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A B S T R A C T

Progressive mesh decimation by successive edge collapses is a standard tool in ge-
ometry processing. A key element of such algorithms is the error metric, which prior-
itizes the edge collapses to greedily minimize the simplification error. Most previous
works focus on preserving local shape properties. However, meshes describing com-
plex systems often require significant decimation for fast transmission and visualization
on low-end terminals, and preserving the arrangement of objects is required to main-
tain the overall system readability for applications such as on-site repair, inspection,
training, serious games, etc.

We present a novel approach for the joint decimation of multiple triangular meshes.
We combine local edge error (e.g. Quadric Error Metric) with a proximity-aware
penalty function, which increases the error of edge collapses modifying the geome-
try in proximity areas. We propose an automatic detection of proximity areas and we
demonstrate the performances of our approach on several models generated from CAD
scenes.

1. Introduction1

It is today a common practice to gather large and detailed 3D2

meshes to represent geometrical information. Visualizing and3

interacting with such data remains very challenging, as the data4

complexity and scale stress both hardware and software com-5

ponents in real-life applications. This becomes even more criti-6

cal with mobile platforms and web-embedded 3D visualization,7

which require fast 3D data transfer and rendering even on low8

end terminals. Despite their limited performances, mobile plat-9

forms are very attractive as they bring access to rich information10

on-site, and help users performing tasks in complex environ-11

ments (e.g. machinery maintenance). The relatively low cost12

and ubiquity of mobile devices also make them very attractive13

as support for teaching and training.14

To mitigate the increasing complexity of 3D datasets for15

low-performance hardware, a common solution is to reduce16

the polygon count of large 3D meshes using decimation algo-17

rithms [1]. In order to keep the decimation algorithms tractable,18

the preservation of the mesh properties (e.g. parameterization19

and shape) is generally ensured by a local prior, evaluated at20

each decimation step, using a point-to-plane distance minimiza- 21

tion for collapsing edges [2]. Several distance measures have 22

been proposed for this framework and the most popular is the 23

Quadric Error Metric (QEM) [3]. 24

Meshes representing man-made or Computer Aided Design 25

(CAD) scenes are often massive models composed of many 26

parts encoding both the geometry and the functional meaning 27

of the scene. Preserving this meaning (or semantics) in addition 28

to the geometry is mandatory to still understand the function- 29

ing of a system (for instance mechanical), even though meshes 30

have been highly simplified to be manipulated on low-end re- 31

mote terminals. If provided as input, this information can be 32

used to simplify an object by feature importance [4]. But with- 33

out any prior, the mesh decimation of multi-part scenes relies 34

only on the geometry, and preserving both the individual parts 35

properties and their relations is very challenging. 36

In this work, we focus on the decimation of 3D scenes com- 37

posed of multiple objects (as illustrated in Figure 1). We tar- 38

get applications where 3D models are transferred to low-end 39

mobile devices for visualization and manipulation. Simplify- 40
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Fig. 1: Left: Car scene with 425 meshes and 3M faces in total. Right: Result of our proximity-aware decimation to 150k faces in total. Some meshes are rendered
with transparent material to better observe the scene complexity.

