Theorem 24 : "Guess" a line L in the given S = (N,B)
and also a, b ∈ L. An associated order ≤ on N is FO definable from a, b, L by
Lemma 26. Check then that it gives an O-tree U such that BU = B. The only
set quantification is for guessing the set L. �

Next we examine in a similar perspective the class IBO. It is easy to see that
IBO = IBOroot.

Proposition 27 [5] : Every structure in the class IBO satisfies Properties
A1-A6 but these properties do not characterize this class.�

The construction of Theorem 24 does not extend to IBO because a finite
structure in IBO may not be an induced betweenness relation of any finite O-
tree. No construction like the one used in the proof of Theorem 17 can produce
an infinite structure from a finite one. Nevertheless :

Conjecture 28 : The class IBO is axiomatized by a monadic second-order
sentence.

3.3 Logically defined constructions

Each betweenness relation (considered in this article) is a structure S = (N,B)
defined from a structure T = (N ′,≤, N) where (N ′,≤) is an O-tree and N ⊆ N ′,
handled as a unary relation. The different cases are shown in Table 1. In each
case a first-order sentence can check whether the structure (N ′,≤, N) is of the
appropriate type, and the relation B is first-order definable in (N ′,≤, N).

Structure Axiomatization Source Trans-

(N,B) structure duction

QT FO : A1-A7, Theorem 11 join-tree (N,≤, N) FOT
IBQT FO : A1-A6, A8, Thm 17 join-tree (N ′,≤, N) MSOT
BO MSO : Theorem 24 O-tree (N,≤, N) MSOT
IBO MSO ? : Conjecture 28 O-tree (N ′,≤, N) not MSOT

Table 1

The last colomun indicates which type of logically defined transformation of
structure can construct from (N,B) a source structure (N ′,≤, N) witnessing its
membership in the considered classes. We call transductions7 such transforma-
tions of relational structures. They are first-order transductions (FOT in short) if
they are specified by FO formulas. They are monadic second-order transductions
(MSOT in short) if they are specified by MSO formulas.

7 By reference to Language Theory where words, terms and trees are transformed
by transductions. There are strong links between language theoretical and logically
defined transductions, see [6].



ForQT, this follows from the proof of Theorem 11 : if S = (N,B) satisfies A1-
A7 and r ∈ N , then, the O-tree T (S, r) = (N,≤r) is a join-tree and B = BT (S,r).
For BO, the MSO sentence that axiomatizes the class constructs a relevant O-
tree (it guesses one, via some line, and checks that the guess is correct). For IBO,
we observed that the source tree may need to be infinite for defining a finite
betweenness structure, which excludes the existence of an MSO transduction,
because these transformations produce structures whose domain size is linear in
that of the input structure. (cf. Definition 1.6, and Chapter 7 of [6]). It remains
to prove the case of IBQT. This is our third main theorem.

Theorem 29 : A join-tree (N ′,≤, N) witnessing that a given structure S =
(N,B) is in the class IBQT can be defined from S by MSO formulas.

The proof uses a notion of structuring of O-trees, adapted from the one
defined in [4] for join-trees, that we will also use in Section 4. A structuring of
T can be seen as a set of pairwise disjoint linearly ordered subsets whose union
is (NT ,≤T ).

Informally, the construction used for Theorem 17 adds to a tree some "new"
nodes so as to be upper-bounds of pairs of nodes (x, y). For having an MSO
transduction, one can add "copies" of existing elements but not of pairs of el-
ements. The notion of structuring makes it possible to specify a "hole" in the
O-tree, i.e., a missing least upper-bound, as a copy of a single element.

We can illustrate structurings in a simple case. If in a binary tree, each node
is tagged "left son" or "right son", then, a structuring consists of the set of
branches (paths) starting from the root or from a right son, and going down by
always going to the left son. The least upper-bound of any two nodes is then the
father of some right son (above one of them). This idea is extended to O-trees,
that are not join-trees in [5].

4 Embeddings in the plane

We give a geometric characterization of join-trees and of induced betweenness
in quasi-trees, equivalently, in join-trees.

