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Abstract—Most cloud data centers are over-provisioned and
underutilized, primarily to handle peak loads and sudden fail-
ures. This has motivated many researchers to reclaim the unused
resources, which are by nature ephemeral, to run data-intensive
applications at a lower cost. Hadoop MapReduce is one of those
applications. However, it was designed on the assumption that
resources are available as long as users pay for the service. In or-
der to make it possible for Hadoop to run on unused (ephemeral)
resources, we have designed a heterogeneity and volatility-aware
holistic scheduler consisting of three different components: (1)
A MapReduce task and job scheduler that relies on a global
vision of resource utilization predictions, (2) a scheduler-based
data placement strategy that improves the data locality, and (3)
a reactive QoS controller that ensures customers’ service-level
agreement (SLA) and minimizes interference between co-located
workloads. Our framework makes it possible to take advantage
of ephemeral resources efficiently. Indeed, for a given set of jobs,
it reduces the overall execution time by up to 47.6% and an
average of 18.7% as compared to state-of-the-art strategies.

Index Terms—Cloud, Ephemeral Resources, Big Data, Hadoop,
MapReduce, Job Scheduling, Task Scheduling, Data Placement.

I. INTRODUCTION

Cloud Computing attracts increasing interest of companies
as it provides on-demand access to scalable, elastic, and reli-
able computing resources with a pay-as-you-go pricing model.
These Cloud features come at a price of over-provisioning
resources to deal with workload peaks and node failure and
thus meet customers’ demands [1]. Operating and managing
such infrastructure is costly, resulting in an increase in the
Total Cost of Ownership (TCO) for Cloud providers and low
average resource utilization (i.e., between 25-35% for the CPU
and 40-50% for the RAM [2], [3]).

One way to improve Cloud resource utilization and thus
reduce the TCO is to reclaim and make profit of the unused
part [1], [4], [5]. These are called ephemeral (i.e., volatile)
resources because it is imperative to be able to release them
instantly if their owner (i.e., the customer that reserved those
resources) needs them. One must note that these resources are
in fact heterogeneous, meaning that their hardware architecture
may vary from one machine to another. These ephemeral
resources are an opportunity to process big data workloads
at a lower cost since they require a considerable amount of
computing resources [6], [7].

Hadoop is an open-source framework used for distributed
processing of big data volumes over a large set of computing
nodes. Not only does Hadoop provide high performance but

also fault tolerance [8]. In Hadoop, data are divided into
chunks and distributed across the nodes. A Hadoop job con-
sists of a set of tasks where each task processes a chunk of
data. A task is considered as local if the chunk it processes is
stored in the same node. Otherwise, it is considered as remote.
Hadoop considers three main concepts to efficiently process
data: (1) job scheduling, provides an order in which jobs are
selected, (2) task scheduling, consists in deciding when and on
which node to execute a task, while respecting dependencies
between tasks of the same job, (3) data locality, the closer a
task is to the data to process (i.e., on the same node, rack,
etc.), the faster the computation, which increases the overall
throughput of the system.

Most Big data frameworks such as Hadoop were designed
and developed with fault tolerance built-in in case of hard-
ware failures [8], [9]. However, the reclaimed resources may
become unavailable at a much higher rate than the hardware
failures. This means that the default Hadoop implementation
is not adapted to ephemeral resources. As a consequence,
the running tasks (on the preempted resources) have to be
rescheduled. This may lead to several issues namely poor
resource utilization, slow execution of tasks and resource
bottlenecks such as network traffic overhead due to remote
or speculative tasks [4], [10]. In addition, when a node is
performing poorly, Hadoop launches speculative copies of the
node’s tasks on other nodes for potential faster execution.
In order to determine slow nodes, Hadoop assumes that all
resources are homogeneous and thus the tasks are supposed
to have the same execution time. However, this assumption
does not hold in the case of heterogeneous resources. In fact,
it has been shown that running Hadoop on such resources
significantly degrades performance [6].

In this paper, we aim to maximize data centers utilization
by efficiently exploiting ephemeral resources. This should be
done without interfering with the provider’s regular customers’
workloads. In other words, we investigated how to design a
scheduler for Hadoop jobs that runs on heterogeneous and
ephemeral resources while guaranteeing SLA.

Several studies have been conducted to address these chal-
lenges. In [4], the authors propose a framework to oppor-
tunistically run Hadoop jobs by leveraging unused resources.
This work is closely related to ours. The authors propose a
data placement strategy that relies on predictions of resource
utilization. However, this work only considers data placement



and no suitable task and job scheduling are performed. This
may lead to slow execution and poor resource utilization as
it will be shown in the experimental validation section. Other
studies have also been realized to improve the default Hadoop
scheduler. In [11] and [10], authors propose solutions that
reduce the risk of recomputation in case of volatile resources
by using either data checkpointing or by scheduling costly
tasks on reserved resources. One issue with these studies is
that they require a minimum subset of reserved resources to
run, which one does not necessarily have.

Our contribution consists of a heterogeneity and volatility-
aware framework for Hadoop job and task scheduling and
data placement on ephemeral Cloud resources. We investigated
three solving strategies for the scheduling problem to achieve
a trade-off between the scheduling quality and computation
cost. Our contribution can be summarized as follows:
• An optimization problem formulation of jobs and tasks

scheduling in the context of Cloud ephemeral resources;
• A comparative study of three solving strategies con-

sisting of (i) an exact approach based on Constraint
Programming (CP) and two metaheuristic algorithms: (ii)
a Genetic algorithm (GA) and (iii) Local Search-based
(LS) algorithms;

• A data placement strategy based on the proposed task
scheduler;

• A QoS Controller that ensures users SLA guarantee
by avoiding interference between co-located workloads
(Hadoop jobs and regular workloads);

• An evaluation on real traces of 42 hosts from three in-
production data centers for a 70 days time period.