ing meshes to low polygon counts is then mandatory to re-1

duce the time required to transfer and render the 3D models.2

Our approach also targets applications where the 3D scene re-3

quires virtual disassembly or/and manipulation with a mechan-4

ical/functional meaning to preserve, e.g. for on-site repair, in-5

spection, training, serious games, etc.6

Our solution is based on the observation that in mechani-7

cal systems, the shape of an object is designed according to8

its functionality and its interactions with the surroundings (e.g.9

contacts and arrangement). As such, we propose to take into10

account the neighboring meshes in the decimation of an object.11

We formulate the neighboring information as a proximity er-12

ror mitigating the importance of geometric structures according13

to an object surrounding. This proximity error is then used to14

penalize the error introduced by decimation operations in prox-15

imity areas, and thus reduce their priority, which yields to de-16

lay their simplification and better preserve the object shape (see17

Figure 2).18

Our contribution is twofold. First, we introduce a proximity-19

aware error metric by inserting a proximity penalty function20

into the Quadric Error Metric (Section 5). Second, we param-21

eterize this new error metric with a proximity analysis of the22

input scene (Section 6). In Section 7, we illustrate the benefits23

of our approach and how it better preserves the input shapes in24

nearby parts of CAD scenes, in comparison with standard dec-25

imation using QEM.26

2. Previous Work27

Over the years, several families of approaches have been pro-28

posed for simplifying meshes. We first review simplification29

techniques for single meshes, and then for scenes composed of30

multiple meshes.31

2.1. Mesh Simplification32

Mesh simplification is the process of modifying the tessella-33

tion of an input mesh in order to reduce its polygon count, by34

clustering vertices, collapsing edges or faces.35

Clustering techniques group vertices and replace them by36

smaller sets. Rossignac and Borrel [5] group vertices accord-37

ing to the regular subdivision of the bounding volume of the38

mesh. Low and Tan [6] extend this idea to arbitrary shapes us-39

ing voxel grids. Following these ideas, Boubekeur and Alexa40

[7] use stochastic vertex selection based on a local feature es- 41

timator, combined with triangle re-indexing to better preserve 42

areas of high curvature. Overall, it remains difficult to local- 43

ize decimation and control the granularity of the simplification 44

with this family of approaches. 45

Mesh decimation has been introduced by Schroeder et al. [8]. 46

In this approach, mesh vertices are removed sequentially ac- 47

cording to a given decimation criterion, and the resulting hole 48

is filled with new faces. Turk [9] proposes a similar technique 49

where new vertices sampling the input surface are introduced to 50

generate the local tesselation. It is then extended by Ciampalini 51

et al. [10] with a global error criterion to avoid error accumula- 52

tion during the consecutive decimation steps. 53

Hoppe [2] introduces progressive meshes, an iterative 54

method that progressively simplifies the mesh using the local 55

edge collapse operator. A standard implementation of edge 56

collapse simplification consists in sorting the mesh edges by 57

increasing error in a priority queue. At each step, the edge 58

with the smallest error value is collapsed, and the errors of the 59

edges impacted by the simplification are recomputed. In or- 60

der to avoid error accumulation during this process, several ap- 61

proaches have been proposed to restrict the set of collapses to a 62

prescribed tolerance volume [11, 12, 13, 14, 15]. 63

Several error metrics can be used to decimate a mesh, such 64

as the Hausdorff distance between the simplified and the origi- 65

nal mesh [16]. Lindstrom and Turk [17] focus on mesh volume 66

preservation and define their error metric as the sum of squared 67

tetrahedral volumes formed by the vertex and its neighbor faces. 68

The most popular and widespread method is the Quadric Error 69

Metric (QEM) [3], which computes the sum of the squared dis- 70

tances from the newly inserted vertex to the set of planes span- 71

ning the collapsed edge neighbor faces. The strength of the 72

QEM is to model the sum of squared distances as a quadric per 73

edge, which is minimized to find the optimal vertex position for 74

each collapse. 75

The QEM can be extended to preserve mesh attributes or 76

properties, such as curvature [18, 19], geometric features [20] 77

or local topology [21]. Alternatively, user-defined weighting 78

functions might be applied on the mesh to delay collapses in 79

specific regions of the mesh [22, 23, 24]. Note that Kho and 80

Garland [22] also propose to combine local quadrics with user- 81

defined quadrics modelling contour lines on the mesh. More 82

recently, Salinas et al. [25] extended this idea with quadrics 83
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(a) Input scene (b) Standard QEM (c) Proximity-Aware Error Metric

Fig. 2: (a) Close-up on the Car scene shown in Fig. 1 (425 meshes and a total of 3M faces). (b) Its edge collapse-based simplification with Quadric Error Metric.
(c) Our approach better preserves the shape of 3D meshes that are close to other meshes in the scene, as for instance illustrated by the hex washer bolts head and the
preservation of the contact surface with its support. Both simplified scenes have 150k faces each.

computed from proxy planes and line boundaries, in order to1

describe the high-level structure of the mesh.2

A shared limitation of the aforementioned algorithms is to3

rely on sequential processing, which is greedy both in memory4

and computational power. Very large to huge meshes may thus5

be processed in parallel [26], out-of-core [27] or by combining6

the two approaches [28].7

While different mesh properties and attributes may be pre-8

served by the simplification, none of the previous methods takes9

particular care of the proximity between different parts.10

2.2. Scene Simplification11

In most CAD representations, geometrical primitives and12

their arrangement define high-level information that can be used13

to support the simplification process [4]. Based on the scene14

graph, Erikson et al. [29] propose to build hierarchical levels15

of detail by grouping nodes w.r.t. the scene graph and the16

meshes spatial arrangement, while the geometry is optimized17

using standard mesh decimation algorithms. In practice, how-18

ever, complex scenes are often provided as an unstructured set19

of meshes and we are instead seeking a geometric-only multiple20

meshes simplification.21

The joint decimation of multiple meshes has also been stud-22

ied. Gumhold et al. [30] focus on avoiding collisions between23

close-by meshes during edge collapses. Each time an edge con-24

traction generates a collision, a new intersection-free position25

is computed, and the collapse operation is re-inserted in the26

queue with the associated new error value. The main limitation27

of this approach is to only consider collisions, and ignore col-28

lapses that might affect the geometry of nearby meshes, e.g. by29

generating holes, cracks and removing small geometrical fea-30

tures. González et al. [31] propose a user-assisted method to31

simplify sub-objects with different levels of detail while pre-32

serving boundaries. To do so, vertices nearby other meshes33

in the scene are marked as boundary and preserved by per-34

forming halfedge collapses. The limitations of this approach35

are twofold: firstly, the approximation error in boundary areas36

is checked only along the edges, and not on the faces. Sec-37

ondly, the edges that have both end-points in boundary areas38

are treated as standard edges, which prevents from penalizing 39

shape variations of nearby surfaces inside boundary areas. 40

3. Technical Background 41

In this section, we remind the standard computation of 42

Quadric Error Metrics (QEM) [3] and the main principles of 43

incremental edge collapse decimation [2]. 44

Quadric Error Metric. For each face f of an input mesh, a 45

quadric Q f is defined as a 4x4 matrix Q f = ppT , where 46

p = (nx, ny, nz, d)T defines the plane spanning the face f , and 47

∆qem(x) = xT Q f x is the point x to plane p squared distance. 48

The distance between x and several planes is computed using 49

the sum of the planes quadrics instead of Q f in ∆qem. Garland 50

and Heckbert [3] showed that finding the point minimizing this 51

point-to-planes distance boils down to the minimization of a 52

quadratic polynomial function, which can be done efficiently in 53

closed form. 54

In order to compute the optimal point collapsing an edge, i.e.
the point minimizing ∆qem for the set of planes in the collapsed
edge neighborhood, we use in ∆qem the quadric associated with
the edge. This quadric is defined as Qe = 1

