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Observability for generalized Schrödinger equations and quantum limits on product manifolds

Given a closed product Riemannian manifold N = M × M ′ equipped with the product Riemannian metric g = h + h ′ , we explore the observability properties for the generalized Schrödinger equation i∂ t u = F (△ g )u, where △ g is the Laplace-Beltrami operator on N and F : [0, +∞) → [0, +∞) is an increasing function. In this note, we prove observability in finite time on any open subset ω satisfying the so-called Vertical Geometric Control Condition, stipulating that any vertical geodesic meets ω, under the additional assumption that the spectrum of F (△ g ) satisfies a gap condition. A first consequence is that observability on ω for the Schrödinger equation is a strictly weaker property than the usual Geometric Control Condition on any product of spheres. A second consequence is that the Dirac measure along any geodesic of N is never a quantum limit.

Introduction and main results

Let (M, h), (M ′ , h ′ ) be closed Riemannian manifolds, and let △ h and △ h ′ be their respective (nonnegative) Laplace-Beltrami operators. We consider the Riemannian product manifold (N, g) defined by N = M × M ′ and g = h + h ′ . Let △ g = △ h ⊗ △ h ′ be the corresponding Laplace-Beltrami operator on N . Let F : [0, +∞) → [0, +∞) be an arbitrary increasing function. We consider the generalized Schrödinger equation

i∂ t u = F (△ g )u
(1) schrod on M , and we are interested in finding characterizations of the observability property for [START_REF] Anantharaman | Wigner measures and observability for the Schrödinger equation on the disk[END_REF] on any open subset ω ⊂ N . We denote by 0

= µ 0 µ 1 • • • µ k • • • (resp., 0 = µ ′ 0 µ ′ 1 • • • µ ′ k • • •
) the eigenvalues of △ h (resp., of △ h ′ ), associated with a Hilbert eigenbasis (φ k ) k∈N of L 2 (M ) (resp., (φ ′ k ) k∈N of L 2 (M ′ )). We also denote by 0 = λ 0 < λ

1 < • • • < λ k < • • • (resp., 0 = λ ′ 0 < λ ′ 1 < • • • < λ ′ k < • • • ) its distinct eigenvalues.
There exists an increasing sequence (α k ) k∈N (resp., (α ′ k ) k∈N ) such that for j = α k , . . . , α k+1 -1 (resp., j = α ′ k , . . . , α ′ k+1 -1, µ j = λ k (resp., µ ′ l = λ ′ k ). Then, (φ j φ ′ k ) j,k∈N is an orthonormal basis of L 2 (N ) of eigenfunctions of △ g associated to the eigenvalues µ j + µ ′ k . The operator F (△ g ) is spectrally defined as the linear operator which, restricted to the eigenspace of △ g associated to the eigenvalue µ j + µ ′ k , is equal to F (µ j +µ ′ k ) id. The fact that F (△ g ) and △ g have the same eigenspaces comes from the fact that F is increasing, so that

F (µ j + µ ′ k ) = F (µ j ′ + µ ′ k ′ ) if and only if µ j + µ ′ k = µ j ′ + µ ′ k ′ .
By the Stone theorem, (e itF (△g ) ) t 0 is a unitary strongly continuous semigroup on L 2 (N ). Given any y ∈ L 2 (N ), there exists a unique solution 1) such that u(0) = y, given by u(t) = e itF (△g ) y.

u ∈ C 0 ([0, +∞), L 2 (N )) ∩ C 1 ((0, +∞), H -2 (N )) of (
If F (s) = s then (1) is the usual Schrödinger equation, and if F (s) = √ s then (1) is the half-wave equation. We denote by dx g the Riemannian volume form on N . Given any T > 0 and any measurable subset ω of N , we define the observability constant C T (ω) 0 as the largest constant C 0 such that

T 0 ω e itF (△g ) y 2 C y L 2 (N ) ∀y ∈ L 2 (N ) (2) obs (observability inequality), i.e., C T (ω) = inf T 0 ω e itF (△g ) y 2 dx g dt | y ∈ L 2 (N ), y L 2 (N ) = 1 = inf    T 0 ω l,m b jk e itF (µ j +µ k ) φ j φ ′ k 2 dx g dt | b jk ∈ ℓ 2 (C), +∞ j,k=0 |b jk | 2 = 1   
We say that the observability property is satisfied for (1) on (ω, T ) if C T (ω) > 0.

Definition 1. A vertical (resp., horizontal) geodesic of N is a geodesic of the form t → (x, γ(t)) (resp., (γ(t), x)) for some x ∈ M (resp., for some x ∈ M ′ ) and some geodesic γ of M ′ (resp., of M ).