Our simulation results show that Salamander improves the
job execution time up to 47.6% as compared to Cuckoo [4],
and in most cases, eliminates completely relaunched tasks.
Furthermore, the results show that the data placement strategy
based on the scheduler eliminates most remote tasks.

The remainder of this paper is organized as follows. Sec-
tion II provides brief background information. Section III
details our contribution and the different algorithms used for
solving the scheduling problem. Then, Section IV describes
the experimental evaluation and the results obtained. In Sec-
tion V, we explore some limitations of our contribution. In
Section VI, we discuss related work. Finally, Section VII
concludes the paper and discusses about future work.

II. BACKGROUND

This section gives some background on MapReduce pro-
gramming model as well as key concepts of Hadoop. We
also present Cuckoo, a state-of-the-art study having a similar
architecture as the one used in our contribution.

A. MapReduce programming model

MapReduce is a programming model used for distributed
processing of large datasets [12]. Two main computations are
used and must be defined by the user as Map and Reduce
functions. The processing starts by splitting the input data into
chunks and then passing them to the Map phase where the
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mapping function produces key-value pairs as output. The next
phase called Shuffle consolidates the relevant records from the
Map phase. Finally, in the Reduce phase, the output values
from the Shuffle phase are aggregated and returned.

B. Hadoop MapReduce

Hadoop is an open-source implementation of Google
MapReduce [8] to process large amounts of data and com-
putation. Hadoop consists of two main components, a storage
component called Hadoop Distributed File System (HDFS),
and a processing component that is the MapReduce program-
ming model. In Hadoop, there is a Master Node managing a
set of Slave Nodes (see Fig.1).

Each node has two layers that are MapReduce and HDFS.
The Master Node consists of a JobTracker and a NameNode.
A Slave Nodes consist of a TaskTracker and a DataNode.
The JobTracker is responsible of scheduling tasks on Task-
Trackers and monitoring their execution. Each TaskTracker
has a configurable number of Map and Reduce slots, which
limits the maximum number of simultaneous tasks in a node.
During the execution of tasks, a Slave Node signals (heartbeat)
periodically (e.g., 3 seconds) the Master Node to indicate that
it is alive. If the heartbeat is not received for a long period of
time (e.g., 2 minutes) then the Slave Node is considered dead.

Users interact with the Master Node through the Client
Node to submit computation in the form of Map and Reduce
functions. The data to be processed is split into chunks (by
default each chunk has a size of 128 MB [13]) and distributed
uniformly to the DataNodes (see Fig.1). These chunks are
replicated across the Slave Nodes with a certain replication
factor (by default 3 replicas, e.g., 2 in Fig.1) for fault tolerance.
The NameNode contains metadata such as the number of
chunks, the DataNode in which each chunk is stored, etc.

The default Hadoop task scheduler favors data locality. It
is the process of moving tasks close to where the data chunk
resides instead of the opposite. Two types of task execution
are possible namely local and remote, which are differentiated
according to the initial placement of data. A task is considered
as local when both the task and the data chunk to process
are initially placed on the same node (see Task C in Fig.1).
Otherwise, it is a remote task (see Task A in Fig.1). The latter



case happens when nodes (with the data chunk to process) do
not have sufficient resources to run a new task (due to limited
slots). As a consequence, the chunk is transferred to the remote
task’s node. Hadoop scheduling strategy aims to minimize
the number of remote tasks which in turn minimizes network
bottlenecks and increases the performance of the system.

C. Cuckoo

Cuckoo [4] is a framework that leverages unused resources
of data centers, which are ephemeral by nature, to run MapRe-
duce jobs. The framework relies on three main modules:
1) Forecasting builder: this module is used to predict future

resource utilization in a Cloud at the host level considering
multiple resource metrics [2]. This module uses quantile
regression to provide accurate predictions for reclaiming
unused resources while guaranteeing SLA.

2) Data placement planner: this module is used to distribute
data chunks across the cluster’s DataNodes. It relies on the
predictions from the Forecasting builder to distribute data
chunks using a weighted round-robin algorithm that solves
the heterogeneity and volatility of resources. As for tasks,
Cuckoo uses the default Hadoop scheduler (see Section
II-B) that favors data locality. Cuckoo implicitly improves
the task scheduler by improving the data placement.

3) QoS controller: this module guarantees that running
Hadoop jobs do not interfere with the regular customers’
workloads in order to ensure the SLA. The QoS controller
continuously monitors resource utilization to detect any
interference. If it is the case, some corrective actions are
triggered such as killing tasks. It preserves a certain amount
of unused resources referred to as Safety Margin to absorb
workload variation or mispredictions.

III. THE SALAMANDER FRAMEWORK

Our goal is to build a framework that allows for efficient
execution of Hadoop jobs on heterogeneous and ephemeral
resources while guaranteeing SLA. The main roles of our
framework architecture are as follows:
• Farmers: data center owners, they seek to reduce their TCO

by offering unused resources to other customers.
• Customers: two types of customers exist in this architec-

ture. First, regular customers that buy and reserve stable
Cloud resources. Second, ephemeral customers (customers
using ephemeral resources) that want to process data-
intensive applications on the Cloud at a lower cost.