2 (Qv1 + Qv2 ), where
Qv1 and Qv2 are the edge vertex extremities quadrics defined as:

Qv =

∑
fi∈τ(v)

w( fi) Q fi∑
fi∈τ(v)

w( fi)
,

where τ(v) is the set of faces in the one-ring neighborhood of 55

v. Any weighting scheme w might be used for the faces, e.g. 56

cotangent weights. 57

Edge collapse simplification. For each edge e of an input mesh, 58

the error value is computed using QEM and sorted in a priority 59

queue by increasing error. Then, the decimation is performed 60

by iteratively collapsing the edge with the smallest error, i.e. 61

the one located on the top of the priority queue. After each 62

collapse operation, the error value of the edges modified by the 63

collapse operation and their position in the priority queue are 64
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updated. Hence, for each collapse, the complexity of updating1

the priority queue is up to O(2k log(E)), where k is the number2

of edges to update (remove and insert) in a queue of E elements.3

4. Overview4

Our approach takes as input a set of N triangular meshes5

Mi, i ∈ [0 . .N[, and outputs a set of decimated meshes Md
i . We6

denote vi, j, ei, j and fi, j the jth vertex, edge and face of a mesh Mi7

respectively. The decimation is performed by edge collapse op-8

erations that are interleaved by increasing simplification error9

in a single priority queue for all meshes.10

Proximity-Aware Error Metric. We first introduce a new col-11

lapse error computation, evaluated at the collapsing vertex ob-12

tained by standard QEM (see Section 5). The key idea of our13

approach is to combine the edge quadric with the quadrics of14

the faces surrounding the edge on nearby meshes. With our15

approach, we increase the collapse error that changes the ge-16

ometry where multiple meshes are close. These collapses17

are pushed back in the priority queue, so that the face budget18

is automatically rebalanced between the different meshes. We19

emphasize that, by affecting only the error computation but not20

the placement of the collapsing vertex, we take benefit of the21

robustness of QEM for placing the collapsing vertices.22

Proximity Analysis. We finally present in Section 6 a generic23

approach to detect proximity areas on meshes. We analyze24

the spatial arrangement of the input meshes and their distances,25

from which we derive parameter values for the automatic con-26

figuration of the proximity-aware error metric.27

5. Proximity-Aware Decimation28

In its initial formulation, the QEM represents the point-to-29

plane distance for all the faces surrounding a vertex or an edge.30

When decimating a scene with multiple meshes, the informa-31

tion stored in the quadrics is incomplete, as it is restricted to32

vertex or edge neighborhood in the topological sense, i.e. re-33

stricted to a single mesh. Several approaches may be considered34

to account for non-local properties of the mesh:35

• Blocking collapses in proximity areas, which would lead36

to an undesired oversimplification outside the proximity37

areas for a given face budget.38

• Increasing the weights of collapse operations in proxim-39

ity areas, however, that would prevent some collapse op-40

erations from being performed even though they do not41

change the geometry, e.g. two nearly parallel and close42

planes with dense tessellation.43

• Modifying the quadric minimized during the decimation44

operation by incorporating the face quadrics from the45

meshes that are surrounding the collapsed edge. This ap-46

proach has already been used to decimate a single mesh47

with small holes [3] by creating virtual edges between48

close vertices. In our case, this would tend to move col-49

lapsing points toward the surrounding meshes, and thus to50

change the geometry.51

In this work, we propose a new weighting strategy to delay 52

the collapse operations in proximity areas. We emphasize that 53

we keep the collapsing point given by QEM since we do not 54

aim at changing the collapses but rather at reordering them con- 55

sidering proximity. To do so, we evaluate a proximity quadric 56

computed from the surrounding meshes at the location of the 57

collapsing point, and incorporate it into a proximity-aware er- 58

ror metric used to sort collapses in the priority queue. 59

Proximity quadric. In order to penalize collapses affecting 60

edges that are close to other meshes, we use a proximity penalty 61

function to increase their cost. For a given edge ei, j, faces of 62

other meshes located within a distance threshold r in the scene 63

(computed as explained in Section 6) are considered in proxim- 64

ity. 65

ei, j

N(ei, j)

r

Let N(ei, j) be the set of faces (in blue
in the right inset) from close-by meshes of
mesh Mi that fall in the euclidean neighbor-
hood of radius r from the edge ei, j. Note that
we always consider the faces from the orig-
inal meshes (i.e. not the decimated meshes)
to compute N(ei, j), in order to avoid ac-
cumulating the decimation errors into the
proximity quadrics. We denote Q̂i, j the quadric combining the
quadrics of the faces of N(ei, j) and define it as :

Q̂i, j =
1

card(N(ei, j))

∑
fk,l∈N(ei, j)

w(ei, j, fk,l) ∗ Qk,l (1)

where Qk,l is the quadric associated with the face fk,l and w
weights the contribution of each surrounding face w.r.t. the
proximity threshold r, such that

w(ei, j, fk,l) = φ(d(ei, j, fk,l)),

where d(ei, j, fk,l) is the distance of the edge ei, j to the face fk,l. In
order to give more importance to close faces, we use the smooth
polynomial kernel:

φ(x) =

(1 − ( x
r )3)2 if x ≤ r,

0 otherwise.
(2)

Proximity-aware error metric. We define our penalty function
to be proportional to the deviation of the collapsing point xi, j

(obtained by minimizing the quadric error ∆qem) from the edge
neighborhood:

∆prox(xi, j) = xT
i, j Q̂i, j xi, j.

