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quantum limits on product manifolds

Emmanuel Humbert∗ Yannick Privat† Emmanuel Trélat‡

March 3, 2020

Abstract

Given a closed product Riemannian manifold N = M × M ′ equipped with the
product Riemannian metric g = h+h′, we explore the observability properties for the
generalized Schrödinger equation i∂tu = F (△g)u, where △g is the Laplace-Beltrami
operator on N and F : [0,+∞) → [0,+∞) is an increasing function. In this note, we
prove observability in finite time on any open subset ω satisfying the so-called Vertical
Geometric Control Condition, stipulating that any vertical geodesic meets ω, under
the additional assumption that the spectrum of F (△g) satisfies a gap condition. A first
consequence is that observability on ω for the Schrödinger equation is a strictly weaker
property than the usual Geometric Control Condition on any product of spheres. A
second consequence is that the Dirac measure along any geodesic of N is never a
quantum limit.

1 Introduction and main results

Let (M,h), (M ′, h′) be closed Riemannian manifolds, and let △h and △h′ be their re-
spective (nonnegative) Laplace-Beltrami operators. We consider the Riemannian product
manifold (N, g) defined by N =M ×M ′ and g = h+ h′. Let △g = △h ⊗△h′ be the cor-
responding Laplace-Beltrami operator on N . Let F : [0,+∞) → [0,+∞) be an arbitrary
increasing function. We consider the generalized Schrödinger equation

i∂tu = F (△g)u (1) schrod

on M , and we are interested in finding characterizations of the observability property for
(1) on any open subset ω ⊂ N .

We denote by 0 = µ0 6 µ1 6 · · · 6 µk 6 · · · (resp., 0 = µ′0 6 µ′1 6 · · · 6 µ′k 6 · · · ) the
eigenvalues of △h (resp., of △h′), associated with a Hilbert eigenbasis (φk)k∈N of L2(M)
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‡Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions (LJLL), F-
75005 Paris, France (emmanuel.trelat@sorbonne-universite.fr).

1



(resp., (φ′k)k∈N of L2(M ′)). We also denote by 0 = λ0 < λ1 < · · · < λk < · · · (resp.,
0 = λ′0 < λ′1 < · · · < λ′k < · · · ) its distinct eigenvalues. There exists an increasing sequence
(αk)k∈N (resp., (α′

k)k∈N) such that for j = αk, . . . , αk+1 − 1 (resp., j = α′
k, . . . , α

′
k+1 − 1,

µj = λk (resp., µ′l = λ′k).
Then, (φjφ

′
k)j,k∈N is an orthonormal basis of L2(N) of eigenfunctions of △g associated

to the eigenvalues µj+µ
′
k. The operator F (△g) is spectrally defined as the linear operator

which, restricted to the eigenspace of △g associated to the eigenvalue µj + µ′k, is equal to
F (µj+µ

′
k) id. The fact that F (△g) and △g have the same eigenspaces comes from the fact

that F is increasing, so that F (µj + µ′k) = F (µj′ + µ′k′) if and only if µj + µ′k = µj′ + µ′k′ .
By the Stone theorem, (eitF (△g))t>0 is a unitary strongly continuous semigroup on

L2(N). Given any y ∈ L2(N), there exists a unique solution u ∈ C0([0,+∞), L2(N)) ∩
C1((0,+∞),H−2(N)) of (1) such that u(0) = y, given by u(t) = eitF (△g)y.