• Operator: acts as the interface between farmers and cus-
tomers and aims at minimizing farmers’ TCO by offering
unused resources to customers with SLA requirements.

A. Framework architecture overview

Our framework encompasses four main modules to improve
the scheduling of MapReduce jobs on ephemeral resources:
1) Forecasting builder: this module was introduced in [2]

and used in Cuckoo [4] for the data placement strategy.
In our solution, we reused the predictions of this module
in order to have a global overview of the amount of
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unused resources and their expected volatility for efficient
scheduling of MapReduce jobs. This module is not detailed
in this paper.

2) Holistic scheduler: in this module, we implemented three
solving strategies to schedule MapReduce jobs and tasks,
using Constraint Programming, Genetic and Local Search-
based algorithms. The scheduler relies on predictions from
the Forecasting builder and considers a safety margin for
efficient execution of tasks.

3) Data placement: this module uses the task scheduling of
the Holistic scheduler as a placement strategy to distribute
data chunks across DataNodes. This strategy makes it
possible to reduce significantly the number of remote tasks.

4) QoS controller: this module is an improved version of the
QoS controller introduced in [4]. As explained earlier, the
controller is a reactive mechanism that tries to eliminate
interference between co-located workloads. While the pre-
vious version of the QoS controller relaunches tasks for any
resource violation (i.e., CPU, RAM), the upgraded version
does so only for compressible resources (i.e., RAM) and
adjusts the incompressible ones (i.e., CPU).

Fig.2 gives an overview of the Salamander architecture. It
shows the different roles involved and the interaction between
the aforementioned modules. First, the customers submit (1)
MapReduce jobs using the ClientNode. Then, the JobTracker
sends the list of jobs (2) to the Holistic scheduler which in turn
requests the predictions (3) from the Forecasting Builder for
the scheduling step. The module tries to schedule the submit-
ted jobs in a 24-hour time window (forecasting horizon). This
execution plan is then sent (4) to the JobTracker and the Data
Placement module at the same time. Afterwards, a response
is forwarded from the JobTracker to the ClientNode (5) indi-
cating the schedulability of the jobs (whether it is feasible or
not). Before the execution of any task, the ClientNode requests
(6) the data chunks allocation from the NameNode in order to
send them (7) to the appropriate DataNode (placed on reserved
storage for temporarily hosting chunks and intermediate data).
Finally, the JobTracker assigns the tasks (8) to TaskTrackers
at a specific time using the generated scheduling. Periodically,
the QoS Controller monitors (9) the utilization of resources in
order to resize the amount of allocated resources to containers



(that run TaskTracker nodes) to minimize interference.

B. The Holistic Scheduler

This section describes the Holistic scheduler module. The
scheduling problem is formalized as an optimization problem
that we solve using different approaches, i.e., CP, GA and LS.

1) Optimization problem formulation: First, the amount of
unused resources in a cloud infrastructure is calculated as:

A(k,m, t) = C(k,m) ∗ (1− (U(k,m, t) + S(m))) (1)

Where A(k,m, t) is the amount of unused resources for a
certain metric m (e.g., CPU) in a given node k and time t.
C(k,m) is the capacity of a resource metric m in a node
k. U(k,m, t) represents the predicted percentage of resource
usage in a node at a given time. S(m) is the percentage of
the safety margin (see Section II-C) for a resource metric m.

Then, we defined two objective functions that are lexico-
graphically ordered for the scheduling problem:

maximize(
∑
i∈J

p(i)) (2)

minimize(max
i∈J

(ts(i) + Te(i, n(i))) (3)

In function (2), p(i) represents whether a task i was sched-
uled (p(i) = 1) or not (p(i) = 0). This function gives the total
number of scheduled tasks and aims at maximizing it for a
given time window. In function (3), ts(i) is the starting time
of a task i and Te(i, n(i)) is the estimated execution time of
a task i in a given node n(i) where the task is scheduled.
This function calculates the time at which the latest task (i.e.,
latest job) finishes its execution (i.e., the makespan). This
function aims at minimizing the makespan of the scheduled
jobs. In fact, by maximizing the number of scheduled tasks
and reducing the jobs’ makespan, the overall infrastructure
utilization increases.

Moreover, we have to fulfill three constraints for this
scheduling problem:

∀i ∈ J : 0 ≤ ts(i) + Te(i, n(i)) ≤ T (4)
∀i, j ∈ J | D(i, j) = 1 :

(n(i) ≥ 0 ∨ n(j) ≥ 0) =⇒ (n(i) ≥ 0 ∧ n(j) ≥ 0)

∧ (ts(j) ≥ ts(i) + Te(i, n(i))) (5)
∀t ≤ T, ∀k ∈ N, ∀m ∈ R : ∑

{i|(i∈J)∧(n(i)=k)∧
(0≤t−ts(i)≤Te(i,n(i))}

Rq(i,m)

 ≤ A(k,m, t) (6)

• In Eq.(4), the execution of all the scheduled tasks should be
performed within a predefined time window. In other words,
each task’s ending time (i.e., start time ts(i) + execution
time Te(i, n(i))) should be in the time window T .

• In Eq.(5), a job has to be either fully scheduled (i.e., all
of its tasks are scheduled) or rejected while respecting the
dependencies according to MapReduce paradigm. D(i, j)
represents the dependency between a task i and task j

(D(i, j) = 1, if task i depends on j, otherwise D(i, j) = 0).
A task i is considered to be scheduled if it is assigned to a
valid node n(i) and a start time ts(i).