Then, we define a proximity-aware error metric by combining
this penalty function ∆prox with ∆qem. A naive solution is to add
∆prox to ∆qem, but this strategy is inefficient in our case as it pre-
vents the simplification of flat areas with very low geometric
error and high proximity error. The simplification of flat ar-
eas does not degrade the shape representation and should thus
be simplified early in the decimation process, i.e. still be as-
sociated with a low error. Hence we propose to use ∆prox as a
penalty factor modulating the error computed with the QEM us-
ing Equation 3. We remind that, in this equation, xi, j is the point
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minimizing the second order equation of the standard QEM.
The proximity-aware error ∆(xi, j) is then computed with this
position to sort the corresponding edge in the priority queue as
follows:

∆(xi, j) = ∆qem(xi, j) (1 + α∆prox(xi, j)), (3)

where α scales the proximity error so that penalized edges are1

adequately re-sorted in the priority queue. We estimate α so that2

the proximity-aware error ∆ is in the same order of magnitude3

as a given large error ehigh when (1) the QEM error is relatively4

low and (2) the penalty function ∆prox is maximal. To do so,5

we set ehigh as the error at 90% of the QEM error histogram,6

∆qem = e 1
4

where e 1
4

is the QEM error of the first quartile, and7

∆prox = r2 as it is the square value of a distance bounded by r.8

Using Equation 3, we directly obtain:

α =
1
r2 (

ehigh

e 1
4

− 1).

The values of ehigh and e 1
4

have been first chosen intuitively to9

respectively represent a high error and a relatively low error. It10

is meant to avoid both a too high penalty that would prevent11

the simplification of edges even with a moderate proximity, and12

a too low penalty that would have an insignificant impact on13

the simplified meshes. These values have then been validated14

experimentally.15

6. Proximity Analysis16

In this section, we present the proximity distribution between17

two meshes (Section 6.1), how it is filtered to automatically18

compute a proximity threshold r (Section 6.2), and how it ex-19

tends to N meshes (Section 6.3).20

6.1. Proximity distribution between two meshes21

Intuitively, two meshes Mi and M j have a proximity re-22

lation when their faces are close enough. The goal of23

the proximity detection step is to analyze the scene and24

r

Mi

M j

find r such that we can tag mesh faces that25

are considered in proximity, as illustrated in26

the right inset. To this mean, we build the27

distribution of the face-to-mesh distances28

between two input meshes, from which we29

extract robust distance thresholds using per-30

sistent homology. Our approach is based on31

the observation that nearby surfaces might generate peaks in the32

distance distribution function, as illustrated in Figure 3.33

Let us denote fi,k a face of the mesh Mi, c j( fi,k) its closest face
on the mesh M j, and d the face-to-mesh distance, i.e. the eu-
clidean distance between fi,k and c j( fi,k). We consider that fi,k is
in a proximity area if the distance d( fi,k, c j( fi,k)) is small enough
and symmetric, i.e. d( fi,k, c j( fi,k)) = d(c j( fi,k), ci(c j( fi,k))). In
practice, strict symmetry is not always desirable as face-to-
mesh distances might be affected by variation of tessellation
across meshes. We thus rather measure a( fi,k), the asymmetry
between corresponding face-to-mesh distances as:

a( fi,k) =
∣∣∣ d( fi,k, c j( fi,k)) − d(c j( fi,k), ci(c j( fi,k)))

∣∣∣

with | · | the absolute value. 34

As we want to focus our analysis on mesh parts that are the
most likely to be in proximity, we only consider faces with
small asymmetry value. We thus start by computing Â( fi,k) as a
function of the area A( fi,k) of mesh faces, weighted w.r.t. their
asymmetry so that Â decreases when the asymmetry increases:

Â( fi,k) =

A( fi,k) ∗ (1 − ( a( fi,k)
a 1

4

)2)2 if a ≤ a 1
4
,

0 otherwise,

where a 1
4

is the first quartile of asymmetry measured on the 35

face-to-mesh distances between the two meshes. Intuitively, 36

this value allows us to discard pairs of faces that will not con- 37

tribute to the proximity computations. We have validated this 38

value experimentally, and we notice that small changes in this 39

value have a negligible effect on the simplification process. 40

We defineD as the weighted distribution of the face distances 41

between two meshes, where each distance sample is weighted 42

by Â( fi,k). As the distance d is asymmetric by construction, we 43

populateD with distances from Mi to M j and from M j to Mi. 44

6.2. Proximity distribution filtering 45

In the ideal case (Figure 3-a), all the faces in proximity areas 46

are at the same distance dideal. This generates a clear peak in the 47

distribution D and the proximity distance r can be easily set as 48

r = dideal. In practice (Figure 3-b,c), geometric configurations 49

are more ambiguous and the proximity threshold r is more com- 50

plicated to set. We propose an automatic computation of r on 51

which all our examples are based. This computation can also 52

be easily edited if required by the user. 53

The proximity threshold r aims at classifying faces that are 54

in proximity areas, such that their distance to other meshes is 55

less or equal to r, as illustrated in Figure 3. When D is noisy, 56

several proximity threshold candidates ri might be considered. 57

Intuitively, the candidates ri split the input distribution D into 58

groups of faces with consistent distances. In other words, we 59

seek at grouping faces that share the same distance, e.g. local 60

maxima in D. Hence, a natural solution consists in extracting 61

proximity threshold candidates as local minima of the input dis- 62

tribution. 63

D

D

D

a)