Definition 2. Let ω ⊂ N and let T > 0. We say that (ω, T ) satisfies the Vertical Geometric Control Condition (in short, VGCC) if all vertical geodesics meet ω within time T , i.e., γ([0, T ]) ∩ ω = ∅.

Definition 3. We say that a family (a k ) k∈N of real numbers satisfies the gap condition if there exists a constant C > 0 such that for all j, k ∈ N, we have either a j = a k or |a ka l | C, i.e., if all distinct elements are at a distance of at least C one from each other.

main Theorem 1. Let T > 0 and ω be an open subset of N . If (ω, T ) satisfies VGCC and if the family (F (λ j + λ ′ k )) j,k∈N satisfies the gap condition, then the observability property is satisfied for (1) on (ω, T ).

Let us comment on this theorem and on VGCC. Recall that (ω, T ) satisfies the usual Geometric Control Condition (GCC, see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Lebeau | Contrôle de l'equation de Schrödinger[END_REF][START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF]) whenever every geodesic (not necessarily vertical) meets ω within time T . Let ω be an open subset of N and T > 0. If (ω, T ) satisfies GCC then it also satisfies VGCC. There exist examples where (ω, T ) satisfies VGCC but not GCC: for every x ∈ M , we define ω x := ({x} × M ′ ) ∩ ω. Then, (ω, T ) satisfies VGCC if and only if (ω x , T ) satisfies GCC on M ′ for every x ∈ M . In particular, we obtain the following examples:

• Let (U i ) i∈I be an open covering of M , and let (ω i ) i∈I be a family of open subsets of

M ′ satisfying GCC within time T . Then, setting ω = ∪ i∈I U i × ω i , (ω, T ) satisfies VGCC. In particular, if ω ′ is an open subset of M ′ satisfying GCC, then M × ω ′ satisfies VGCC.
• Let γ be a non-vertical geodesic. Given any ε > 0, we consider the closed εneighborhood of the support Γ of γ defined by

U ε = {x ∈ N | d g (x, Γ)
ε}, where d g is the Riemannian distance on N . We set ω ε = N \ U ε . Then, for any T > 0 and any ε > 0 small enough, (ω ε , T ) satisfies VGCC.

For instance, if γ is horizontal, we can choose ε < T 2 . For the general case, note that for every x ∈ M , (ω ε ) x (with the notations above) is contained in the complement of a small ball in M ′ .

Let us now recall some existing results. It is well known that, when ω is open, GCC is a sufficient condition for observability of the Schrödinger equation (see [START_REF] Lebeau | Contrôle de l'equation de Schrödinger[END_REF]). It is also well known that, except for Zoll manifolds, i.e., manifolds whose all geodesics are periodic (see [START_REF] Macià | The Schrödinger flow in a compact manifold: high-frequency dynamics and dispersion[END_REF]), GCC is not a necessary assumption. An example where the Schrödinger is observable on (ω, T ) but where (ω, T ) does not satisfy GCC is given in [START_REF] Jaffard | Contrôle interne exact des vibrations dune plaque rectangulaire[END_REF]: in the flat 2D torus, any non empty open set gives observability in any time T . This example has been extended to high dimensions in [START_REF] Komornik | Fourier Series in Control Theory[END_REF]. We also refer to [START_REF] Anantharaman | Wigner measures and observability for the Schrödinger equation on the disk[END_REF] for another example, in the Dirichlet disk.

Remark 1. The spectrum of △ 1/2 g can never satisfy the gap condition on the product manifold N .

Application to the Schrödinger equation. We assume that F (s) = s so that ( 1) is now the usual Schrödinger equation. Theorem 1 can be applied as soon as the spectrum of △ g satisfies the gap condition. This is true for instance when M and M ′ have an integer spectrum, in particular when M and M ′ are a finite product of standard spheres.

? cor1 ? Corollary 1. Assume that the spectrum of △ g satisfies the gap condition. Let T > 0 and ω be an open subset of N , such that (ω, T ) satisfies VGCC but not GCC. Then the Schrödinger equation is observable on (ω, T ), while GCC is not satisfied.

This result provides new examples of configurations where one has observability but not GCC.

Quantum limits on a product manifold. The definition of a quantum limit is recalled in Appendix A.1.

cor3 Corollary 2. The support of any quantum limit of N must contain at least an horizontal and a vertical geodesic. In particular, the Dirac measure along any periodic geodesic of N is not a quantum limit.

Proofs

Proof of Theorem 1

Let ω be an open subset of N . For any x ∈ M , we set ω x = ω ∩ ({x} × M ′ ). Theorem 1 follows from the following lemmas, which are in order.