• In Eq.(6), tasks can be scheduled on nodes only when there
are sufficient available resources for the whole execution to
avoid SLA violations. Rq(i,m) represents the requirement
of a task i in terms of a resource metric m. The sum of the
requirements of all tasks scheduled on a node k running at
a given time t should be smaller than A(k,m, t).

TABLE I: Notation dictionary

Input variables: uppercase letters. Output variables: lowercase letters.
Type Notation Domain Description

Input N - List of available nodes’ IDs
J - List of MapReduce jobs with

tasks’ IDs
R - List of resource metrics (e.g.,

CPU, RAM)
T N Size of the scheduling window

(e.g., 24-hours with 3 minutes
sampling = 480 points)

C(k,m) N Maximum capacity given a re-
source metric m in a node k

U(k,m, t) [0, 1] Predicted utilization of resource
metric m in a node k at time t

S(m) [0, 1] Safety margin percentage for re-
source metric m

A(k,m, t) N Amount of available resources of
metric m in a node k at time t

Te(i, n(i)) N Estimated execution time of task i,
it varies depending on the compu-
tational capacities of the assigned
node n(i)

Rq(i,m) N Requirement of task i in terms of
resource metric m

D(i, j) {0, 1} Presence of a dependency between
task i and j

Output ts(i) T Start time of task i
n(i) N The node ID that the task i is

assigned to
p(i) {0, 1} Presence of task i in the schedule,

inferred from the start time ts(i)
or the task’s node n(i)

2) Solving strategies: We propose three different solving
strategies to schedule tasks. This is done for several reasons.
First, from our study of the related work, we did not find
a solution that schedules tasks using an exact approach but
instead heuristics were used (see Section VI). Although it is
known that task scheduling problem is either NP-hard or NP-
complete [14] and thus exact solving strategies are not scal-
able, we had to test the limits of CP to draw conclusions about
its scalability and usability for the studied problem. Nonethe-
less, we propose other solving strategies using metaheuristics
which are heavily used for solving large optimization prob-
lems. In fact, many strategies exist and choosing one is not
obvious. In [15], authors have curated important metaheuristics
used in cloud scheduling. Among these metaheuristics, we
selected a Multi-Objective Optimization (MOO) Genetic Algo-
rithm and Local Search-based algorithm (both detailed below).
These algorithms proved to be applicable to the context of
cloud scheduling on stable resources. However, no prior work
used them for scheduling on ephemeral resources, so it seemed



to be a reasonable choice. In what follows, we describe each
of the proposed solving strategy.

Constraint Programming (CP): we used constraint pro-
gramming to implement the exact approach. CP is a paradigm
used to solve combinatorial problems such as scheduling [16].
We used CP optimizer [17] syntax to model the optimization
problem formulation (see Section III-B1) in CP. CP optimizer
uses time-based variables and built-in functions to accelerate
solution search [17].

Local Search-based algorithms (LS): the proposed ap-
proach combines two local search-based algorithms namely
Tabu Search [18] and Late Acceptance [19] to avoid getting
stuck in a local optimum. The following details each compo-
nent of the proposed LS approach:
• Initialisation: the idea is to find an initial random candidate

solution that could be used as a good starting point of
the search in order to reach better candidates. The initial
candidate solution has to satisfy the problem’s constraints
formulated in Section III-B1. A random First Fit Decreasing
(Algorithm.1) is used for such an initialization as it is
efficient and simple to implement. In this algorithm, the
decreasing part refers to the scheduling of the jobs with
the longest execution time first (line 1). The random first
fit refers to the fact that tasks are scheduled on the first
randomly selected node with the earliest possible start time.
In order to reduce the possible values of a task’s start time
during the search (line 4), we compute the earliest start time
tsMin which considers the dependencies between tasks.
Then, we compute the latest possible start time tsMax
which takes into account the minimum estimated execution
time of a task on all nodes. After that, a random node is
selected and tested for its capacity to run a task (lines 5-12)
with the earliest possible starting time in [tsMin, tsMax].

• Operators: in order to explore the search space, operators are
used to make local changes (i.e., small changes) to candidate
solutions. This means that these operators can produce
infeasible candidate solutions to reach a feasible one. In this
approach, three operators were used. One operator randomly
selects a task and assigns it a random start time or node
(even if it is not feasible). Another operator swaps the start
time or node of two randomly selected tasks. The other
operator selects a random task and tries to assign to it an
earlier starting time to minimize the makespan.

• Evaluation: since the search operators can produce infeasible
candidate solutions, we must start by checking whether the
candidates are feasible according to the formulated con-
straints. If a candidate is, we evaluate its quality according
to the two objective functions which are lexicographically
ordered. This means that the evaluation is based on three
properties ordered by 1) the feasibility of a candidate
solution, 2) the number of scheduled tasks, 3) the makespan
of the jobs. To implement the evaluation, we used three
level scores, that is, hard, medium and soft score. The hard
score represents the number of constraints violations by the
current candidate (a solution is feasible if the hard score is
zero). The medium score represents the number of scheduled

tasks. Finally, the soft score holds the scheduling makespan.

Algorithm 1: Random First Fit Decreasing
1 jobs.sort();
2 foreach job in jobs do
3 foreach task in job.getTasks() do
4 [tsMin, tsMax] = getPossibleStartTimes(task);
5 for t = tsMin to tsMax do
6 node = selectRandomValidNode(task, t);
7 if node 6= null then
8 node.addTask(task);
9 task.setStartTime(t);

10 break;
11 end
12 end
13 end
14 end

Genetic algorithms (GA): the proposed approach is an
MOO Genetic Algorithm using NSGA-III [20]. We used MOO
as it gave us better results than Single Objective Optimization,
this was also the case for other studies discussed in [15].