b)

c)

d

d

d

r

r0 r1

r

dideal

Fig. 3: Examples of distance distributions between two surfaces, ranging from
simple (top) to more realistic (bottom) cases. ri are examples of proximity
threshold candidates.
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Fig. 4: The input distribution D (a-black curve) and its persistence diagram
(b). The filtered distribution (a-gray curve) is constructed from the first 4 most
persistent intervals. c) Input model from Connector scene, with faces colored
w.r.t. candidate thresholds.

As visible in Figure 4-a),D is in practice too noisy for the di-1

rect extraction of its minima, and needs to be filtered. Smooth-2

ing the distribution might help to reduce the noise, however, it3

is not clear how much smoothing needs to be applied to not fil-4

ter out the optimal, yet unknown, candidate ri. Among all the5

existing approaches for signal analysis, we seek an approach6

that considers explicitly the shape of the distribution, and al-7

lows to select the number of groups required to explain the8

data. In this work, we considered Topological Data Analysis9

(TDA), and more specifically persistent homology (PH) [32],10

for its ability to consistently cluster a graph in a preset number11

of groups.12

For the sake of completeness, we now briefly introduce the13

basics of PH for 1D curve processing. In a nutshell, PH sees14

the analyzed curve as a height field. For a given height, let us15

draw an imaginary horizontal line in the curve domain, and ob-16

serve the segments of the line that are above the signal. When17

increasing the height of the line, some segments might appear18

(at local minimum), or existing segments might be merged (at19

local maximum) depending on the curve’s shape. These events20

are topological events, that are tracked and represented in so-21

called persistence diagrams. As shown in Figure 4, a persis-22

tence diagram is a 2D graph containing a set of points. Each23

point represents one of the aforementioned line segments, with24

its x coordinate corresponding to the height where the segment25

appears, and y the height where it is merged with another one.26

The persistence of a segment is measured as the distance be-27

tween its (x, y) coordinates and the line f (x) = y, as illustrated28

in Figure 4-b).29

To simplify the curve representing the distributionD, we se-
lect the m most prominent segments, i.e. those with the highest
persistence value. For each segment, we know the local mini-
mum and maximum associated respectively with its appearance
and merge events. We construct the simplified distribution by
linearly connecting the successive extrema corresponding to the
m most prominent segments, and extract the proximity thresh-
old candidates ri as the local minima of this simplified curve.
By construction, our approach is guaranteed to interpolate the
local extrema ofD, and to generate m proximity threshold can-
didates ri. As seen in Equation 2, r is used to weight faces
using a smooth kernel. For a very narrow interval (e.g. in red in
Figure 4-a), this smoothing might over smooth the influence of

faces inside the interval. In order to get a conservative smooth-
ing, we extend the interval so that the weight of any face inside
the interval bounded by ri is close to 1 to preserve the face influ-
ence, i.e. we compute r used in Equation 2 so that φ(ri) = wref
with wref equals a value close to 1, experimentally set to 0.9 in
all our tests. Hence, for a chosen candidate ri we compute the
threshold r as:

r =
ri

3

√
1 − 2
√wre f

.

