Infrared laser stimulation of retinal and vestibular neurons
Résumé
The study of laser-neuron interaction has gained interest over the last few years not only for understanding of fundamental mechanisms but also for medical applications such as prosthesis because of the non-invasive characteristic of the laser stimulation. Several authors have shown that near infrared lasers are able to stimulate neurons. It is suggested that a thermal gradient induced by the absorption of the laser radiation on cells is the primary effect but the exact mechanism remains unclear. We show in this work that infrared laser radiations provide a possible way for stimulating retinal and vestibular ganglion cells. We describe relevant physical characteristics allowing safe and reproducible neuron stimulations by single infrared pulses. Calcium fluorescence imaging and electrophysiological recordings have been used to measure ionic exchanges at the neuron membrane. The stimulation system is based on a pulsed laser diode beam of a few mW. Effects of three different wavelengths (from 1470 to 1875 nm) and stimulation durations have been investigated. Variations of the stimulation energy thresholds suggest that the main physical parameter is the water optical absorption. Measurements of the temperature at the cell membrane show that a constant temperature rise is required to stimulate neurons, suggesting a photothermal process.
Fichier principal
Bardin et al -PhotonicsWest2011-Infrared laser stimulation of retinal and vestibular neurons.pdf (2.57 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...