If F (s) = s then (1) is the usual Schrödinger equation, and if F (s) =
√
s then (1) is

the half-wave equation.
We denote by dxg the Riemannian volume form on N . Given any T > 0 and any

measurable subset ω of N , we define the observability constant CT (ω) > 0 as the largest
constant C > 0 such that

∫ T

0

∫

ω

∣

∣

∣
eitF (△g)y

∣

∣

∣

2
> C‖y‖L2(N) ∀y ∈ L2(N) (2) obs

(observability inequality), i.e.,

CT (ω) = inf

{
∫ T

0

∫

ω

∣

∣

∣
eitF (△g)y

∣

∣

∣

2
dxg dt | y ∈ L2(N), ‖y‖L2(N) = 1

}

= inf







∫ T

0

∫

ω

∣

∣

∣

∑

l,m

bjke
itF (µj+µk)φjφ

′
k

∣

∣

∣

2
dxg dt | bjk ∈ ℓ2(C),

+∞
∑

j,k=0

|bjk|2 = 1







We say that the observability property is satisfied for (1) on (ω, T ) if CT (ω) > 0.

Definition 1. A vertical (resp., horizontal) geodesic of N is a geodesic of the form t →
(x, γ(t)) (resp., (γ(t), x)) for some x ∈ M (resp., for some x ∈ M ′) and some geodesic γ
of M ′ (resp., of M).

Definition 2. Let ω ⊂ N and let T > 0. We say that (ω, T ) satisfies the Vertical
Geometric Control Condition (in short, VGCC) if all vertical geodesics meet ω within
time T , i.e., γ([0, T ]) ∩ ω 6= ∅.

Definition 3. We say that a family (ak)k∈N of real numbers satisfies the gap condition
if there exists a constant C > 0 such that for all j, k ∈ N, we have either aj = ak or
|ak − al| > C, i.e., if all distinct elements are at a distance of at least C one from each
other.

〈main〉
Theorem 1. Let T > 0 and ω be an open subset of N . If (ω, T ) satisfies VGCC and if
the family (F (λj + λ′k))j,k∈N satisfies the gap condition, then the observability property is

satisfied for (1) on (ω, T ).
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Let us comment on this theorem and on VGCC.
Recall that (ω, T ) satisfies the usual Geometric Control Condition (GCC, see [2, 8, 11])

whenever every geodesic (not necessarily vertical) meets ω within time T . Let ω be an
open subset of N and T > 0. If (ω, T ) satisfies GCC then it also satisfies VGCC. There
exist examples where (ω, T ) satisfies VGCC but not GCC: for every x ∈ M , we define
ωx := ({x} ×M ′) ∩ ω. Then, (ω, T ) satisfies VGCC if and only if (ωx, T ) satisfies GCC
on M ′ for every x ∈M . In particular, we obtain the following examples:

• Let (Ui)i∈I be an open covering of M , and let (ωi)i∈I be a family of open subsets of
M ′ satisfying GCC within time T . Then, setting ω = ∪i∈IUi × ωi, (ω, T ) satisfies
VGCC. In particular, if ω′ is an open subset of M ′ satisfying GCC, then M × ω′

satisfies VGCC.

• Let γ be a non-vertical geodesic. Given any ε > 0, we consider the closed ε-
neighborhood of the support Γ of γ defined by Uε = {x ∈ N | dg(x,Γ) 6 ε},
where dg is the Riemannian distance on N . We set ωε = N \ Uε. Then, for any
T > 0 and any ε > 0 small enough, (ωε, T ) satisfies VGCC.

For instance, if γ is horizontal, we can choose ε < T
2 . For the general case, note that

for every x ∈ M , (ωε)x (with the notations above) is contained in the complement
of a small ball in M ′.

Let us now recall some existing results. It is well known that, when ω is open, GCC is
a sufficient condition for observability of the Schrödinger equation (see [8]). It is also well
known that, except for Zoll manifolds, i.e., manifolds whose all geodesics are periodic (see
[9]), GCC is not a necessary assumption. An example where the Schrödinger is observable
on (ω, T ) but where (ω, T ) does not satisfy GCC is given in [6]: in the flat 2D torus, any
non empty open set gives observability in any time T . This example has been extended
to high dimensions in [7]. We also refer to [1] for another example, in the Dirichlet disk.