For all our experiments, we used the first most prominent lo- 30

cal minima out of four (m = 4) extracted as proximity threshold 31

candidates. This value of m is dependent on the objects shapes 32

and their organization in the scene. While the choice of m = 4 33

is effective for all our experiments, it may not be optimal for 34

all scenes. Thus, our system can output multiple suggestions 35

visualized by a user (e.g. by coloring associated faces as seen 36

in Figure 4-c). The user can then easily choose the appropri- 37

ate number of prominent segments m and the local minima ri 38

setting the desired significant proximity. 39

6.3. Proximity between N meshes 40

Our approach naturally extends to N meshes by aggregating 41

the pairwise distance distribution for the meshes in the scene. 42

However, considering all pairs of meshes, especially those that 43

are far away from each other, may lead to unwanted clusters 44

and a relatively high distance might be computed as proxim- 45

ity threshold for the scene. To prevent this, we consider only 46

pairs of meshes that have intersecting or close-by axis-aligned 47

bounding boxes. We used a fixed epsilon value for all our ex- 48

periments, set as 0.1% of the scene axis-aligned bounding box. 49

7. Results 50

We have evaluated our approach on four different scenes (see 51

Table 1), by running our decimation algorithm on an Intel Xeon 52

E5-2609 1.90GHz, 16BG of RAM. We implemented standard 53

QEM [3], boundary-aware decimation [31] and our approach in 54

C++ without optimization. All our timings are based on these 55

homogeneously non-optimal implementations to provide fairer 56

comparisons. We however point out that optimized QEM im- 57

plementations are orders of magnitude faster as there is room 58

for significantly optimizing our approach implementation. The 59

incremental decimation is performed on a single thread, while 60

the distance queries for the collapse error computation is par- 61

allelized using one thread per neighboring mesh. For each test 62

scene, we estimated the proximity threshold r as described in 63

Section 6 (with the four most prominent intervals) using the 64

first cluster in all cases. 65

We compare our approach with standard QEM by deactivat- 66

ing our proximity error computation during the priority queue 67

pre-computation and update routines. As QEM is not aware 68

of proximity relations, we also implemented a naive weighting 69

scheme where the collapse error is multiplied by a fixed value 70

v in proximity areas (∆(xi, j) = v ∗ ∆qem(xi, j)). As finding a 71

good weight is a non-obvious problem, we chose two extreme 72

values: v = {2; 1000}. The former preserves the order of mag- 73

nitude of the collapse errors, while the latter is very likely to 74
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Scene # objects # input faces # output faces Prox. threshold (%) Dec. time (s) Method
Tube 2 5508 500 5.29 8 Proximity-Aware EM

(Fig. 5) 2 González et al. [31]
2 Standard QEM

Tube* 2 11526 500 4.68 19 Proximity-Aware EM
(Fig. 6) 4 González et al. [31]

3 Standard QEM
Connector 2 5820 580 1.98 5 Proximity-Aware EM

(Fig. 7) 2 González et al. [31]
2 Standard QEM

Engine 17 42286 3800 8.34 811 Proximity-Aware EM
(Fig. 10) 9 González et al. [31]

8 Standard QEM
Car 425 3075108 150000 0.00829 67680 Proximity-Aware EM

(Fig. 11) 25980 González et al. [31]
23460 Standard QEM

Table 1: Scenes details. The proximity threshold is computed automatically and given as a percentage of the scene axis-aligned bounding box diagonal.

Scene Proximity mean Non-proximity mean Proximity max Non-proximity max Method
Tube 0.0897 0.446 0.594 5.23 Proximity-Aware EM

(Fig. 5) 0.336 0.395 4.82 5.01 González et al. [31]
0.384 0.348 4.81 5.02 Standard QEM

Tube* 0.0774 0.388 2.45 5.63 Proximity-Aware EM
(Fig. 6) 0.455 0.273 5.00 5.01 González et al. [31]

0.462 0.248 4.98 4.98 Standard QEM
Connector 0.0540 0.305 0.514 2.33 Proximity-Aware EM

(Fig. 7) 0.254 0.313 1.15 2.44 González et al. [31]
0.240 0.301 0.787 3.83 Standard QEM

Engine 0.0475 0.115 1.08 2.39 Proximity-Aware EM
(Fig. 10) 0.0527 0.205 1.47 2.91 González et al. [31]

0.0487 0.0488 1.47 0.389 Standard QEM
Car 0.00591 0.0124 0.659 1.10 Proximity-Aware EM

(Fig. 11) 0.0143 0.0116 1.20 1.88 González et al. [31]
0.0138 0.0105 1.75 2.50 Standard QEM

Table 2: Distances between meshes are given as a percentage of the scene axis-aligned bounding box diagonal (the less the better), and computed separately for
proximity and non-proximity areas. Distances are computed by resampling the simplified scene and using point-to-plane distance with the closest face.

block collapses in proximity areas. For all the approaches, we1

set the stopping criterion as a target number of faces (see Ta-2

ble 1 for numerical values). As this number of faces is set for3

the whole scene, each approach is expected to balance the face4

budget differently on each object.5

We also compare our approach to González et al. [31], who6

use a standard priority queue in which edges are sorted by ge-7

ometric error, e.g. QEM.. When collapsed, edges having prox-8

imity, i.e. edges having one vertex nearby another object face,9

are collapsed with halfedge collapse rather than edge collapse.10

This strategy prevents the displacement of vertices marked as11

“boundary” in proximity areas but the geometry is still modi-12

fied. We rather delay the simplification of edges having prox-13

imity while still collapsing with a standard edge collapse. As14

illustrated in Figures 5,6,7 and 10, the approach of González15

et al. [31] is less efficient in preserving the geometry in proxim-16

ity areas and thus the inter-object relation is less readable.17

Interlocking objects. The Tube scene is composed of two ob- 18

jects that mechanically fit into one another (see Figure 5(a)). 19

Preserving the geometrical features associated with this relation 20

(e.g. mechanical shoulder) is necessary to preserve the scene 21

understanding. As shown in Figures 5(b) and 5(d), QEM fails 22

at preserving the tube (red model) outer walls on the base (blue 23

model), which retracts during decimation. Using large weights 24

to penalize collapses in proximity areas (see Figure 5(c)) pre- 25

serves the geometry of the outer and inner tubes, however at the 26

cost of a relatively dense tessellation. As a result, other parts 27

of the meshes are undersampled and display an altered shape. 28

In comparison, our approach (see Figure 5(f)) nicely preserves 29

the top shoulder on the tube and the outer tube slot on the base. 30

Outside of proximity areas, the results look similar to standard 31

QEM. The only noticeable difference is on the small structure 32

at the back of the base, which is discarded by our approach and 33

provides a larger face budget in favour of proximity areas. 34
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(a) (b) (c) (d) (e) (f) (ours)

Fig. 5: (a) Tube scene. (b) Standard QEM. (c) QEM with proximity weighted by a too large weight prevents the simplification in proximity areas. (d) QEM with
proximity weighted by a too low weight and (e) González et al. [31] separate the tube and the base meshes like standard QEM. (f) Proximity-Aware EM keeps the
two objects as a whole.