In this approach, a candidate solution (also called an indi-
vidual or a chromosome) is represented by a set of tasks with
their starting time and assigned nodes. The NSGA algorithm
maintains a population of individuals and returns a subset of
solutions according to the evaluation step (explained below)
that satisfy the problem’s constraints. Among the returned
solutions, we choose the one that maximizes the number of
scheduled tasks. If multiple solutions have similar scheduled
tasks, then we consider the one that minimizes the makespan.

The following details each component in the proposed
algorithm exploited by the NSGA-III framework:
• Initialization: individuals are initialized with a feasible so-

lution using Algorithm.1.
• Evaluation: individuals are evaluated using the two formu-

lated objective functions (see Section III-B1).
• Selection: the values of the objective functions are used to

select individuals using tournament strategy [21].
• Crossover: the crossover selects two individuals (parents)

for reproduction to create two new individuals (children).
We used an adapted Order-based Crossover (OX2) [22] that
allows us to generate feasible solutions while preserving the
dependencies and resource capacities.

• Mutation operators: the mutation operators are used to ex-
plore the neighborhood of candidate solutions in the search
space. We used several operators such as rescheduling ran-
dom tasks, moving random tasks, balancing tasks between
nodes, etc. Here we describe one algorithm that was able
to improve the search. Algorithm.2 is used to reduce the
makespan of the scheduled jobs by reassigning both tasks’
nodes and start time. In order to avoid deteriorating the
candidate solution, we make sure that the new makespan of
the scheduling is better or equal to the current makespan. To
do that, we first get the total makespan of jobs (lines 1-2).
Then, we select a random subset of tasks for mutation (line
3). For each task, we assign to it a random node and/or



start time without worsening the current total makespan
and while respecting the problem’s constraints (lines 4-5).
Finally, we attempt, when possible, to reduce the schedule
makespan (lines 7) by assigning an earlier start time to the
tasks without changing the assigned node.

Algorithm 2: Mutation operator
1 jobs = getScheduledJobs();
2 makespan = getJobsMakespan(jobs);
3 tasks = selectRandomTasksForMutation(jobs);
4 foreach task in tasks do
5 reassignNodeAndStartTime(task, makespan);

/* makespan is the maximum allowed finish
time for all tasks */

6 end
7 tryReduceScheduleMakespan(jobs);

C. Data Placement

The proposed scheduler in the previous module allows to
determine the starting time of a task, but most importantly
in which node it is executed. As presented in Section.II, the
closer the chunk is to the task the lower is the execution time.

To that end, this module uses the task scheduling generated
by the Holistic scheduler as a placement strategy to distribute
data chunks across nodes. For example, each chunk a is
processed by task i. If the scheduler assigned task i to the node
k, then before the execution of the task, the data placement
strategy sends the chunk a to the node k. This means, if there
are no node failures, the executed task is local. Otherwise, the
task has to be rescheduled, and the chunk has to be requested
and placed on another node. As a consequence, some of the
tasks might be executed as remote.

That being said, we do not consider data replication in this
strategy. The replication has two main goals, that is, increasing
the locality of data and fault tolerance. Our proposed strategy
improves data locality. However, for fault tolerance, replication
will be considered in a future work.

D. QoS Controller

The QoS controller is a reactive mechanism that minimizes
interference between customers (regular and ephemeral) in
case of unpredicted workload variations. This happens when
the regular customers’ workloads are using more than a
predefined threshold of the safety margin (set to 50%).

Contrary to Cuckoo, the designed QoS controller considers
the two types of resources namely, compressible (e.g., CPU)
and incompressible (e.g., RAM). In the upgraded version, the
compressible resource, that is the CPU, is throttled benignly. In
this case, MapReduce tasks execution is slowed down. In case
of incompressible resources, that is the RAM, MapReduce
tasks are killed in case of violations (like in Cuckoo).

This difference between compressible and incompressible
resources is particularly relevant when using the Forecasting
builder [2]. Indeed, CPU predictions generate more errors than
memory’s. Thus, as compared to Cuckoo, much less tasks are
killed because of CPU mispredictions.

Algorithm.3 gives the pseudo-code of the QoS controller
for a given node (see Fig.2) which periodically (e.g., every
100 ms) controls tasks’ resource utilization. First, we get both
the current available resources (resource limits for CPU and
RAM) that can be used by the tasks (lines 1-2), and the current
tasks’ usage (lines 3-4). If tasks are using more than the CPU
limit (when co-located workload’s CPU usage increases), tasks
are throttled (line 5). Otherwise, we increase the CPU limit
of tasks (line 6). After that, we check whether the tasks are
using more than the 50% safety margin threshold of RAM. In
this case, tasks are killed proportionally to their address space
size (i.e., RAM usage) in the reverse order of scheduling (i.e.,
latest first, so to avoid killing tasks that may almost finish their
execution) until we release the safety margin (lines 7-12). If
the available RAM space is lower than the safety margin, then
all tasks should be killed (line 14).