? lemma_main ? Lemma 1. Assume that there exists c, T > 0 such that for all complex numbers (a k,m ) k,m∈N and every x ∈ M ,

T 0 ωx k,m a k,m φ ′ m e iF (λ k +µ ′ m )t 2 dx h ′ dt c k,m |a k,m | 2 (3) main_estimate then (1) is observable on (ω, T ).
Proof. The objective is to prove [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]. Writing

y = l,m 0 b l,m φ l φ ′ m , we have e itF (△g ) y = k,m b k,m φ k φ ′ m e iF (µ k +µ ′ m )t . We denote by G x : C ∞ (N ) → C ∞ ({x} × M ′ ) the mapping (G x f )(q, q ′ ) = f (x, q ′ ). Setting a k,m (x) = α k+1 -1 l=α k
b l,m φ l (x), using (3) and the definition of α k , there exists T, c > 0 such that

T 0 ω |e itF (△g) y| 2 dx g dt = T 0 M ωx |G x e itF (△g) y| 2 dx h ′ dx h (x) dt = T 0 M ωx l,m 0 b l,m φ l (x)φ ′ m (x ′ )e iF (µ k +µ ′ m )t 2 dx h ′ (x ′ ) dx h (x) dt = T 0 M ωx k,m a k,m (x)φ ′ m (x ′ )e iF (λ k +µ ′ m )t 2 dx h ′ (x ′ ) dx h (x) dt c T 0 M k,m |a k,m (x)| 2 dx h (x) dt = cT k,m M | α k+1 -1 l=α k b l,m φ l | 2 dx h = cT k,m M α k l,l ′ α k+1 -1 b l,m b l ′ ,m φ l φ ′ l dx h = cT k,m M α k+1 -1 l=α k b 2 l,m φ 2 l dx h = cT k,m b 2 k,m M φ 2 k dx h = cT k,m b 2 k,m = cT y 2 L 2 (N ) .
This proves observability in time T .

We define

g V 1 (ω) = inf x,φ ′ ωx φ ′2
where the infimum is taken over the set of all possible x ∈ M and all possible eigenfunctions

φ ′ of ∆ h ′ such that φ ′ L 2 (M ) = 1.
? case2 ? Lemma 2. Assume that the family (F (λ k + λ ′ m )) k,m∈N satisfies the gap condition. Then

(3) is satisfied with c = g V 1 (ω)/2 for T large enough. Proof. Define Λ k,m = F (λ k + µ ′ m ).
By assumption, there exists

C 0 > 0 such that if Λ k,m = Λ k ′ ,m ′ , then |Λ k,m -Λ k ′ ,m ′ | C 0 . ( 4 
) gap
Let T > 0 and ψ T the characteristic function of the interval [0, 2T ]. Its Fourier transform ψT is equal to ψT (ξ) = e iT ξ -1 T ξ . Noting that ψT (0) = 1, we have

2T 0 ωx k,m a k,m φ ′ m e iF (λ k +µ ′ m )t 2 dx h ′ dt = k,m,k ′ ,m ′ a k,m a k ′ ,m ′ ψT (Λ k,m -Λ k ′ ,m ′ ) ωx φ ′ m φ ′ m ′ = A + B (5) sum with A = k,m |a k,m | 2 ωx |φ ′ m | 2 , B = (k,m) =(k ′ ,m ′ ) a k,m a k ′ ,m ′ ψT (Λ k,m -Λ k ′ ,m ′ ) ωx φ ′ m φ ′ m ′ .
Using the gap condition (4), it follows from Montgomery-Vaughan inequality (see [10]) that |B| 2 T C 0 A. Hence, we obtain from (5) that

2T 0 ωx k,m a k,m φ ′ m e iF (λ k +µ ′ m )t 2 dx h ′ dt 1 - 2 T C A 1 2 A when T is large enough. Noting that A k,m |a k,m | 2 g V 1 (ω), the inequality (3) follows with c = g V 1 (ω)/2. ? g1vgcc ? Lemma 3. If (ω, T ) satisfies VGCC then g V 1 (ω) > 0.
Proof. Assume that ω satisfies VGCC. By contradiction, let us assume that g V 1 (ω) = 0. This means that for every ε > 0, there exists

x ε ∈ M and an eigenfunction φ ′ ε of ∆ h ′ such that φ ′ ε L 2 (M ′ ) = 1 and such that ωx ε φ 2 ε dx g ε, where we recall that ω xε = ω ∩ ({x ε } × M ′ )
. By compactness, we assume that x ε → x 0 ∈ M and that (φ ′ ε ) 2 → µ weakly, where µ is a quantum limit of M ′ . Let U k be an increasing sequence of open sets such that U k ⊂ U k+1 and such that