(a) (b) (c) (ours)

Fig. 6: Simplification of the Tube* scene, obtained by tessellating Tube be-
fore simplification with (a) standard QEM, (b) González et al. [31] and (c)
Proximity-Aware EM. The three methods produce similar results to those ob-
tained by simplifying the original scene.

Impact of tessellation. We evaluated the stability of our ap-1

proach w.r.t. variations of tessellation. The Tube* scene has2

been generated by subdividing Tube using midpoint subdivi-3

sion (i.e. bilinear dyadic primal subdivision on triangles). As4

shown in Figure 6, our approach shows similar stability as5

QEM, while still preserving the contact zone. In the proximity6

analysis, the faces contribution is normalized by their area in7

order to minimize the dependence on the density of the meshes8

in a scene. Throughout the decimation process, collapse opera-9

tions of all meshes are interleaved by error, so that variations in10

density are naturally handled by the edge collapse error. Hence,11

we do not perform any mesh regularization as size variations of12

mesh elements are accounted for by our algorithm.13

Cylindrical shapes. The Connector scene (see Figure 7) is14

composed of two objects, a connector and a screw passing15

through one of the connector holes. In this example, we want to16

preserve the shape of the connector hole crossed by the screw.17

As shown in Figure 7(d), our method displays a significant dif-18

ference between the two holes of the connector, the one where19

the screw belongs is better preserved, as opposed to Figure 7(b)20

where both holes look similar and none of them looks circular21

anymore.22

Proximity threshold evaluation. Our proximity-aware error23

metric is parameterized by a proximity threshold, which we24

define using automatic analysis of the scene. As illustrated in25

Figure 8, small variations of the proximity threshold have little26

impact on the results, while Figure 9 shows that our automatic27

procedure computes the appropriate order of magnitude. 28

Medium-complexity scene. The Engine scene is composed by 29

17 meshes with very different shapes (e.g. thin belts, cylinders 30

and box-like shapes) and types of contacts (interlocked cylin- 31

ders, partially colled belts, coplanar surfaces, etc), as illustrated 32

in Figure 10(a). Even though the overall picture looks similar, 33

our approach better preserves the geometry of meshes in prox- 34

imity and improves the readability of the system functionality 35

when the view is closer to the models. For instance, QEM gen- 36

erates intersections between the belt and its wheel, which are 37

avoided with our approach (see the close-up in Figures 10(b)) 38

and 10(d)). As for the Tube scene, our approach also better pre- 39

serves the connection between the tubes and the base. On this 40

scene, details are preserved in proximity areas by discarding 41

some details in other parts of the scene and balancing the face 42

budget. For instance, small geometrical components on top and 43

at the bottom of the oil pan (in purple) are removed with our 44

approach. 45

Realistic complex scene. The Car scene consists of 425 meshes 46

modelling the front part of a real car, including systems and me- 47

chanical pieces (see Figure 1 for a global view, and Figure 11 48

for close-ups). As for the other scenes, by taking into account 49

proximities in the simplification, functional information and 50

shape relations are better preserved. As illustrated in both fig- 51

ures, screw heads are simplified differently with our approach, 52

either to preserve contact with the screwed surface (Fig. 2) or to 53

preserve the shape and alignment of the screw head with its axis 54

(Fig. 11-top). Alignment is also better preserved between two 55

connected axes (Fig. 11-middle), without creating intersections 56

in contrast to QEM simplification. Functional readability may 57

be severely deteriorated on very thin pipes (Fig. 11-bottom), 58

which are shortened by QEM while they are well preserved with 59

our approach. 60

Quantitative analysis. We numerically compared our results 61

with standard QEM using the distances between the simplified 62

and the original meshes. As our method aims at preserving the 63

geometry in proximity areas, we measure separately the error 64

introduced inside and outside the proximity areas. To this mean, 65

the vertices of the original meshes are divided into two cate- 66

gories: those considered in proximity with other meshes, and 67

those that are not. We report in Table 2 the mean and maxi- 68

mum (i.e. Haussdorff) distances for each scene, for both QEM 69
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(a) Input scene (b) Standard QEM (c) González et al. [31] (d) Proximity-Aware EM

Fig. 7: Connector scene. Compared to previous approaches, our method better preserves the hole of the screw in the connector.

(a) (b) (c) (d)

Fig. 8: (a) The input Connector scene is simplified using (b) a proximity
threshold twice lower than our automatically computed proximity threshold,
(c) our proximity threshold, and (d) a proximity threshold twice higher. All
these proximity thresholds are in the same order of magnitude and they pro-
duce similar results.

and our approach. As expected, our approach yields to lower1

errors in proximity areas, at the cost of higher errors in other2

parts of the scene. In most cases, however, our method out-3

puts comparable error to QEM, and in two cases (Connector4

and Car) introduces less error than QEM when measured using5

Haussdorff distance.6

Error balance. Delaying collapses in proximity areas in-7

evitably induces earlier simplifications in other areas. The re-8

sult is that the geometric error increases more slowly in proxim-9

ity areas than in other mesh parts where it grows faster. How-10

ever, in practice, this does not lead to a very significant increase11

of the geometric error in the non-proximity areas and if other12

specific details are to be preserved, a dedicated penalty function13

may be defined and added in order to also delay the correspond-14

ing collapses.15

Unwanted intersections. Our method naturally delays simplifi-16

cations in proximity areas (especially for very close faces) and17

first collapses edges producing a low geometric error, i.e. edges18

in flat areas. Intersections are thus very unlikely to occur unless19

during extreme simplifications. If required, our method can be20

combined with existing methods that avoid intersections during21

the decimation, e.g. the intersection-free simplification [30].22

(a) (b) (c) (d)

Fig. 9: (a) The input Connector scene is simplified using (b) a proximity
threshold ten times lower than our automatically computed proximity thresh-
old, (c) our proximity threshold, and (d) a proximity threshold ten times higher.
The smaller proximity threshold is too low to preserve the bottom screw hole
and the higher proximity threshold, while perfectly preserving the bottom hole,
degrades the top hole.