Remark 1. The spectrum of △1/2
g can never satisfy the gap condition on the product

manifold N .

Application to the Schrödinger equation. We assume that F (s) = s so that (1) is
now the usual Schrödinger equation. Theorem 1 can be applied as soon as the spectrum of
△g satisfies the gap condition. This is true for instance when M and M ′ have an integer
spectrum, in particular when M and M ′ are a finite product of standard spheres.

?〈cor1〉?Corollary 1. Assume that the spectrum of △g satisfies the gap condition. Let T > 0
and ω be an open subset of N , such that (ω, T ) satisfies VGCC but not GCC. Then the
Schrödinger equation is observable on (ω, T ), while GCC is not satisfied.

This result provides new examples of configurations where one has observability but
not GCC.
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Quantum limits on a product manifold. The definition of a quantum limit is recalled
in Appendix A.1.

〈cor3〉Corollary 2. The support of any quantum limit of N must contain at least an horizontal
and a vertical geodesic. In particular, the Dirac measure along any periodic geodesic of N
is not a quantum limit.

2 Proofs

2.1 Proof of Theorem 1

Let ω be an open subset of N . For any x ∈ M , we set ωx = ω ∩ ({x} ×M ′). Theorem 1
follows from the following lemmas, which are in order.

?〈lemma_main〉?Lemma 1. Assume that there exists c, T > 0 such that for all complex numbers (ak,m)k,m∈N

and every x ∈M ,

∫ T

0

∫

ωx

∣

∣

∣

∑

k,m

ak,mφ
′
me

iF (λk+µ′
m)t

∣

∣

∣

2
dxh′ dt > c

∑

k,m

|ak,m|2 (3) main_estimate

then (1) is observable on (ω, T ).

Proof. The objective is to prove (2). Writing y =
∑

l,m>0 bl,mφlφ
′
m, we have eitF (△g)y =

∑

k,m bk,mφkφ
′
me

iF (µk+µ′
m)t. We denote by Gx : C∞(N) → C∞({x} ×M ′) the mapping

(Gxf)(q, q
′) = f(x, q′). Setting ak,m(x) =

∑αk+1−1
l=αk

bl,mφl(x), using (3) and the definition
of αk, there exists T, c > 0 such that

∫ T

0

∫

ω
|eitF (△g)y|2 dxg dt =

∫ T

0

∫

M

∫

ωx

|Gxe
itF (△g)y|2 dxh′ dxh(x) dt

=

∫ T

0

∫

M

∫

ωx

∣

∣

∣

∑

l,m>0

bl,mφl(x)φ
′
m(x′)eiF (µk+µ′

m)t
∣

∣

∣

2
dxh′(x′) dxh(x) dt

=

∫ T

0

∫

M

∫

ωx

∣

∣

∣

∑

k,m

ak,m(x)φ′m(x′)eiF (λk+µ′
m)t

∣

∣

∣

2
dxh′(x′) dxh(x) dt

> c

∫ T

0

∫

M

∑

k,m

|ak,m(x)|2 dxh(x) dt = cT
∑

k,m

∫

M
|
αk+1−1
∑

l=αk

bl,mφl|2dxh

= cT
∑

k,m

∫

M

∑

αk6l,l′6αk+1−1

bl,mbl′,mφlφ
′
l dxh = cT

∑

k,m

∫

M

αk+1−1
∑

l=αk

b2l,mφ
2
l dxh

= cT
∑

k,m

b2k,m

∫

M
φ2k dxh = cT

∑

k,m

b2k,m = cT‖y‖2L2(N).

This proves observability in time T .
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We define

gV1 (ω) = inf
x,φ′

∫

ωx

φ′2

where the infimum is taken over the set of all possible x ∈M and all possible eigenfunctions
φ′ of ∆h′ such that ‖φ′‖L2(M) = 1.