∪ k U k = ω 0 = ω ∩ ({x 0 } × M ′ ).
Since ω is open, for all k ∈ N and ε > 0 small enough, we have U k ⊂ ω xε . This implies that U k (φ ′ ε ) 2 dx g ε. We infer from the Portmanteau theorem (see Appendix A.2) that µ(U k ) = 0, and thus µ(ω 0 ) = 0. This implies that GCC does not hold for ω 0 in any time. Indeed, by the Egorov theorem (see [START_REF] Egorov | The canonical transformations of a pseudo-differential operator[END_REF][START_REF] Zworski | Semiclassical Analysis[END_REF]), µ is invariant under the geodesic flow, as a measure on S * M ′ . By the Krein-Milman theorem, µ can be approximated by a sequence (µ k ) k∈N of convex combinations of Dirac measures along periodic geodesics. Since µ k (ω 0 ) → 0, there exists a sequence of periodic geodesics γ k such that, if δ k is the Dirac measure along γ k , we have δ k (µ 0 ) → 0. This means that the time spent by γ k (actually, by its projection onto M ′ ) in ω 0 tends to 0. By compactness of geodesics, γ k converges to some geodesic γ. Again by the Portmanteau theorem, γ does not meet ω, hence GCC on M ′ fails for ω 0 and this contradicts that VGCC is satisfied for ω.

Proof of Corollary 2

We prove the vertical case, the horizontal case being symmetric. We rearrange the set

{λ j + λ ′ k | j, k ∈ N} = {d k | k ∈ N} with an increasing sequence (d k ) k∈N .
Let F be an increasing function such that F (d k ) = k for every k ∈ N. By construction, the set {F (λ j + λ ′ k ) | j, k ∈ N} satisfies the gap condition. Let Γ be the support of a quantum limit µ on M × M ′ . Since F (△ g ) and △ g have the same eigenfunctions, µ is also the weak limit of a sequence of ψ 2 j dx g d ξ where ψ j are eigenfunctions of F (△ g ) satisfying ψ j L 2 = 1. We set ω ε = {x ∈ N | d g (x, Γ) > ε}, for ε > 0 small enough. For every T > 0, (ω ε , T ) is not observable for (1) because y = ψ j provides a sequence of test functions which, at the limit, lie on Γ. Hence, by Theorem 1, (ω ε , T ) does not satisfy VGCC. Remark ?? implies that Γ must contain a vertical geodesic.

A Appendix

A.1 Quantum limits ql We recall that a quantum limit (QL in short) µ, also called semi-classical measure, is a probability Radon (i.e., probability Borel regular) measure on S * M that is a closure point (weak limit), as λ → +∞, of the family of Radon measures µ λ (a) = Op(a)φ λ , φ λ (which are asymptotically positive by the Gårding inequality), where φ λ denotes an eigenfunction of norm 1 associated with the eigenvalue λ of √ △. Here, Op is any quantization. We speak of a QL on M to refer to a closure point (for the weak topology) of the sequence of probability Radon measures φ 2 λ dx g on M as λ → +∞. Note that QLs do not depend on the choice of a quantization. We denote by Q(S * M ) (resp., Q(M )) the set of QLs (resp., the set of QLs on M ). Both are compact sets.

Given any µ ∈ Q(S * M ), the Radon measure π * µ, image of µ under the canonical projection π :

S * M → M , is a probability Radon measure on M . It is defined, equivalently, by (π * µ)(f ) = µ(π * f ) = µ(f •π) for every f ∈ C 0 (M ) (note that, in local coordinates (x, ξ)
in S * M , the function f •π is a function depending only on x), or by (π * µ)(ω) = µ(π -1 (ω)) for every ω ⊂ M Borel measurable (or Lebesgue measurable, by regularity). It is easy to see that 1 π * Q(S * M ) = Q(M ).

In other words, QLs on M are exactly the image measures under π of QLs.

A.2 Portmanteau theorem

cintre Let us recall the Portmanteau theorem (see, e.g., [START_REF] Billingsley | Convergence of Probability Measures[END_REF]). Let X be a topological space, endowed with its Borel σ-algebra. Let µ and µ n , n ∈ N * , be finite Borel measures on X. Then the following items are equivalent:

• µ n → µ for the narrow topology, i.e., f dµ n → f dµ for every bounded continuous function f on X;

• f dµ n → f dµ for every Borel bounded function f on X such that µ(∆ f ) = 0, where ∆ f is the set of points at which f is not continuous;

• µ n (B) → µ(B) for every Borel subset B of X such that µ(∂B) = 0;

• µ(F ) lim sup µ n (F ) for every closed subset F of X, and µ n (X) → µ(X);

• µ(O) lim inf µ n (O) for every open subset O of X, and µ n (X) → µ(X). 

(

  π * µ λ )(f ) = µ λ (π * f ) = Op(π * f )φ λ , φ λ = M f φ 2 λ dxg, because Op(π * f )φ λ = f φ λ .The equality then easily follows by weak compactness of probability Radon measures.

Indeed, given any f ∈ C 0 (M ) and any λ ∈ Spec( √ △), we have
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