Algorithm 3: QoS controller for a given node
// get resources limits

1 cpuLimit = getCpuLimit();
2 ramLimit = getRamLimit();

// get tasks’ resources usage
3 ramUsage = getTasksRamUsage();
4 cpuUsage = getTasksCpuUsage();
5 if cpuUsage > cpuLimit then throttleTasksCpu(cpuLimit);
6 else increaseTasksCpuLimit(cpuLimit) ;

// sm refers to the safety margin
7 if ramLimit ≥ sm then
8 smThreshold = sm * 50%;
9 while ramUsage > ramLimit + smThreshold do

10 task = killLastScheduledTask();
11 ramUsage -= task.getRamUsage();
12 end
13 else
14 killAllTasks();
15 end

E. Implementation

The solving strategies were implemented with the following
frameworks:
• Constraint programming: we used IBM ILOG CP Opti-

mizer [17], a CP-based system to model and solve opti-
mization problems. It provides an algebraic language with
mathematical concepts to model the temporal dimension of
a combinatorial optimization problem.

• Genetic algorithm: a framework based on JMetal was
used to implement the algorithm. JMetal stands for Meta-
heuristic Algorithms in Java [23]. It is an object-oriented
Java framework allowing multi-objective optimization with
metaheuristics. It offers many algorithms such as NSGA-
III [20] (used in our approach) with the HyperVolume (HV)
indicator to compare candidate solutions.
The parameters set are as follows: population size = 50,
mutation rate = 1, crossover rate = 0.5, tournament size = 2.

• Local Search-based algorithm: we used OptaPlanner frame-
work, a constraint solver [24]. It is an object-oriented Java
framework that offers several optimization algorithms such
as Tabu Search and Late Acceptance used in our approach.



As for the parameters, the framework default values for
the selected algorithms were used: entityTabuRatio = 0.2,
lateAcceptanceSize = 500.

IV. EXPERIMENTAL VALIDATION

In this section, we detail the experimental setup and results
used to validate the efficiency of our contribution and try to
answer the following Research Questions (RQ):

RQ1: What is the overall performance of the proposed
solving strategies compared to Cuckoo in terms of job
execution time, relaunched and remote tasks?
RQ2: How do the solving strategies compare with each
other in terms of solving time and quality of scheduling?
RQ3: How effective is the proposed QoS controller?

The following details the performed experiments and the
evaluation metrics in order to answer the research questions.

Experiment for RQ1: the goal of this experiment is to
evaluate the quality of Salamander with the solving strategies
(i.e., CP, GA, LS) by comparing it to Cuckoo. The evaluation
is done according to three metrics:

1) Job execution time: it represents the time taken by jobs
to finish their execution. In this metric, the cost of data
transfers (i.e., data placement, remote tasks’ chunks, in-
termediate data of Map tasks) is taken into consideration.

2) Percentage of remote tasks: it represents the tasks which
are executed on a different node where the chunk to
process was initially placed.

3) Percentage of relaunched tasks: it represents the percent-
age of killed and rescheduled tasks due to violation.

Only for this experiment, the solving time of each strategy
(i.e., CP, GA, LS) was limited to 30 seconds and 2 CPU cores
(limitation set in the used frameworks, see Section III-E). We
evaluated that this was sufficient for CP to generate the best
scheduling while GA and LS could generate a comparable
scheduling in terms of quality.

Experiment for RQ2: in this experiment, we want to
evaluate the scalability of each strategy to be able to choose
the appropriate one. We evaluated the following metrics:

1) Solving time: it represents the time required by the
solvers to generate a scheduling.

2) Quality of scheduling: that is the overall jobs’ makespan.
Experiment for RQ3: this experiment is done to evaluate

how effective is to consider the compressible and incompress-
ible resources for minimizing interference between workloads
using the QoS controller. The comparison is performed be-
tween Cuckoo with the original QoS controller and Cuckoo
with the new QoS Controller. The evaluation metrics are 1)
Job execution time, and 2) Percentage of relaunched tasks. We
do not consider remote tasks in this case since we are only
evaluating the QoS controller not the data placement strategy.

Salamander is not used in this experiment because Cuckoo’s
QoS controller performs poorly with it. Indeed, because of
the high error rate of CPU predictions of the forecasting
builder, Cuckoo’s controller kills too many tasks causing the
Salamander’s generated scheduling to be rarely respected.

A. Experimental setup

We used a 70-days production dataset from three different
data centers [2]. Table.II shows the overall capacity of all data
centers which are heterogeneous. PC-1 (i.e., Private Company
1) has 6 different configurations among its 9 hosts, PC-2 has
13 different configurations among its 27 hosts and University
has 6 different configurations. All hosts were configured in the
simulator with dedicated links of 50 Mbps and 10 us latency.

TABLE II: Total capacities of each data center

Name Number of Hosts CPU (GFLOP/s) RAM (TB)
PC-1 9 2208 1.2
PC-2 27 3552 3.8

University 6 1363 1.5

In our evaluations, for RQ1 and RQ3, we used one config-
uration of tasks, that is, 640 Map tasks and 40 Reduce tasks.
We used a small number of tasks so that the strategies can
generate a comparable scheduling within the limited solving
time, and to be able to compare the results to Cuckoo. In order
to increase the risk of being impacted by the prediction errors,
we varied the execution time of tasks by using different chunk
sizes. We used two configurations namely 128 MB and 256
MB, corresponding to two datasets of 80 and 160 GB respec-
tively. Finally, to investigate the impact of mispredictions and
thus potential SLA violations, we evaluated different safety
margins of 0%, 5%, 10%, 15%, 20%, 25%, 30% (the higher
the safety margin, the lower the impact of mispredictions).

As for RQ2, we used multiple configurations of Map and
Reduce tasks, ranging from 500 to 2500 tasks to evaluate the
scalability of each solving strategy.