Definition 30 : Trees of lines in the plane.
(a) In the Euclidian plane, let L = (Li)i∈N be a family of straight half-

lines (simply called lines below) with respective origins o(Li), that satisfies the
following conditions :

(i) if i > 0, then o(Li) ∈ Lj for some j < i,
(ii) for all i, j ∈ N, Li ∩ Lj is {o(Li)} or {o(Lj)} or is empty. (We may have

o(Li) = o(Lj)).
We call L a tree of lines : the union of the lines Li is a connected set L

# in
the plane. A path (resp. a cycle) in L# is a homeomorphism h of the interval
[0, 1] of real numbers (respectively of the circle S1) into L# such that h(0) = x
and h(1) = y in the case of a path. For any two distinct x, y ∈ L#, there is a



unique path from x to y (it "follows the lines"), and consequently, there is no
cycle. This path goes through lines Lk such that k ≤ max{i, j} where x ∈ Li and
y ∈ Lj , hence, through finitely many of them. This path uses a single interval of
each line it goes through, otherwise, there is a cycle.

(b) We obtain a ternary betweenness relation :

BL(x, y, z) :⇐⇒	= (x, y, z) and y is on the path between x and z.

(c) On each line Li, we define a linear order as follows :

x �i y if and only if y = x or y = o(Li) or y is between x and o(Li).

On L#, we define a partial order by :

x � y if and only if x = y or
x ≺ik o(Lik) ≺ik−1 o(Lik−1) ≺ik−2 ... ≺i1 o(Li1) ≺i0 y
for some i0 < i1 < ... < ik. If k = 0, then x ≺i0 y.

It is clear that (L#,�) is an uncountable rooted O-tree : for each x in L#,
the set {y ∈ L# | x � y} is linearly ordered with greatest element o(L0).

Definition 31 : Embeddings of join-trees in trees of lines.
Let T = (N,≤,U) be a structured (countable) join-tree where U is the set of

lines. An embedding of T into a tree of lines L is an injective mapping m : N →
L# such that:

for each U ∈ U , m is order preserving : (U,≤)→ (Li,�i) for some i ∈ N,
and
if i 	= 0, then m(lsub(U)) = o(Li).

Here, lsub(U) denotes the least element that is strictly above each element
of U .

Lemma 32 : If T is a structured join-tree embedded bym into a tree of lines
L, then, its betweenness satisfies :

BT (x, y, z) if and only if 	= (x, y, z) ∧BL(m(x),m(y),m(z)).�

Theorem 33 : If L is a tree of lines and N is a countable subset of L#, then
S := (N,BL[N ]) is an induced betweenness in a quasi-tree. Conversely, every
induced betweenness in a quasi-tree is isomorphic to S as above for some tree of
lines L.

Proof : If L is a tree of lines and N ⊂ L# is countable, then S := (N,BL[N ])
is in IBQT. A witnessing join-tree T is built as follows. Its set of nodes is N ∪O
where O is the set of origins of all lines in L. Its order is the restriction to N ∪O
of the order � on L#. Then (N,BL[N ]) = (N,BT [N ]) hence belongs to IBQT.



Conversely, let S = (N,BT [N ]) such that T is a structured join-tree. It is
isomorphic to (N,BL[N ]) for some tree of lines.�

The construction of this tree of lines uses the fact that between two straight
half-lines with same origin A one can draw countably many straight half-lines
with origin A by choosing angles between them of the form α/2i for all i. The
resulting tree of lines is clearly not printable !

5 Concluding remarks

We exhibit in [5] an FO class of relational structures C such that Ind(C), the class
of induced substructures of those in C, is not FO axiomatizable, and is even not
MSO axiomatizable. This example shows that the FO characterization of IBQT
does not follow by a standard logical argument from the FO characterization of
the class QT, similar to the one used in Proposition 13.

Open questions : (1) We conjecture that betweenness in O-trees is not first-
order axiomatizable.

(2) We also conjecture that the class IBO of induced betweenness relations
in O-trees has a monadic second-order axiomatization.

(3) In [2, 4], we have defined quasi-trees and join-trees of different kinds from
regular infinite terms, and proved that they are equivalently the unique models
of monadic second-order sentences. Both types of characterizations yield finitary
descriptions and decidability results, in particular for deciding isomorphism. In
a future work, we will extend to O-trees and to their betweenness relations such
descriptions by regular terms, in order to get equivalences between regularity
and MSO-definability.

Acknowledgement: I thank the referee for comments helping me to clarify
many points.
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