8. Discussion and Conclusion 23

We propose an automatic pipeline for proximity-aware mesh 24

decimation, extending standard QEM to account for spatial 25

relationships when simplifying complex scenes composed of 26

multiple objects. In pre-processing, we analyze the scene to 27

specify which parts of the input meshes are in proximity, and we 28

extend the QEM definition to increase the error of the collapse 29

operations located in proximity areas. Our proximity analysis 30

framework is robust to variations in tessellation, and can also 31

be used to suggest multiple proximity configurations, enabling 32

semi-automatic configuration for specific cases. As shown in 33

our experiments, proximity-aware mesh decimation produces 34

overall results comparable to standard decimation using QEM, 35

while preserving details in proximity areas. 36

Our approach is based on the assumption that proximity re- 37

lations imply semantic or functional relationships between ob- 38

jects, which is often true in CAD models, where shapes are 39

designed to achieve a specific task. An interesting future in- 40

vestigation would be to extend our approach to other relations, 41

such as alignment, symmetry, instances, or user-defined rela- 42

tions [22]. Our proximity detection algorithm might also be less 43

accurate when the input objects contain large faces, as the dis- 44

tance anisotropy function is sampled for each face of the mesh. 45

This is not a problem in most cases as we want to simplify de- 46

tailed meshes, however, an interesting research direction would 47



10 Preprint Submitted for review / Graphical Models (2020)

(a) Input scene (b) Standard QEM (c) González et al. [31] (d) Proximity-Aware EM

Fig. 10: Engine scene. On the first row, the global view of the scene, where the simplification obtained with the previous approaches and our approach gives
globally similar results. Details are however better preserved with our method, as visible on the two close-up views (middle and bottom rows).

be to integrate the spatial relationship over the mesh faces, in1

order to obtain a truly tessellation-independent method.2

Our current implementation introduces a time overhead in3

comparison with QEM, which could be significantly reduced4

by optimizing distance queries and neighborhood relations. Our5

approach may be improved by caching faces in proximity areas6

and parallelizing the priority queue update procedures.7

References8

[1] Luebke, DP. A developer’s survey of polygonal simplification algorithms.9

IEEE Computer Graphics and Applications 2001;21(3):24–35.10

[2] Hoppe, H. Progressive meshes. In: Proceedings of the 23rd Annual Con-11

ference on Computer Graphics and Interactive Techniques. SIGGRAPH12

’96; ACM; 1996, p. 99–108. doi:10.1145/237170.237216.13

[3] Garland, M, Heckbert, PS. Surface simplification using quadric error14

metrics. In: Proceedings of the 24th Annual Conference on Computer15

Graphics and Interactive Techniques. SIGGRAPH ’97; ACM; 1997, p.16

209–216. doi:10.1145/258734.258849.17

[4] Kwon, S, Kim, BC, Mun, D, Han, S. Simplification of feature-based18

3d cad assembly data of ship and offshore equipment using quantitative19

evaluation metrics. Computer-Aided Design 2015;59:140–154.20

[5] Rossignac, J, Borrel, P. Multi-resolution 3d approximations for render-21

ing complex scenes. In: Modeling in computer graphics. Springer; 1993,.22

[6] Low, KL, Tan, TS. Model simplification using vertex-clustering. In:23

Proceedings of the 1997 symposium on Interactive 3D graphics. ACM;24

1997, p. 75–ff.25

[7] Boubekeur, T, Alexa, M. Mesh simplification by stochastic sampling26

and topological clustering. Computers & Graphics 2009;33(3):241–249.27

[8] Schroeder, WJ, Zarge, JA, Lorensen, WE. Decimation of triangle28

meshes. In: Proceedings of the 19th Annual Conference on Computer29

Graphics and Interactive Techniques. SIGGRAPH ’92; ACM; 1992, p.30

65–70. doi:10.1145/133994.134010.31

[9] Turk, G. Re-tiling polygonal surfaces. In: Proceedings of the 19th An- 32

nual Conference on Computer Graphics and Interactive Techniques. SIG- 33

GRAPH ’92; ACM; 1992, p. 55–64. doi:10.1145/133994.134008. 34

[10] Ciampalini, A, Cignoni, P, Montani, C, Scopigno, R. Multiresolution 35

decimation based on global error. The Visual Computer 1997;13(5):228– 36

246. 37

[11] Cohen, J, Varshney, A, Manocha, D, Turk, G, Weber, H, Agarwal, P, 38

et al. Simplification envelopes. In: Proceedings of the 23rd Annual Con- 39

ference on Computer Graphics and Interactive Techniques. SIGGRAPH 40

’96; ACM; 1996, p. 119–128. 41
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