The processing cost of tasks is similar to Cuckoo, each Map
and Reduce task is equal to 3100 and 6300 FLOPS/Byte. We
set each TaskTracker to run 20 slots of Map and Reduce tasks.
As for memory, according to [25], each task needs between 2
and 4 GB of RAM, thus, we set tasks to use 3 and 4 GB with
chunk sizes of 128 and 256 MB respectively.

Our experiments were performed using Simgrid 3.20 simu-
lation tool and Cuckoo’s version of MRA++ MapReduce [26]
for handling the experimentation phases.

The experimentation has three phases: i) infrastructure
initialization, ii) deployment and iii) injection. The infras-
tructure initialization phase configures the physical machines
(i.e., speed, number of cores, memory), the network (i.e.,
topology, available bandwidth, latency). Then, the deployment
phase consists in launching the modules of Salamander and
Cuckoo. Finally, the injection phase consists in increasing
and decreasing the load of resources over time (3 minutes
sampling period) according to data centers utilization. We set
the Forecasting builder to use 99th quantile level for future
resource predictions for all the experiments.

B. Experiment results

1) RQ1-Overall performance, Salamander Vs Cuckoo:
Job execution time: Fig.3 shows the job execution time

with 128 MB and 256 MB chunk sizes. A first observation



TABLE III: Percentage of relaunched tasks - University
256 MB chunk size, 5% safety margin

Strategy Min Max Median 98th percentile
Cuckoo 58.67 126.91 89.7 126.38

Salamander-CP 0 8.53 0 0.18
Salamander-GA 0 6.03 0 0.36
Salamander-LS 0 7.79 0 0.36

we can draw is that the three strategies of Salamander behave
similarly with a slight difference of less than 1% caused
by mispredictions. Indeed, the solving strategies generated
comparable scheduling of tasks.

When comparing the minimum median job execution time,
the three solving strategies outperformed Cuckoo with faster
execution time of 9.3%, 11.1% and 8.8% corresponding re-
spectively to PC-1, PC-2 and University with 128 MB chunk
size. With 256 MB chunk size, Salamander improved the
median job execution time by 30.5% for PC-1, 5.2% for
PC-2 and 47.6% for University. We notice that the lower
the number of available nodes, the higher the improvements,
contrary to 128 MB chunks. This can be explained by the
overall execution time of tasks. In fact, the longer the execution
time, the more tasks are prone to prediction errors. This is the
case when increasing the chunk size or reducing the number
of available nodes (e.g., University). This means that Cuckoo
is more impacted by mispredictions compared to Salamander
(more details in Relaunched tasks paragraph).

When increasing the safety margin to 25% and 30% for
the University data center, we can observe that Cuckoo
performs better than Salamander. This is solely due to the
overestimation of RAM usage by the Forecasting builder. For
instance, if we consider the RAM in a node with prediction =
80%, current load = 60%, safety margin = 30%, this
gives us prediction + safety margin > 100 which means
that Salamander cannot schedule tasks on this node according
to this prediction. However, Cuckoo does not consider RAM
but only CPU predictions for data placement thus, it can sched-
ule tasks on the node since current load+safety margin <
100%. That said, Cuckoo performs better at the expense of a
higher risk of relaunching tasks and potentially violating the
SLA which we want to avoid. Furthermore, depending on the
error rate of predictions, we might not have to use a safety
margin with more that 10% as shown next.

Relaunched tasks: Table.III shows the percentage of re-
launched tasks with minimum, maximum, median and 98th
percentile values. We show only the results of University with
256 MB chunks and 5% safety margin as it is the worst
case for Salamander. We observed that Salamander reduces
considerably the percentage of relaunched tasks compared to
Cuckoo. The high percentage observed for Cuckoo is due to
the fixed number of slots for Map and Reduce tasks that could
be executed at the same time. In contrast, Salamander’s task
scheduling dynamically resizes the number of slots according
to the predictions which helps avoid SLA violations.

Remote tasks: Table.IV represents the percentage of
remote tasks execution for Salamander and Cuckoo. We
observe that Salamander does not execute remote tasks while

TABLE IV: Percentage of remote tasks for Salamander and
Cuckoo. (*) refers to CP, GA and LS

Strategy chunk size (MB) PC-1 PC-2 University

Cuckoo 128 7.3 6.04 8.3
256 10.6 8.27 13.65

Salamander-* 128/256 0 0 0

Cuckoo executes about 10% of tasks remotely. Such results
are obtained since Salamander’s data placement strategy
places chunks exactly where tasks are about to be executed
which reduces data transfers between nodes. We notice that
Cuckoo executes more tasks remotely for the University
data center which has the least amount of resources. In
fact, Cuckoo uses a replication factor of three to increase
the availability of data in case of failure. This means that
University should have the lowest percentage of remote tasks.
However, this is not the case since University has the highest
percentage of relaunched tasks which explains the results.
Indeed, in this case, there is a clear correlation between
relaunched and remote tasks.

Through this experiment, Salamander improved the job exe-
cution time by up to 47.6% and an average of 18.7% compared
to Cuckoo. It also reduced considerably both relaunched and
remote tasks (as far as node failure does not occur).

2) RQ2-properties of the proposed strategies: In this ex-
periment, we compared the scalability and quality of Sala-
mander’s solving strategies (i.e., CP, GA, LS). Fig.4a depicts
the results of the solving time of the three strategies for PC-1
(results proved to be similar for PC-2 and University). Fig.4b
represents the scheduling quality of the strategies.