?〈case2〉?Lemma 2. Assume that the family (F (λk + λ′m))k,m∈N satisfies the gap condition. Then
(3) is satisfied with c = gV1 (ω)/2 for T large enough.

Proof. Define Λk,m = F (λk + µ′m). By assumption, there exists C0 > 0 such that if
Λk,m 6= Λk′,m′ , then

|Λk,m − Λk′,m′ | > C0. (4) gap

Let T > 0 and ψT the characteristic function of the interval [0, 2T ]. Its Fourier transform

ψ̂T is equal to ψ̂T (ξ) =
eiTξ−1

Tξ . Noting that ψ̂T (0) = 1, we have

∫ 2T

0

∫

ωx

∣

∣

∣

∑

k,m

ak,mφ
′
m e

iF (λk+µ′
m)t

∣

∣

∣

2
dxh′ dt

=
∑

k,m,k′,m′

ak,mak′,m′ψ̂T (Λk,m − Λk′,m′)

∫

ωx

φ′mφ
′
m′ = A+B (5) sum

with

A =
∑

k,m

|ak,m|2
∫

ωx

|φ′m|2, B =
∑

(k,m)6=(k′,m′)

ak,mak′,m′ψ̂T (Λk,m − Λk′,m′)

∫

ωx

φ′mφ
′
m′ .

Using the gap condition (4), it follows from Montgomery-Vaughan inequality (see [10])
that |B| 6 2

TC0
A. Hence, we obtain from (5) that

∫ 2T

0

∫

ωx

∣

∣

∣

∑

k,m

ak,mφ
′
me

iF (λk+µ′
m)t

∣

∣

∣

2
dxh′ dt >

(

1− 2

TC

)

A >
1

2
A

when T is large enough. Noting that A >
∑

k,m |ak,m|2gV1 (ω), the inequality (3) follows

with c = gV1 (ω)/2.

?〈g1vgcc〉?Lemma 3. If (ω, T ) satisfies VGCC then gV1 (ω) > 0.

Proof. Assume that ω satisfies VGCC. By contradiction, let us assume that gV1 (ω) = 0.
This means that for every ε > 0, there exists xε ∈ M and an eigenfunction φ′ε of ∆h′

such that ‖φ′ε‖L2(M ′) = 1 and such that
∫

ωxε
φ2εdxg 6 ε, where we recall that ωxε =

ω ∩ ({xε} ×M ′). By compactness, we assume that xε → x0 ∈ M and that (φ′ε)
2 → µ

weakly, where µ is a quantum limit of M ′. Let Uk be an increasing sequence of open sets
such that Uk ⊂ Uk+1 and such that ∪kUk = ω0 = ω ∩ ({x0} ×M ′). Since ω is open, for
all k ∈ N and ε > 0 small enough, we have Uk ⊂ ωxε . This implies that

∫

Uk
(φ′ε)

2 dxg 6 ε.
We infer from the Portmanteau theorem (see Appendix A.2) that µ(Uk) = 0, and thus
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µ(ω0) = 0. This implies that GCC does not hold for ω0 in any time. Indeed, by the
Egorov theorem (see [4, 12]), µ is invariant under the geodesic flow, as a measure on
S∗M ′. By the Krein-Milman theorem, µ can be approximated by a sequence (µk)k∈N of
convex combinations of Dirac measures along periodic geodesics. Since µk(ω0) → 0, there
exists a sequence of periodic geodesics γk such that, if δk is the Dirac measure along γk,
we have δk(µ0) → 0. This means that the time spent by γk (actually, by its projection
onto M ′) in ω0 tends to 0. By compactness of geodesics, γk converges to some geodesic
γ. Again by the Portmanteau theorem, γ does not meet ω, hence GCC on M ′ fails for ω0

and this contradicts that VGCC is satisfied for ω.