In Fig.4a, we observed that both GA and LS have almost
similar solving time which is linear. However, the solving time
of CP is exponential with a difference of up to 6x for 2500
tasks compared to GA and LS. Furthermore, we observe in
Fig.4b that while CP took much longer time in solving, it only
gave a better scheduling quality of around 4.34% to 10.52%
compared to GA and LS. This means that CP scales up poorly.
As for RAM usage, CP used up to 2.1 GB, GA up to 1.8 GB
while LS used up to 1.3 GB.

Through this experiment, we observed that CP gave an
optimal scheduling of tasks in a reasonable time for problems
with up to 1500 tasks. However, for GA and LS, the scheduling
quality was not far apart from CP with almost linear solving
time with regards to the problem size. So, in order to choose
the appropriate strategy, one must consider the problem size,
the amount of resources and most importantly the solving time
(i.e., online/offline execution) available for the solvers. For
our case, CP can be used for problems with less than 1500
tasks since it gave the optimal scheduling in a reasonable time.
However, for a large number of tasks, one may use GA or LS
since they have similar quality. That being said, LS can be
used in case memory footprint is an issue.

3) RQ3-Effectiveness of the new Qos Controller: In this
experiment, we evaluated the efficiency of the new QoS con-
troller compared to the previous version, both using Cuckoo.
Fig.5 represents the comparison results (i.e., job execution
time, relaunched tasks) for PC-1 with 128 MB chunk size
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Fig. 3: Job execution time for Salamander (with CP, GA, LS) and Cuckoo - 128 and 256 MB chunk sizes
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Fig. 5: QoS controller comparison in PC-1

which is the default setting in HDFS. We only show one
dataset results because the rest are similar.

We observe in Fig.5a that Salamander’s QoS controller out-
performs Cuckoo’s. Median value improvements are between
17.3% and 38.9% for relaunched tasks. This results in faster
execution times of 9.8% up to 21.3%.

Through this experiment, we showed that considering com-
pressible and incompressible resources in the QoS controller
does reduce the number of relaunched tasks which increases
the performance in terms of job execution time.

V. LIMITATIONS

Here are some potential limitations for our work:
• When the forecasting builder overestimates the future re-

source utilization, the proposed scheduler might not be able

to use some nodes which are in reality available as seen in
the experiments. This might be resolved by either having a
dynamic safety margin adjusted to the prediction errors, or
by lowering the quantile level of predictions.

• When using the predictions to generate a scheduling, we are
unable to perfectly execute it because of prediction errors. In
our solution, we only shift the plan when relaunching tasks.
We believe that this can be improved using other strategies
in order to adapt the execution plan, for instance by partially
re-evaluating the scheduling.

• In Salamander, we considered a fixed capacity for the
resources. However, the capacity can be reduced due to
interference (e.g., I/O [27]) between co-located workloads.

• We did not consider the different storage types such as SSD
and HDD for optimizing performance and cost [28], [29].

VI. RELATED WORK

We can classify state-of-the-art studies in two categories,
predictive and reactive approaches.

Reactive approaches: Pado [11] relies on reserved nodes to
save intermediate data and to run particular tasks that would
cause high recomputation costs if evicted. However, in our
case, one does not necessarily have reserved nodes. Contrary
to Pado, Scavenger [30] relies only on unused resources to
execute Spark jobs while reducing interference (e.g., LLC
cache) with the co-located VM. It reacts to VM’s load changes
by dynamically adjusting the available resources. Scavenger is
easy to deploy but its objective is more about minimizing inter-
ference than maximizing the jobs on unused resources. Both
Pado and Scavenger do not consider task scheduling taking
into account the volatility and heterogeneity of resources.

Predictive approaches: TR-Spark [10] uses reserved re-
sources to checkpoint intermediate results (for jobs ran on
ephemeral resources) to avoid unnecessary recomputations.
It uses VM’s properties to determine when to checkpoint



data. Yet again, reserved resources are not always available.
Moreover, the checkpointing rate, even if reduced, can be
costly in terms of resources. Harvest [5], on the other hand,
focuses on maximizing data centers utilization while mini-
mizing recomputations. It uses services historical information
to predict the availability of resources. The solution clusters
resources according to CPU utilization patterns into classes.
The computations are then assigned to those classes according
to their estimated execution time. The main drawback of this
method is that resources are clustered only according to CPU
and no other metrics were considered. Similarity to Pado
and TR-Spark, these resource classes do not account for the
heterogeneity of resources.

VII. CONCLUSION AND FUTURE WORK

Executing big data applications such as Hadoop on re-
claimed unused resources raises several challenges related to
the heterogeneity and volatility of resources as well as inter-
ference between co-located workloads of different customers.

To that end, we proposed Salamander, a heterogeneity and
volatility aware framework that tackles the aforementioned
challenges for efficient execution of Hadoop jobs. It provides
a Holistic task and job scheduler with three different solving
strategies that rely on future resource predictions. In addition, a
scheduler-based data placement strategy is used to improve the
locality of data. Finally, a reactive QoS controller, considering
compressible and incompressible resources, was proposed. The
integration of Salamander required merely 500 lines of code.

The results of our simulation show that Salamander was able
to execute Hadoop jobs efficiently on ephemeral resources.
It did so by better using volatile resources and avoiding
relaunched and remote tasks. This contributes in minimizing
interference with co-located customers’ workloads.

As a perspective, we will integrate Hadoop’s fair scheduler
on top of Salamander to provide fairness between clients. We
will consider data replication for fault tolerance. In addition,
we will consider I/O and network as well as Salamander’s
limitations for deployment and testing on a real system.
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