2.2 Proof of Corollary 2

We prove the vertical case, the horizontal case being symmetric. We rearrange the set
{λj + λ′k | j, k ∈ N} = {dk | k ∈ N} with an increasing sequence (dk)k∈N. Let F be
an increasing function such that F (dk) = k for every k ∈ N. By construction, the set
{F (λj + λ′k) | j, k ∈ N} satisfies the gap condition. Let Γ be the support of a quantum
limit µ on M ×M ′. Since F (△g) and △g have the same eigenfunctions, µ is also the weak
limit of a sequence of ψ2

j dxg dξ where ψj are eigenfunctions of F (△g) satisfying ‖ψj‖L2 = 1.
We set ωε = {x ∈ N | dg(x,Γ) > ε}, for ε > 0 small enough. For every T > 0, (ωε, T ) is
not observable for (1) because y = ψj provides a sequence of test functions which, at the
limit, lie on Γ. Hence, by Theorem 1, (ωε, T ) does not satisfy VGCC. Remark ?? implies
that Γ must contain a vertical geodesic.

A Appendix

A.1 Quantum limits

〈ql〉We recall that a quantum limit (QL in short) µ, also called semi-classical measure, is a
probability Radon (i.e., probability Borel regular) measure on S∗M that is a closure point
(weak limit), as λ→ +∞, of the family of Radon measures µλ(a) = 〈Op(a)φλ, φλ〉 (which
are asymptotically positive by the G̊arding inequality), where φλ denotes an eigenfunction
of norm 1 associated with the eigenvalue λ of

√△. Here, Op is any quantization. We
speak of a QL on M to refer to a closure point (for the weak topology) of the sequence of
probability Radon measures φ2λ dxg on M as λ → +∞. Note that QLs do not depend on
the choice of a quantization. We denote by Q(S∗M) (resp., Q(M)) the set of QLs (resp.,
the set of QLs on M). Both are compact sets.

Given any µ ∈ Q(S∗M), the Radon measure π∗µ, image of µ under the canonical
projection π : S∗M →M , is a probability Radon measure onM . It is defined, equivalently,
by (π∗µ)(f) = µ(π∗f) = µ(f◦π) for every f ∈ C0(M) (note that, in local coordinates (x, ξ)
in S∗M , the function f ◦π is a function depending only on x), or by (π∗µ)(ω) = µ(π−1(ω))
for every ω ⊂ M Borel measurable (or Lebesgue measurable, by regularity). It is easy to
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see that1

π∗Q(S∗M) = Q(M).

In other words, QLs on M are exactly the image measures under π of QLs.

A.2 Portmanteau theorem

〈cintre〉
Let us recall the Portmanteau theorem (see, e.g., [3]). Let X be a topological space,
endowed with its Borel σ-algebra. Let µ and µn, n ∈ N

∗, be finite Borel measures on X.
Then the following items are equivalent:

• µn → µ for the narrow topology, i.e.,
∫

f dµn →
∫

f dµ for every bounded continuous
function f on X;

•
∫

f dµn →
∫

f dµ for every Borel bounded function f on X such that µ(∆f ) = 0,
where ∆f is the set of points at which f is not continuous;

• µn(B) → µ(B) for every Borel subset B of X such that µ(∂B) = 0;

• µ(F ) > lim supµn(F ) for every closed subset F of X, and µn(X) → µ(X);

• µ(O) 6 lim inf µn(O) for every open subset O of X, and µn(X) → µ(X).

Acknowledgment. The first author is supported by the project THESPEGE (APR
IA), Région Centre-Val de Loire, France, 2018-2020.
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Schrödinger equation on the disk, Invent. Math. 206 (2016), no. 2, 485–599.

BardosLebeauRauch [2] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and
stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), no. 5, 1024–1065.

Billingsley [3] P. Billingsley, Convergence of Probability Measures, 2nd ed., Wiley, 1999.

Egorov [4] Y. Egorov, The canonical transformations of a pseudo-differential operator, Uspehi. Mat.
Nauk. 24 (1969), 235–236.
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